Math 8306Fall 2021Homework 6Posted: 11/19; Completed: 11/20; due Monday, 11/29

The problem set is due at the beginning of the class on Monday (on paper or by email).

Reading:

Class notes.

Hatcher: Chapter 3 (p. 250), Appendix A (pp. 523 and 529–531), Chapter 4 (pp. 375, 376–377, 379–380, 407–408), Section 4.H (pp. 460–461)

A ring R will always mean a commutative ring with unit, unless specified otherwise. If there are no coefficients mentioned, for this homework, assume them to be R, unlike the common practice to assume them to be \mathbb{Z} . Same about \otimes and Hom.

Problem 1. Use the naturality of the cup product to show that the cohomology with the cup product is a homotopy invariant, *i.e.*, homotopy equivalent spaces have isomorphic cohomology *R*-algebras.

Problem 2. Let (X, x_0) and (Y, y_0) be two *pointed spaces* (*i.e.*, spaces with basepoints) and $X \vee Y = X \times \{y_0\} \cup \{x_0\} \times Y \subseteq X \times Y$ be their *wedge product*. Show that cohomology algebra $H^{\bullet}(X \vee Y)$ is isomorphic to the product $H^{\bullet}(X) \times_R H^{\bullet}(Y) = \{(\alpha, \beta) \in H^{\bullet}(X) \times_R H^{\bullet}(Y) \mid \langle \alpha, x_0 \rangle = \langle \beta, y_0 \rangle\}$ of the augmented *R*-algebras.

Problem 3. Compute the cup-product on $H^{\bullet}(S^2 \vee S^4; \mathbb{Z})$ and show that $S^2 \vee S^4$ cannot be homotopy equivalent to \mathbb{CP}^2 despite having isomorphic integral homology groups.

Problem 4. (1) Show that the trivial fibration $B \times F \to B$ is a fibration.

- (2) Give an example to show that a homotopy lifting may not be unique.
- (3) Show that the pullback fibration $f^*(E) \to A$ of a fibration $E \to B$ via $f: A \to B$ is a fibration.
- (4) Show that the orthogonal projection of the right triangle onto one of its sides is a fibration. (This is an example of a fibration which is not a fiber bundle.)

Problem 5. Give an example of a surjective continuous map which is not a fibration and prove that it is not one directly by showing it fails the homotopy lifting property.

Problem 6. Prove that the pushout of a cofibration is a cofibration. (This is the dual statement of the problem on the pullback of a fibration above.)

Problem 7. Show directly, without appealing to fibrations, that the loop spaces of a path-connected space X at x and $y \in X$, $\Omega_x X$ and $\Omega_y X$, are homotopy equivalent.

Problem 8. Prove that if (X, A) and (Y, B) are cofibrations, then so is their product

 $(X, A) \times (Y, B) := (X \times Y, X \times B \cup A \times Y).$