MATH 8306: ALGEBRAIC TOPOLOGY PROBLEM SET 2, DUE MONDAY, NOVEMBER 4

SASHA VORONOV

Problem 1. Give an example of two CW complexes which have the same homology but are not homotopy equivalent.

Problem 2. Show that every self-map of $\mathbb{R}^{2 n}$ has a fixed point.
Problem 3. Let A be a subcomplex of a CW complex X, Y a CW complex, $f: A \rightarrow Y$ a cellular map, and $Y \cup_{f} X$ the pushout (i.e., the attaching space). The Euler characteristic of a finite CW complex X may be defined as $\chi(X)=$ $\sum_{n}(-1)^{n} \gamma_{n}(X)$. Formulate and prove a formula relating the Euler characteristics of A, X, Y, and $X \cup_{f} Y$, when X and Y are finite.
Problem 4. Let $p: X \rightarrow Y$ be a covering map with finite fibers of cardinality n. Using singular chains, construct a homomorphism $t: H_{\bullet}(Y ; G) \rightarrow H_{\bullet}(X ; G)$ such that the composite $p_{*} \circ t: H_{\bullet}(Y ; G) \rightarrow H_{\bullet}(Y ; G)$ is a multiplication by $n .[t$ is called a transfer homomorphism.]

Problem 5. Using cell decompositions of S^{n} and D^{n}, compute their cellular homology groups.
Problem 6. Calculate the integral homology groups of the sphere M_{g} with g handles (i.e., a compact orientable surface of genus g) using a cell decomposition of it.
Problem 7. Prove the "coassociativity" property $(\mathrm{id} \otimes \mathrm{AW}) \circ \mathrm{AW}=(\mathrm{AW} \otimes \mathrm{id}) \circ \mathrm{AW}$ of the Alexander-Whitney map AW : $S_{\bullet}(X \times Y) \rightarrow S_{\bullet}(X) \otimes S_{\bullet}(Y)$.
Problem 8. Give a simple proof that uses homology theory for the following fact: \mathbb{R}^{m} is not homeomorphic to \mathbb{R}^{n} for $m \neq n$.

Problem 9. Regarding a singular cochain $\phi \in C^{1}(X ; G)$ as a function from paths in X to G, show that if ϕ is a cocycle, that is, $\delta \phi=0$, then
(1) $\phi(f \cdot g)=\phi(f)+\phi(g)$,
(2) ϕ takes the value 0 on constant paths,
(3) $\phi(f)=\phi(g)$ if $f \sim g$ via a homotopy fixing the endpoints,
(4) ϕ is a coboundary (that is, $\phi=\delta \psi$ for some $\left.\psi \in C^{0}(X ; G)\right)$ iff $\phi(f)$ depends only on the endpoints of f, for all f.
[In particular, 1 and 4 give a homomorphism $H^{1}(X ; G) \rightarrow \operatorname{Hom}\left(\pi_{1}(X), G\right)$, which is a version of Hurewicz isomorphism if X is path connected.]

Problem 10. Assuming as known the cup product structure on the torus $T^{2}=$ $S^{1} \times S^{1}\left(\left\langle e^{0}\right\rangle^{*} \cup a=a\right.$ for a generator $\left\langle e^{0}\right\rangle^{*}$ of $H^{0}(T ; \mathbb{Z})=\mathbb{Z}$ and any $a \in H^{\bullet}(T ; \mathbb{Z})$, $\left\langle e_{1}^{1}\right\rangle^{*} \cup\left\langle e_{2}^{1}\right\rangle^{*}=\left\langle e^{2}\right\rangle^{*}$ and $\left\langle e_{i}^{1}\right\rangle^{*} \cup\left\langle e_{i}^{1}\right\rangle^{*}=0$ for $i=1,2$ and generators $\left\langle e_{1}^{1}\right\rangle^{*}$ and

[^0]$\left\langle e_{2}^{1}\right\rangle^{*}$ of $H^{1}(T ; \mathbb{Z})$ coming from two natural projections $T \rightarrow S^{1}$ via pullback, and $\left\langle e^{2}\right\rangle^{*} \cup\left\langle e_{i}^{1}\right\rangle^{*}=\left\langle e^{2}\right\rangle^{*} \cup\left\langle e^{2}\right\rangle^{*}=0$), compute the cup product in $H^{\bullet}\left(M_{g} ; \mathbb{Z}\right)$ for the compact orientable surface M_{g} of genus g, by using a quotient map from M_{g} to the bouquet of g tori.

Problem 11. Show that any map $S^{4} \rightarrow S^{2} \times S^{2}$ must induce the zero homomorphism on $H_{4}(-)$. [Hint: Use the cup product]
Problem 12. Prove that there is no homotopy equivalence $f: \mathbb{C P}^{2 n} \rightarrow \mathbb{C P}^{2 n}$ that reverses orientation (induces multiplication by -1 on $H_{4 n}\left(\mathbb{C P}^{2 n} ; \mathbb{Z}\right)$). [Hint: note from cellular cohomology that the generator $\left\langle e^{4 n}\right\rangle^{*} \in H^{4 n}$ is a cup square $\left\langle e^{2 n}\right\rangle^{*} \cup\left\langle e^{2 n}\right\rangle^{*}$, which you may assume is true. To pass from cohomology to homology, use the naturality of the Universal Coefficients Theorem.]

[^0]: Date: October 19, 2002.

