LECTURE 9: THE A, OPERAD AND A, -ALGEBRAS

ALEXANDER A. VORONOV

1. HOMOTOPY ALGEBRA

The idea of a homotopy “something” algebra is to relax the axioms of the “some-
thing” algebra, so that the usual identities are satisfied up to homotopy. For example
in a homotopy associative algebra, the associativity identity looks like

(ab)c — a(bc) is homotopic to zero.
Or in a homotopy Gerstenhaber (G-) algebra, the Leibniz rule is
[a, be] — [a, b]e F bla, ¢] is homotopic to zero.

Usually, a homotopy something algebra arises when one wants to lift the structure
of a something algebra a priori defined on cohomology to the level of cochains.

This kind of relaxation seems to be too lax for many, practical and categorical,
purposes, and one usually requires that the null-homotopies, regarded as new op-
erations, satisfy their own identities, up to their own homotopy. These homotopies
should also satisfy certain identities up to homotopy and so on. This resembles
Hilbert’s chains of syzygies in early homological algebra. Algebras with such chains
of homotopies are called strongly homotopy “something” algebras or “something” -
algebras.

Operads are especially helpful when one needs to work with something..-alge-
bras. We already know that defining the class of something algebras is equivalent
to defining the something operad. Thus, if we have an operad O, what is O, the
corresponding strongly homotopy operad? Markl’s paper [?] provides a satisfactory
answer to this question: the operad O is a mininal model of the operad O. A
minimal model is unique up to isomorphism. The idea is borrowed from Sullivan’s
rational homotopy theory; a minimal model is, first of all, a free resolution of O in
the category of operads of complexes, i.e., an operad of complexes free as an operad
of graded vector spaces, whose cohomology is O[0], the operad O sitting in degree
zero, if it is an operad of vector spaces, or the operad O sitting in the original
degrees, if it is already an operad of graded vector spaces. Second of all, a minimal
model must satisfy a minimality condition: its differential must be decomposable.

For certain specific classes of operads, one manages to describe a minimal model
explicitly. For example, Ginzburg and Kapranov [?] do it (even earlier than the
notion of a minimal model for an operad surfaced) for the so-called Koszul operads.
Below we describe an example of such kind, giving rise to the notion of an A..-
algebra and the A., operad.
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1.1. A-algebras.
Definition 1. An A, -algebra, or a strongly homotopy associative algebra, is a
complex V' =3, V¥ with a differential d, d?> = 0, of degree 1 and a collection of
n-ary operations, called products:

M, (vi,...,05) €V, Vi,...,0, €V, m>2
which are homogeneous of degree 2 — n and satisfy the relations

n

(11)  dMy(vy,... o) = (=)™ Y €(i) My (01, dvi, ..., v5)

=1
k—1
= > D ()T e @) My(v, v My(vigas - Vi), - Un),
k-l;elJ:Zn;-lz:O

where €(i) = (—1)lv1l++lvi-1l js the sign picked up by taking d through vy,...,
v;—1, |v| denoting the degree of v € V', and (i) is the sign picked up by taking M,
through vy,...,v;.

It is remarkable to look at these relations for n = 2 and 3:

dMQ(Ul, 1}2) — Mg(dvl,vz) - (—1)‘U1|M2(U1, d'UQ) = 0,

dM3(’U1,UQ, 1}3) + M3(d1}1,’02,’U3) + (—1)'”1‘M3(U1,d1}2,1}3)
—+ (—1)‘U1|+‘U2|M3(’l}1,'UQ,d’Ug)
= My (Ms(v1,v2),v3) — Ma(vy, Ma(vz,v3)),

which mean that the differential d is a derivation of the bilinear product My and
the trilinear product M3z is a homotopy for the associativity of Ms, respectively.

Ao-algebras can be described as algebras over a certain tree operad. This operad
is the tree part of the graph complex, which will be the topic of the following
sections.

1.2. The A, operad. Let A, (n) be the linear span of the set of equivalence
classes of connected planar trees that have a root edge and n leaves labeled by
integers 1 through n, with vertices of a valence at least 3, n > 2. Forn = 1
take one tree with a unique edge connecting a leaf and a root. Let us not include
anything for n = 0, although one could do that similar to the associative operad
case, so that the corresponding notion of an A,.-algebra would have a unit.

We grade each vector space A (n) by defining the degree |T'| of a tree T € Ay (n)
via

T :=v(T)+1—n=¢e(T)+1-2n,
where v(T') is the number of vertices and e(T') the number of edges of T. Notice
that 2 —n < |T] <0 for n > 1.

Let us define an operad structure on these spaces of trees. The symmetric group
acts by relabeling the leaves, and the operad composition is obtained by grafting,
as in the examples above, except one needs to take a sign into account. When
we graft a tree Ty to the ith leaf of a tree 77, the result must be the grafted tree
multiplied by a sign, which is (—1) to the power (e(T3) — 1)(the number of edges to
the right of the ith leaf in T7), where the edges to the right of a leaf are the edges
which are strictly on the right-hand side of a unique path from the leaf to the root.
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The reason for the sign above is that grafting must respect the differential, which
is introduced below.

Exercise 1. Show that this operad is a free operad of vector spaces generated by
the following trees for n > 2, which are sometimes called corollas.

Remark 2. There is no need to mark directions on the edges of a tree: from now
on we will assume the edges are directed from top to bottom.

1.3. The tree complex. The above operad of trees is not yet the A,,-operad, but
only its underlying operad of graded vector spaces. The A — oo-operad is a DG
operad, i.e., an operad of complexes. The DG structure, or a differential, is defined
as follows.

Before defining it, we will define the operation of internal-edge contraction on
the set of trees.

Definition 3. We use the notation T'/e to denote the tree obtained from a tree T
by contracting an internal edge e:

1 2 3 4 1 2 3 4

T T/e

We can now define a differential d : Ass(n) — Aoo(n) by the formula

where € is the sign given by counting the number of edges below or to the left of
the edge e in the tree T”, not counting the root.
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In particular,

k+l=n+1i
ke, 1>2
Proposition 4. (1) The operator d satisfies d*> = 0 and degd = 1.
(2) The operad structure on Asw = {Axo(n) | n > 1} is compatible with the
differential d:

d(Tl O; T2) = dTl O; T2 + (*1)‘T1|T1 O; dTQ,
ie., Ax is a DG operad.
Definition 5. We will call the DG operad Ao, the A, operad.

Remark 6. The complex Ay (n) is part of Kontsevich’s graph cochain complex.
A similar operad L., based on abstract, i.e., nonplanar trees, was introduced by
Hinich and Schechtman [?]. The operad A is the dual cobar operad in the sense of
Ginzburg and Kapranov [?] of the associative operad Assoc. They also show that
the cohomology of the operad A, is the associative operad Assoc of Section 77,
implying that A, is a free, and in fact, minimal, resolution of Assoc.

The following theorem shows that the A., operad describes the class of Ao
algebras.

Theorem 7 ([?]). An algebra over the Ay operad is an Aso-algebra. Each Aso-
algebra admits a natural structure of an algebra over the Ay, operad.

Proof. For a complex V of vector spaces with a differential d of degree 1, d? = 0,
the structure of an algebra over the operad A, on V' is a morphism of DG operads:

¢: Ass(n) — Endy(n), n>1,

where Endy(n) = Hom(V®™, V) is the endomorphism operad, which is also a
DG operad (with the usual internal differential determined by d). Given such a
morphism ¢, we define the n-ary product on V:

My (v, ..., 05) = ¢(0n)(v1 ® -+ R vy,).

Note that the degree of the product is equal to that of the corolla 4,, which is
2 — n. Since ¢ is a morphism of DG operads, d¢ = ¢d, and in view of (1.2), this is
equivalent to the identity (1.1).

Conversely, given a collection of n-ary brackets on V, n > 2, we define a mor-
phism ¢ on the generators J,, by the above formula. The A, operad is freely
generated by the corollas d,,, with a differential defined by (1.2), so the mappings ¢
define a morphism of DG operads, if the relations (1.2) are satisfied by the ¢(d,)’s.
Equations (1.1) show that this is the case. O



