MATH 8306: ALGEBRAIC TOPOLOGY PROBLEM SET 2, DUE MONDAY, NOVEMBER 4

SASHA VORONOV

Problem 1. Give an example of two CW complexes which have the same homology but are not homotopy equivalent.

Problem 2. Show that every self-map of \mathbb{RP}^{2n} has a fixed point.

Problem 3. Let A be a subcomplex of a CW complex X, Y a CW complex, $f: A \to Y$ a cellular map, and $Y \cup_f X$ the pushout (i.e., the attaching space). The Euler characteristic of a finite CW complex X may be defined as $\chi(X) = \sum_n (-1)^n \gamma_n(X)$. Formulate and prove a formula relating the Euler characteristics of A, X, Y, and $X \cup_f Y$, when X and Y are finite.

Problem 4. Let $p: X \to Y$ be a covering map with finite fibers of cardinality n. Using singular chains, construct a homomorphism $t: H_{\bullet}(Y;G) \to H_{\bullet}(X;G)$ such that the composite $p_* \circ t: H_{\bullet}(Y;G) \to H_{\bullet}(Y;G)$ is a multiplication by n. [t is called a *transfer homomorphism*.]

Problem 5. Using cell decompositions of S^n and D^n , compute their cellular homology groups.

Problem 6. Calculate the integral homology groups of the sphere M_g with g handles (*i.e.*, a compact orientable surface of genus g) using a cell decomposition of it.

Problem 7. Prove the "coassociativity" property $(id \otimes AW) \circ AW = (AW \otimes id) \circ AW$ of the Alexander-Whitney map $AW : S_{\bullet}(X \times Y) \to S_{\bullet}(X) \otimes S_{\bullet}(Y)$.

Problem 8. Give a simple proof that uses homology theory for the following fact: \mathbb{R}^m is not homeomorphic to \mathbb{R}^n for $m \neq n$.

Problem 9. Regarding a singular cochain $\phi \in C^1(X; G)$ as a function from paths in X to G, show that if ϕ is a cocycle, that is, $\delta \phi = 0$, then

- (1) $\phi(f \cdot g) = \phi(f) + \phi(g),$
- (2) ϕ takes the value 0 on constant paths,
- (3) $\phi(f) = \phi(g)$ if $f \sim g$ via a homotopy fixing the endpoints,
- (4) ϕ is a coboundary (that is, $\phi = \delta \psi$ for some $\psi \in C^0(X; G)$) iff $\phi(f)$ depends only on the endpoints of f, for all f.

[In particular, 1 and 4 give a homomorphism $H^1(X; G) \to \text{Hom}(\pi_1(X), G)$, which is a version of Hurewicz isomorphism if X is path connected.]

Problem 10. Assuming as known the cup product structure on the torus $T^2 = S^1 \times S^1$ ($\langle e^0 \rangle^* \cup a = a$ for a generator $\langle e^0 \rangle^*$ of $H^0(T; \mathbb{Z}) = \mathbb{Z}$ and any $a \in H^{\bullet}(T; \mathbb{Z})$, $\langle e_1^1 \rangle^* \cup \langle e_2^1 \rangle^* = \langle e^2 \rangle^*$ and $\langle e_i^1 \rangle^* \cup \langle e_i^1 \rangle^* = 0$ for i = 1, 2 and generators $\langle e_1^1 \rangle^*$ and

Date: October 19, 2002.

SASHA VORONOV

 $\langle e_2^1 \rangle^*$ of $H^1(T;\mathbb{Z})$ coming from two natural projections $T \to S^1$ via pullback, and $\langle e^2 \rangle^* \cup \langle e_i^1 \rangle^* = \langle e^2 \rangle^* \cup \langle e^2 \rangle^* = 0$, compute the cup product in $H^{\bullet}(M_g;\mathbb{Z})$ for the compact orientable surface M_g of genus g, by using a quotient map from M_g to the bouquet of g tori.

Problem 11. Show that any map $S^4 \to S^2 \times S^2$ must induce the zero homomorphism on $H_4(-)$. [Hint: Use the cup product]

Problem 12. Prove that there is no homotopy equivalence $f : \mathbb{CP}^{2n} \to \mathbb{CP}^{2n}$ that reverses orientation (induces multiplication by -1 on $H_{4n}(\mathbb{CP}^{2n};\mathbb{Z})$). [Hint: note from cellular cohomology that the generator $\langle e^{4n} \rangle^* \in H^{4n}$ is a cup square $\langle e^{2n} \rangle^* \cup \langle e^{2n} \rangle^*$, which you may assume is true. To pass from cohomology to homology, use the naturality of the Universal Coefficients Theorem.]