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We take the opportunity to describe and illustrate in some special cases results
which appear in [1].

1. Classical results

Let V be a finite dimensional vector space over a field k. We define a reflection
to be a non-identity linear endomorphism V → V of finite order which fixes a
hyperplane. Such an endomorphism must be diagonalizable when k is the complex
numbers, but in positive characteristic this need not be so and other examples are
possible, such as transvections. A group G ⊆ GL(V ) of linear automorphisms of V
is a reflection group if it is generated by the reflections it contains. We let S(V ) be
the ring of polynomial functions on V (the symmetric algebra on V ∗), and SG the
ring of invariants. The coinvariant algebra is

SG := S ⊗SG k = S/(S · SG
+)

where SG
+ is the set of elements of SG which have zero constant term, and S ·SG

+ is
the ideal of S which they generate. We first state the classical results which have
motivated us.

Theorem 1. (Shephard-Todd [6], Chevalley [2]) If |G| is invertible in k then G is
a reflection group if and only if SG is a polynomial ring. These conditions imply
that SG

∼= kG.

Weakening the invertibility condition, we have the following.

Theorem 2. (Serre [5], Mitchell [3]) Even when |G| is not invertible in k, if SG is
polynomial then G is a reflection group and furthermore kG and SG have the same
composition factors.

Our goal has been to extend these results in various ways, by

(1) allowing any group over any field, not just groups for which the invariants
are polynomial,

(2) describing the structure of SH ⊗SG k when H is a subgroup of G, as well
as more general constructions using relative invariants which have the form
(U ⊗k S)G ⊗SG k where U is a kG-module.

(3) incorporating the action of a ‘regular’ group element, extending the work
in [4].

We will indicate a way in which the first two of these may be done, but omit
the third since it takes a little longer to describe. This account announces results
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which appear in [1] and should be taken as an illustration only of the more general
statements which appear there.

We first present two examples of rings of invariants and coinvariant algebras
to show the kind of thing that can happen. The first is an example which fits
the context of Theorems 1 and 2 with polynomial invariants, while in the second
example the invariants are not polynomial.

Example 1. We let G = C2 act on V = k2 by interchanging the basis elements x
and y, so that V is the regular representation of G over the arbitrary field k. In fact
G may be regarded as the symmetric group on two symbols, and it is well known
that the invariants are a polynomial ring in the elementary symmetric polynomials
x + y and xy. Basis elements for the various constructions we have defined are
given in Table 1. Observe that if all monomials of a certain degree lie in S ·SG

+ then
all higher degree monomials lie in this ideal, and so the coinvariant algebra is zero
in this and higher degrees. The module structure of S/(S · SG

+ ) in this example is
that it is the trivial representation τ in degree 0 and the sign representation ǫ in
degree 1, so that the composition factors of S/(S · SG

+) are the same as the regular
representation.

degree: 0 1 2

S 1 x, y x2, xy, y2

SG 1 x + y xy, (x + y)2

SG
+ 0 x + y xy, (x + y)2

S · SG
+ 0 x + y x(x + y), y(x + y), xy

S/(S · SG
+) 1̄ x̄

Table 1. Basis elements in each degree for the regular action of C2

Example 2. Again let G = C2 and let the non-identity element of G act on
V = k2 via the matrix

(

−1 0
0 −1

)

.

We assume that the characteristic of k is not 2. Using this action G is not a
reflection group. Bases for the invariants and coinvariant algebra are presented in
Table 2, the invariants being spanned by the monomials in even degree. This time
the composition factors of the coinvariant algebra S/(S · SG

+) are one copy of the
trivial representation and two copies of the sign representation, so that we get more
than the composition factors of the regular representation.

degree: 0 1 2 3

S 1 x, y x2, xy, y2 x3, x2y, xy2, y3

SG 1 all

SG
+ all

S · SG
+ all all

S/(S · SG
+) 1̄ x̄, ȳ

Table 2. Basis elements in each degree for the −1 action of C2
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2. Two theorems

We work with subgroups H ⊆ G ⊆ GL(V ) and let H\G denote the set of right
cosets Hg of H in G. This acquires an action of the normalizer NG(H) from the
left (n · Hg := Hng), and we let kH\G denote the corresponding permutation
kNG(H)-module.

For any finite group Γ we let G0(kΓ) be the Grothendieck group of finitely
generated kΓ-modules. If M is a finitely generated kΓ-module we let [M ] denote
the element of G0(kΓ) which M represents, so that two modules M and M ′ have
the same composition factors if and only if [M ] = [M ′]. We put [M ] ≥ [M ′] if and
only if every composition factor of M ′ occurs with multiplicity at least as great in
M .

Theorem 3. For any field k, and finite groups H ⊂ G ⊂ GL(V ) as above, we have
in G0(kNG(H)) the inequality

[SH ⊗SG k] ≥ [kH\G],

with equality if and only if SH is a free SG-module. When SH is a free SG-module,
putting K = Frac(SG), there is a filtration of KH\G by KNG(H)-submodules so
that counting from the bottom, the factor in position j is isomorphic as a kNG(H)-
module to the jth homogeneous component K ⊗k (SH ⊗SG k)j.

We see this result illustrated in the second example of Section 1 where we take
H = 1 and find that the coinvariant algebra SG = S ⊗SG k has at least the
composition factors of the regular representation kG. In fact it has an extra sign
representation as a composition factor, indicating (according to the theorem) that
S is not free as a SG-module.

We now show how to improve the inequality to an equality, even when SH is not
free as a SG-module. Given a finite group Γ, a (non-negatively) graded kΓ-module
is one with a direct sum decomposition M = ⊕d≥0Md in which each Md is a finite-
dimensional kΓ-module. Such an M gives rise to an element [M ](t) :=

∑

d[Md]t
d

in the formal power series ring

G0(kΓ)[[t]] := Z[[t]] ⊗Z G0(kΓ).

The situation where we wish to consider this arises as follows. We let R be a
finitely generated graded, connected, commutative k-algebra and let M be a finitely
generated graded RΓ-module where the elements of Γ are taken to be in degree 0. In
this situation the groups TorR

i (M, k) are all graded kΓ-modules with the functorial
action of Γ, as may be seen in computing Tor by taking a graded resolution of M
by graded RΓ-modules which are free as R-modules. We may see further that in
each degree j there are only finitely many i for which the component TorR

i (M, k)j

is non-zero. Thus it makes sense to define

[TorR(M, k)](t) :=
∑

i≥0

(−1)i [TorR
i (M, k)](t)

as an element of G0(kΓ)[[t]]. In the next result we let Q(t) denote the field of
rational functions in the indeterminate t.

Theorem 4. Let k be any field, and consider finite groups H ⊆ G ⊆ GL(V ). Then
the element

[TorSG

(SH , k)](t)
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lying in G0(kNG(H))[[t]] actually lies in the subring Q(t)⊗Z G0(kNG(H)), and has
a well-defined limit as t approaches 1, namely

lim
t→1

[TorSG

(SH , k)](t) = [kH\G].

3. Examples

3.1. When SG is polynomial (so G is a reflection group by Theorem 2) then S is
free as an SG-module, since S is Cohen Macaulay, hence free over any homogeneous
system of parameters. Thus we recover the second conclusion of Theorem 2. It is
furthermore the case that whatever subgroup H of G we take, SH always has a

finite projective resolution over SG and so the element [TorSG

(SH , k)](t) is in fact
a polynomial in t.

3.2. Let G = C2 be cyclic of order 2, acting on a 2-dimensional vector space with
the −1 action as in Example 2 of Section 1. We take H = 1. Here S = SG ⊕ S−

where S− is the linear span of monomials of odd degree and we readily verify that
we have a minimal resolution

S = SG ⊕ S− d0←−SG ⊕ (SG)2[1]
d1←−(SG)2[3]

d2←−(SG)2[5]
d3←−· · ·

where

d0 =

(

1 0 0
0 x y

)

, d1 =





0 0
xy −y2

−x2 xy



 , d2 =

(

xy y2

x2 xy

)

and [n] means the degree is shifted by n. Here G acts as −1 on all terms except
the first two copies of SG, where the action is trivial. Let us write τ for the trivial
kG-module and ǫ for the 1-dimensional sign representation. We calculate that

[TorSG

(S, k)](t) = τ + 2ǫt− 2ǫt3 + 2ǫt5 − · · ·

= τ +
2t

1 + t2
ǫ

→ τ + ǫ as t→ 1

giving the same composition factors as kG, as predicted by Theorem 4.
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