MATH 8307: ALGEBRAIC TOPOLOGY PROBLEM SET 5, DUE FRIDAY, APRIL 15, 2005

SASHA VORONOV

From Hatcher's textbook:

Section 4.1: 18

Section 4.2 (from Hatcher's textbook): 15 (In fact, prove a more general statement that a closed connected simply-connected *n*-dimensional manifold whose homology is the same as that of S^n is homotopy equivalent to S^n .) [Hint: use the Hurewicz theorem.]

Problem 1. Show that $\pi_7(S^4)$ contains a \mathbb{Z} summand.

Problem 2. Compute all the homotopy groups of $\mathbb{R}P^{\infty} = \bigcup_{n \geq 1} \mathbb{R}P^n$, using the computation of the homotopy groups of $\mathbb{R}P^n$ through the homotopy groups of spheres S^n .

Problem 3. Regarding a singular cochain $\phi \in C^1(X; G)$ as a function from paths in X to G, show that if ϕ is a cocycle, that is, $\delta \phi = 0$, then

- (1) $\phi(f \cdot g) = \phi(f) + \phi(g),$
- (2) ϕ takes the value 0 on constant paths,
- (3) $\phi(f) = \phi(g)$ if $f \sim g$ via a homotopy fixing the endpoints,
- (4) ϕ is a coboundary (that is, $\phi = \delta \psi$ for some $\psi \in C^0(X; G)$) iff $\phi(f)$ depends only on the endpoints of f, for all f.

[In particular, 1 and 4 give a homomorphism $H^1(X; G) \to \text{Hom}(\pi_1(X), G)$, which is a version of Hurewicz isomorphism if X is path connected.]

Problem 4. Show that, if $n \ge 2$, then $\pi_n(X \lor Y)$ is isomorphic to

$$\pi_n(X) \oplus \pi_n(Y) \oplus \pi_{n+1}(X \times Y, X \vee Y).$$

Problem 5. Compute $\pi_n(\mathbb{RP}^n, \mathbb{RP}^{n-1})$ for $n \geq 2$. Deduce that the quotient map

$$(\mathbb{RP}^n, \mathbb{RP}^{n-1}) \to (\mathbb{RP}^n/\mathbb{RP}^{n-1}, *)$$

does not induce an isomorphism of homotopy groups.

Problem 6. Assume given maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \sim id_X$. Suppose that Y is a CW complex. Show that X has the homotopy type of a CW complex, *i.e.*, is homotopy equivalent to a CW complex.

Problem 7. Let $n \ge 1$ and π be an abelian group. Construct a connected CW complex X such that $\widetilde{H}_n(X;\mathbb{Z}) = \pi$ and $\widetilde{H}_q(X;\mathbb{Z}) = 0$ for $q \ne n$. Such space X is denoted $M(\pi, n)$ and called a *Moore space*. [Hint: construct $M(\pi, n)$ as the cofiber of a map between wedges of spheres.]

Date: March 31, 2005.

SASHA VORONOV

Problem 8. Let $n \ge 1$ and π be an abelian group. Construct a connected CW complex X such that $\pi_n(X) = \pi$ and $\pi_q(X) = 0$ for $q \ne n$. Such space X is denoted $K(\pi, n)$ and called an *Eilenberg-Mac Lane space*. [Hint: start with $M(\pi, n)$, use the Hurewicz theorem, and kill the higher homotopy groups.]