
LECTURE 3: ALGEBRAS OVER A PROP AND CFT’S

ALEXANDER A. VORONOV

1. Algebras over a PROP and CFT’s

Definition 1. We say that a vector space V is an algebra over a PROP P , if a
morphism of PROP’s from P to the endomorphism PROP of V is given. A mor-
phism of PROP’s should be a functor respecting the symmetric monoidal structure
and the symmetric group actions, and equal to the identity on the objects.

An algebra over a PROP could have been called a representation, but since
algebras over operads, which are similar objects, are nothing but familiar types of
algebras, it is more common to use the term “algebra”.

1.1. Conformal field theory.

Example 2. An example of an algebra over a PROP is a Conformal Field Theory

(CFT), which may be defined as an algebra over the Segal PROP, see the previous
lecture. The fact that the functor respects compositions of morphisms translates
into the sewing axiom of CFT in the sense of G. Segal. Usually, one also asks for
the functor to depend smoothly on the point in the moduli space Pm,n.

Remark 3. This definition of a CFT describes only theories with a vanishing central
charge. One needs to extend the Segal PROP by a line bundle to cover the case of
an arbitrary charge, see Huang’s book on vertex operator algebras.

Conformal field theory (CFT) provides a geometric background of string theory,
which is considered as one of the steps toward grand unification, the unification of
all forces of nature in a single theory. Whereas standard physics treats a particle
as an ideal point, string theory thinks of a particle as a tiny loop or string. Respec-
tively, a particle propagating in space along a path, a world line, becomes a string
propagating along a world sheet, which is an orientable surface. The standard the-
ory is quantized by using Feynman integral over the path space, whereas Feynman
integral in string theory is an integral over the space of orientable surfaces. This
integral can ultimately be integrated out to an integral over the moduli space of
Riemann surfaces. To write down such an integral, one usually has to begin with
certain data associated to Riemann surfaces. This data, called a CFT, should sat-
isfy certain axioms. These axioms were singled out by G. Segal, see [?, ?, ?]. The
definition above compresses Segal’s definition using the notion of a PROP. Below,
we will write down the data and axioms implied by our definition of a CFT, which
at the same time show that it is equivalent to Segal’s definition.

The definition of a CFT, see Example 2, may be unraveled as certain data
satisfying certain axioms. Part of the data is a complex vector space V , called the
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state space, together with a correspondence
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n 7−→ |Σ〉 : V ⊗m → V ⊗n

A Riemann surface Σ
bounding m + n circles

A linear operator |Σ〉

Here a surface Σ is a (not necessarily connected) compact Riemann surface, a
complex manifold of dimension one. It has labeled (enumerated), nonoverlapping
holomorphic holes, which are nothing but biholomorphic embeddings φ : D2 → Σ,
where D2 = {z ∈ C | |z| ≤ 1} is the standard unit disk. One can think of φ as the
choice of a holomorphic coordinate z at the hole. The first m ≥ 0 circles are called
inputs and the remaining n ≥ 0 circles are called outputs.

This correspondence should satisfy the following axioms.

(1) Conformal invariance: The linear mapping |Σ〉 is invariant under iso-
morphisms of the surface Σ taking holes to the corresponding holes and
preserving the holomorphic coordinates there. This axiom is implicit in our
approach, because we considered only complex Riemann surfaces, which is
equivalent to considering conformal classes thereof.

(2) Permutation equivariance: The correspondence Σ 7→ |Σ〉 commutes
with the action of the symmetric groups Sm and Sn on surfaces and linear
mappings V ⊗m → V ⊗n by permutations of inputs and outputs.

(3) Superposition property:

|Σ1

∐

Σ2〉 = |Σ1〉 ⊗ |Σ2〉,

where Σ1

∐

Σ2 is the disjoint union of two Riemann surfaces.
(4) Factorization (sewing) property: Sewing along the boundaries of the

holes corresponds to composing of the corresponding operators:
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7−→ V ⊗m → V ⊗n → V ⊗k

The sewing of the outputs of a
surface with the inputs of an-
other surface

The composition of the
corresponding linear op-
erators

Here sewing along the boundaries of two holomorphic holes with coordinates
z and w means identifying two tubular neighborhoods 1/r < |z| < r and
1/r < |w| < r, r > 1, of the boundaries via z = 1/w.

(5) Normalization:

7−→ id : V → V

The unit circle The identity operator

Here the unit circle is understood as the “cylinder of zero width”, the Rie-
mann sphere S2 = R with the standard coordinate z and two holomorphic
holes of radius one around 0 and ∞.

(6) Smoothness: Sometimes one requires that the operator |Σ〉 depends
smoothly (or continuously) on the Riemann surface Σ. To make this as-
sumption, one needs to assume that V is at least a topological space, in-
troduce the structure of a smooth compex manifold on the space of linear
mappings, and think of Σ as a point of the infinite dimensional moduli
space of Riemann surfaces with holes. This axiom will not be essential to
our considerations for the time being, and we will omit it. If instead of
smoothness, we assumed holomorphicity in a certain sense, then we would
be talking about a chiral CFT or a vertex operator algebra (VOA). This
axiom follows from the PROP definition, if we assume that both the Se-
gal PROP and the endomorphism PROP are enriched over the category of
Fréchet orbifolds, that is, the morphisms Mor(m,n) are Fréchet orbifolds
for our PROP’s and the algebra structure on V respects this enrichment.

Remark 4. This definition describes in fact a CFT of central charge c = 0. An arbi-
trary central charge CFT relaxes Axiom 4: the operator |Σ2∪Σ1〉 corresponding to
the result of sewing of two Riemann surfaces Σ1 and Σ2 is equal to the composition
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of two operators |Σ2〉 ◦ |Σ1〉 up to a nonzero factor λ:

|Σ2 ∪ Σ1〉 = λ|Σ2〉 ◦ |Σ1〉.

Throughout this course we will be mostly dealing with c = 0 theories.

Exercise 1. The constant λ generalizes the notion of a two-cocycle on Diff(S1).
Find out an equation of this type on λ. Is this the only condition λ must satisfy?


