Math 8306Fall 2021Homework 5Posted: 11/5; Problem 4 simplified, due date changed: 11/10; dueMonday, 11/15

The problem set is due at the beginning of the class on Monday (on paper or by email).

Reading:

Class notes.

Hatcher: Chapter 3 (pp. 203–204, 209–210, 240–241, 233–234, 236, 252–255, 249–250)

A ring R will always mean a commutative ring with unit, unless specified otherwise. If there are no coefficients mentioned, for this homework, assume them to be R, unlike the common practice to assume them to be \mathbb{Z} . Same about \otimes and Hom.

Problem 1 (Counterexample for excisive pairs). Let A be a point on a circle and B be the complement of A in the circle. Take $A \cup B$ with the standard topology of the circle. Show that $\{A, B\}$ is not an excisive pair.

Problem 2. Show that if X is covered by open, contractible sets U_i , $i = 1, \ldots, n$, then $a_1 \cup \cdots \cup a_n = 0$ for any collection of $a_i \in H^{n_i}(X)$ with $n_i > 0$. [*Hint*: Use the relative cup product.] (This would imply that the torus cannot be covered by two charts, given that the cup product of the two one-dimensional generators of cohomology is nontrivial, see below.)

Problem 3. Explain why the cap product

 $\cap: H^p(X, A) \otimes H_{p+q}(X, A) \to H_q(X)$

is well-defined. (Not using the more general cap product

$$H^p(X,A) \otimes H_{p+q}(X,A \cup B) \to H_q(X,B),$$

which we did not back up, except for $A = \emptyset$.)

Problem 4. Deduce the following form of Alexander duality from Poincaré-Lefschetz duality: $H^p(K;\mathbb{Z}) \cong H_{n-p}(M, M \setminus K;\mathbb{Z})$ for a compact subspace K of a closed orientable n-manifold M, such that K has an open neighborhood $U \supset K$ in M so that U is homotopy equivalent to K and $M \setminus U$ is a manifold with boundary ∂U . [*Hint*: A more general case of K is done in Hatcher, but there is no need to do any limits or compact supports for this particular case.]

Problem 5. (1) For a compact, closed, oriented n-manifold M, show that the intersection pairing

(1)
$$H^p(M;\mathbb{Z}) \otimes H^{n-p}(M;\mathbb{Z}) \to \mathbb{Z},$$

 $a \cdot b = \langle a \cup b, [M] \rangle$, passes to a pairing

$$H^p(M;\mathbb{Z})/\operatorname{Tor}\otimes H^{n-p}(M;\mathbb{Z})/\operatorname{Tor}\to\mathbb{Z},$$

where Tor is the torsion subgroup.

(2) Show that the above pairing is perfect, *i.e.*, the adjoint

$$H^p(M;\mathbb{Z})/\operatorname{Tor} \to \operatorname{Hom}_{\mathbb{Z}}(H^{n-p}(M;\mathbb{Z})/\operatorname{Tor},\mathbb{Z})$$

is an isomorphism. [*Hint*: Use the UCT and PD.]

Problem 6. Show that $H^{\bullet}(T^n; \mathbb{Z})$ is an exterior algebra, using Poincaré duality and induction on n. Here $T^n = (S^1)^n$ is the *n*-torus.

Problem 7. Show that the form (1) for an even n = 2k and p = k is unimodular, that is to say, has determinant ± 1 .