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PROBLEM SET 3, DUE FRIDAY, DECEMBER 17, 2004

SASHA VORONOV

Problem 1. Use the Universal Coefficient theorem and the Künneth formula for
homology to show that for a field R, we have a natural isomorphism:

α : H•(X;R)⊗R H•(Y ;R) → H•(X × Y ;R),

where X and Y are CW complexes, H•(−;R) is the cellular cohomology with
coefficients in R, and at least one homology space, say, H•(Y ;R) is assumed finite-
dimensional. [You may skip checking the naturality: we constructed the above
homomorphism in class, called it the cross product, and explained why it was
natural. The only thing to prove is that it is an isomorphism.]

Problem 2. Let X and Y be CW complexes. Show that the interchange map

τ : X × Y → Y ×X

satisfies τ∗([i]⊗ [j]) = (−1)pq[j]⊗ [i] for a p-cell [i] of X and a q-cell [j] of Y . Deduce
that the cohomology ring H•(X) is graded commutative, i.e.,

x ∪ y = (−1)pqy ∪ x, if deg x = p and deg y = q.

Problem 3. Let X be an (n− 1)-connected (here: H̃q(X) = 0 for q < n) H-space
X (see Section 3.C of Hatcher, except that we do not make that extra assumption
about the cross products and Hatcher’s ∆ is our µ∗, while here ∆ : X → X ×X is
the diagonal map) and x ∈ Hn(X).

(1) Show that µ∗(x) = x⊗ 1 + 1⊗ x.
(2) Show that (∆×∆)∗(id× τ × id)∗(µ×µ)∗(x⊗x) = x2⊗1+(1+(−1)n)(x⊗

x) + 1 ⊗ x2. [Hint: Observe that the composition in the previous part at
the level of spaces is equal to ∆µ : X × X → X × X and recall how the
cup product is related to the diagonal. The property “µ∗∆∗ equals the
composition on the left-hand side of the formula you are asked to prove”
implies that H•(X) is a Hopf algebra, when you use coefficients in a field.]

(3) Prove that, if n is even, then either 2(x⊗ x) = 0 in H•(X ×X) or x2 6= 0.
Deduce that Sn cannot be an H-space, if n is even.

Problem 4. Assuming as known the cup product structure on the torus T 2 =
S1×S1 ((e0)∗∪a = a for a generator (e0)∗ of H0(T ; Z) = Z and any a ∈ H•(T ; Z),
(e1

1)
∗ ∪ (e1

2)
∗ = (e2)∗ and (e1

i )
∗ ∪ (e1

i )
∗ = 0 for i = 1, 2 and generators (e1

1)
∗ and

(e1
2)
∗ of H1(T ; Z) coming from two natural projections T → S1 via pullback, and

(e2)∗ ∪ (e1
i )
∗ = (e2)∗ ∪ (e2)∗ = 0), compute the cup product on H•(Mg; Z) for the

compact orientable surface Mg of genus g, by using a quotient map from Mg to the
bouquet of g tori.
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Problem 5. Show that any map S4 → S2×S2 must induce the zero homomorphism
on H4(−). [Hint: Use the cup product]

Problem 6. Prove that there is no homotopy equivalence f : CP2n → CP2n that
reverses orientation (i.e., induces multiplication by −1 on H4n(CP2n; Z)). [Hint:
note from cellular cohomology that the generator (e4n)∗ ∈ H4n is a cup square
(e2n)∗ ∪ (e2n)∗ , which you may assume is true.]

Problem 7. Let X = ΣY = Y ∧ S1 be a reduced suspension. Show that the
cup product H̃p(X) ⊗ H̃q(X) → H̃p+q(X) is the zero homomorphism, where the
coefficients are assumed to be in a commutative ring R and the tensor product is
over R. [Hint: For a pointed space X and two open subspaces A and B with a
basepoint ∗ ∈ A ∩B, construct a commutative diagram

Hp(X, A)⊗Hq(X, B) −−−−→ Hp+q(X, A ∪B)y y
H̃p(X)⊗ H̃q(X) −−−−→ H̃p+q(X)

and use it in the case X = A ∪B, where A and B are contractible.]

Problem 8. Let M be a compact orientable n-manifold. Suppose that M is
homotopy equivalent to ΣY for some connected pointed space Y . Deduce that M
has the same integral homology as Sn. [Comment: amazingly enough, this implies
that M is homotopy equivalent to Sn via the Whitehead theorem, which concludes
that a map between CW complexes inducing an isomorphism on homology is a
homotopy equivalence.]

Problem 9. Prove that for n ≤ ∞, H•(RPn; Z/2Z) ∼= (Z/2Z)[t]/(tn+1) as a ring,
with degree |t| = 1. [Hint: This is a repetition of what we (will) have done in class
for CPn, plus a new statement for n = ∞, where Poincaré duality does not work
directly.]

In the problems below, M is assumed to be a compact connected n-manifold
(without boundary) and n ≥ 2.

Problem 10. Prove that if M is a Lie group, then M is orientable.

Problem 11. Prove that if M is orientable, then Hn−1(M ; Z) is a free abelian
group.


