The problem set is due at the beginning of the class on Friday (on paper or by email).

Reading:

Class notes.
Hatcher: Chapter 3 (pp. 185-186, 191-196, 198-199, 206-213, 214-215, 239-241, 249), Section 3.A (pp. 264-265, 267), Section 3.B (pp. 268, 273-$276,277-280$, Example 3 B. 4 on p. 272 for $X=Y=\mathbf{R P}^{2}$, the $G=\mathbb{Z}$, $m=n=2$, homology part of Exercise 1 on p. 280).

A ring R will always mean a commutative ring with unit, unless specified otherwise. If there are no coefficients mentioned, for this homework, assume them to be R, unlike the common practice to assume them to be \mathbb{Z}. Same about \otimes and Hom.

Problem 1. Compute the homology $H_{\bullet}\left(\mathbf{R} \mathbf{P}^{2} \times \mathbf{R P}^{2} ; \mathbb{Z} / 2\right)$ using our computation of the integral homology and the UCT for homology.

Problem 2. In class, we had a geometric interpretation of the generator of $H_{3}\left(\mathbf{R} \mathbf{P}^{2} \times \mathbf{R} \mathbf{P}^{2} ; \mathbb{Z}\right)=\mathbb{Z} / 2$, which came from the Tor group in the Künneth formula. We did that using cellular homology. Give a geometric interpretation of of the generators of $H_{1}\left(\mathbf{R} \mathbf{P}^{2} ; \mathbb{Z} / 2\right), H_{2}\left(\mathbf{R} \mathbf{P}^{2} ; \mathbb{Z} / 2\right)$, and $H^{2}\left(\mathbf{R P}^{2} ; \mathbb{Z}\right)$ which come through the universal coefficient theorems.

Problem 3. Show that for $\alpha, \beta \in H^{\bullet}(X)$ and $z \in H_{\bullet}(X)$,

$$
\langle\alpha, \beta \cap z\rangle=\langle\alpha \cup \beta, z\rangle
$$

where

$$
\langle-,-\rangle: S^{\bullet}(X) \otimes S_{\bullet}(X) \rightarrow R
$$

denotes the Kronecker pairing, given on $S^{p}(X) \otimes S_{p}(X)$ by evaluation of singular cochains $S^{p}(X)=\operatorname{Hom}\left(S_{p}(X), R\right)$ on singular chains $S_{p}(X)$, and equal to zero, otherwise.

Problem 4. Directly from the definitions, compute the cellular cohomology groups of $S^{1} \times S^{1}$ and the Klein bottle. (Time to appreciate how cumbersome simplicial homology is for computations!)

Problem 5. Problem 7 on p. 205 of Hatcher.
Problem 6. Problem 9 on p. 229 of Hatcher.
Problem 7. Problem 10 on p. 229 of Hatcher.
Problem 8. Problem 3 on p. 267 of Hatcher.

