The problem set is due at the beginning of the class on Wednesday (on paper or by email).

## Reading:

Class notes.
Hatcher: Chapter 4 (pp. 409, 398-399, 395-396, 339-342, 376, 380, 349, 377-379, 381-382, 383-384, 341-342, 343-345)

Problem 1. Assume the unbased versions of the following based statements and prove the latter:
(1) If $F \rightarrow E \rightarrow B$ is a pointed fibration, then for any $Y \in K_{*}$ (the category of nondegenerately pointed spaces), the sequence

$$
[Y, F]_{0} \rightarrow[Y, E]_{0} \rightarrow[Y, B]_{0},
$$

where $[-,-]_{0}$ stands for the set of based homotopy classes of based maps, is exact. Beware that in the unbased version, $B$ was assumed to be path-connected.
(2) If $A \rightarrow X \rightarrow X / A$ is a pointed cofibration, then for any $Y \in K_{*}$, the sequence

$$
[X / A, Y]_{0} \rightarrow[X, Y]_{0} \rightarrow[A, Y]_{0}
$$

is exact. Beware that in the unbased version, $Y$ was assumed to be path-connected.

Problem 2. Show that if $X \in K_{*}$, then the quotient map $\Sigma X \rightarrow S X$ from the unreduced suspension to the reduced one is a homotopy equivalence.

Problem 3. Prove that $\pi_{n}(X \times Y)=\pi_{n}(X) \oplus \pi_{n}(Y)$.
Problem 4. Prove the associativity of the smash product. Deduce $S S^{n}=$ $S^{n+1}$ for $n \geq 0$, where $S X=S^{1} \wedge X$ is the reduced suspension.

Problem 5. Show that $\pi_{1}(U)=\mathbb{Z}$ and $\pi_{2}(U)=0$. Here $U=U(\infty)=$ $\bigcup_{n} U(n)$ is the infinite unitary group.
Problem 6. Use the long exact homotopy sequence for a fibration to prove that $\mathbf{C P}{ }^{\infty}=\bigcup_{n} \mathbf{C} \mathbf{P}^{n}$ is an Eilenberg-MacLane space of type $K(\mathbb{Z}, 2)$, i.e., a CW complex with the only nonzero homotopy group being $\pi_{2} \cong \mathbb{Z}$.
Problem 7. Hatcher in proving the long exact sequence of a fibration $F \hookrightarrow E \rightarrow B$, Theorem 4.41, basically defines the connecting homomorphism $\pi_{n}(B) \rightarrow \pi_{n-1}(F)$ via the connecting homomorphism of the long exact sequence of the pair $(E, F)$. We will have defined them separately, the map $\pi_{n}(B) \rightarrow \pi_{n-1}(F)$ coming from the Puppe sequence

$$
\Omega^{n} B \rightarrow \Omega^{n-1} F \rightarrow \Omega^{n-1} E \rightarrow \Omega^{n-1} B .
$$

Prove that these two constructions give one and the same map.
Problem 8. Show that a topological group is always a simple (a.k.a. abelian, e.g., in Hatcher) space, that is to say, $\pi_{1}$ acts trivially on each $\pi_{n}$.

