MATH 8307: ALGEBRAIC TOPOLOGY PROBLEM SET 6, DUE MONDAY, MAY 9, 2005

SASHA VORONOV

From Hatcher's textbook: Section 4.1: 11, 14, 15 Section 4.K: 3, 4 Section 4.2: 16

Problem 1. Give an example of two CW-complexes which have the same homology, but are not homotopy equivalent.

Problem 2. Suppose that X is a based space,

 $p: (CX, X) \rightarrow (CX/X, \{*\})$

is the quotient map and

 $\partial: \pi_{q+1}(CX, X) \to \pi_q(X)$

is the connecting homomorphism in the homotopy long exact sequence of the pair (CX, X). Prove that the following diagram commutes:

where Σ is defined (not from this diagram, as in class, but directly) as $\Sigma[\alpha] = [\Sigma\alpha]$, where $\alpha : S^q \to X$ represents a based homotopy class and $\Sigma\alpha : S^{q+1} \to \Sigma X$ its suspension. [Hint: remember we had $-\Sigma f$ in the cofiber sequence.]

Problem 3. Show that the two definitions of the Hurewicz homomorphism, one via applying homotopy to $X \to SP X$ and the other via applying homology to $S^q \to X$, for a connected CW-complex X are the same.

Problem 4. Prove that the Whitney sum of two vector bundles $p : E \to B$ and $p' : E' \to B$ can be obtained as the bundle induced by the diagonal map $\Delta : B \to B \times B$, defined by $\Delta(x) := (x, x)$ for $x \in B$, from the product bundle $p \times p' : E \times E' \to B \times B$. In other words, show that

$$E \oplus E' \cong \Delta^*(E \times E').$$

Date: April 24, 2005.