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1. Introduction

Simplicial complexes arising from subgroups of a group have been much used in recent

years in the context of group cohomology and representation theory. When p is a prime,

the order complex of non-identity p-subgroups of a finite group G gives rise to split exact

sequences of cohomology groups which can be used to compute the cohomology of G

(see [12], [13], [14], [1], [5], [6]). This complex is also at the heart of the reformulation

due to Knörr and Robinson of Alperin’s weight conjecture [8]. The complex of non-

identity p-subgroups was introduced by Brown [3], and later Quillen [9] and Bouc [2]

introduced, respectively, the complexes of non-identity elementary abelian p-subgroups and

non-identity p-radical subgroups, which turn out to have the same equivariant homotopy

type as Brown’s complex, and can be used in the same way.

The importance of these constructions prompts us to search for other complexes as-

sociated to G which have similar properties. This was achieved by Dwyer in [5] and [6].

Given a set of subgroups C of G he produced G-CW complexes Xα
C and Xβ

C which (when C

is closed under conjugation) have the same ordinary homotopy type as the order complex

of C, but a distinct equivariant homotopy type in general. Furthermore, with suitable

choices of C, they possess the property which enables us to get split exact sequences of

cohomology groups in the same way as with the order complex of C.

In this paper we examine the split exact sequences of cohomology groups which arise

from Dwyer’s spaces. The problem with these spaces is that they are infinite-dimensional,

and so although we obtain sequences of groups which are split and exact, because the

sequences have infinite length we are unable to deduce the isomorphism type of any one

term in the sequences from the remaining terms. We show that there are in fact split exact

sequences of finite length constructed from the infinite sequences which allow us to deduce

the cohomology of G.

In the following theorem and throughout this paper we will assume that R is a com-

plete p-local ring, by which we mean that R is either a field of characteristic p or a complete

discrete valuation ring with residue field of characteristic p. When we come to consider

group homology and cohomology this includes the generality of considering the p-torsion

subgroup of (co)homology of modules over arbitrary rings, since we have an isomorphism

Hu(G, M)p
∼= Hu(G, Zp ⊗Z M) where the group on the left of the isomorphism is the

p-torsion subgroup and Zp denotes the p-adic integers (see [12, p. 141]).

We use the notation sdt C for the set of chains σ = H0 < · · · < Ht of subgroups in C.

Given such a chain σ we write σb = H0 for the bottom member of σ, and σt = Ht for the

top member of σ. We write Gσ for the stabilizer of σ in the conjugation action of G, so

Gσ = NG(H0) ∩ · · · ∩ NG(Ht). A subgroup H of a finite group G is said to be a p-radical

subgroup if H = Op(NG(H)), the largest normal p-subgroup of the normalizer of H.
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MAIN THEOREM. Let G be a finite group and let M be an RG-module where R

is a complete p-local ring.

(i) Let C be any set of non-identity p-subgroups of G which is closed under conjugation

and which contains the set of non-identity elementary abelian p-subgroups of G. For

each u, s ≥ 1 there are split exact sequences

0 →
⊕

σ∈[G\ sdd C]

Hu(CG(σt),M)Gσ
→ · · ·

→
⊕

σ∈[G\ sd0 C]

Hu(CG(σt), M)Gσ
→ Hu(G, M) → 0

and

0 →
⊕

σ∈[G\ sdd C]

Hs(Gσ/CG(σt),Hu(CG(σt), M)) → · · ·

→
⊕

σ∈[G\ sd0 C]

Hs(Gσ/CG(σt), Hu(CG(σt), M)) → 0.

(ii) Let C be the set of non-identity p-subgroups of G. For each u, s ≥ 1 there are split

exact sequences

0 →
⊕

σ∈[G\ sdd C]

Hu(σb, M)Gσ
→ · · · →

⊕

σ∈[G\ sd0 C]

Hu(σb, M)Gσ
→ Hu(G, M) → 0

and

0 →
⊕

σ∈[G\ sdd C]

Hs(Gσ/σb, Hu(σb,M)) → · · ·

→
⊕

σ∈[G\ sd0 C]

Hs(Gσ/σb, Hu(σb, M)) → 0.

More generally, let C be any set of non-identity p-subgroups of G which is closed under

conjugation and which contains the set of non-identity p-radical subgroups of G. Then

for such a choice of C the first of the sequences above is split and exact.

There are also similar sequences (with the arrows reversed) in cohomology.

We wish to point out that the first sequences in each part of this theorem have been

obtained independently by Grodal [7], and that in work prior to our proof of their splitting

and exactness, he proved that they are exact. We will comment more fully about this at

the end of this section.

Throughout this paper we will work only with group homology, and leave it to the

reader to formulate the corresponding results in group cohomology. The proofs are entirely

analogous and pose no extra difficulty. It is possible to describe the component morphisms

3



in the sequences explicitly in terms of corestriction maps in the same manner as in [14],

but again we leave the details to the reader. In fact, it will be seen that the sequences

depend only on the properties as a Mackey functor of Hu(G, M), namely, it is projective

relative to p-subgroups and vanishes when G = 1, and as in [14] there are also split exact

sequences formulated similarly with restriction maps instead of corestriction maps.

Instead of referring to sequences as split and exact, it is convenient to say that these

sequences are contractible, by which we mean that they are chain homotopy equivalent to

the zero complex. It is an elementary exercise in the algebra of chain complexes to show

that these two notions are equivalent, and the reader may also consult [13, Sect. 7].

In part (ii) of the theorem, we prove that all of the sequences are contractible only

in the special case that C is the set of all non-identity p-subgroups of G. In the other

cases where C is a set of p-subgroups closed under conjugation containing the p-radical

subgroups we prove that the first of the sequences is contractible, and this is really the

most interesting of the sequences. We have a proof in this generality that the remaining

sequences are contractible, but it is rather complicated and this is not the appropriate

place to record the details.

A part of this paper appears in the Ph.D. thesis of the first author [10]. There is also

overlap between our results and those of Grodal [7], which were obtained independently.

We would like to take the opportunity to describe the chronology of our work. The material

presented here which also appears in [10] is the construction of the spectral sequence which

appears at the start of Section 2 (it is described slightly differently in [10], but this does

not affect the results) and the identification of the chain complexes in Proposition 2.1. In

work done very soon after the Ph.D. thesis [10] was defended, the authors proved Lemma

2.2 and Proposition 2.3 which establishes the form of the sequences of the Main Theorem

(although they were only written down at that time in the case of part (ii) of the theorem).

In [10] it was also shown that these sequences are contractible in some very small cases. The

authors were trying to prove contractibility in general when a version of [7] was received

by us. In [7], Grodal obtains the sequences of the Main Theorem which have Hu(G, M)

as a term, and proves that they are acyclic, but by different methods to ours. We thus

acknowledge Grodal’s priority in proving acyclicity of these sequences. It was only after

this that the authors continued their goal of proving contractibility in the generality of the

Main Theorem, and came up with the argument of Section 3.
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2. Dwyer’s spaces, a double complex and a spectral sequence

We describe the construction of the sequences in the theorem, and start by describing

the spaces of Dwyer from which they are derived. The spaces in question are the ones as-

sociated to the ‘centralizer decomposition’ and ‘subgroup decomposition’ of the classifying

space BG described in [5] and [6]. The first of these may be taken to be the nerve of a

category Xα
C whose objects are pairs (H, i) where H is a subgroup in C and i : H → G is

a monomorphism from H into G with i(H) ∈ C. There is a morphism (H, i) → (H ′, i′)

whenever there is a monomorphism j : H → H ′ so that i = i′ ◦ j. There is an action of G

on this category specified by g · (H, i) = (H, cg ◦ i), where cg denotes the mapping given

by conjugation by g ∈ G. The stabilizer of (H, i) in G is CG(i(H)).

The second space is the nerve of a category X
β
C whose objects are pairs (xH, G/H)

where H is a subgroup in C and x is an element of G. There is a morphism (xH, G/H) →

(x′H ′, G/H ′) whenever there is an equivariant map φ : G/H → G/H ′ so that φ(xH) =

x′H ′. The stabilizer in G of (xH, G/H) is xH.

Both of these categories are preordered sets, which is equivalent to saying that there

is at most one morphism between each ordered pair of objects. We recall that to each

preordered set there is an associated poset whose elements are the isomorphism classes

of objects in the preordered set. Dwyer observes that there are G-equivariant functors

Xα
C → C and X

β
C → C specified, respectively, by (H, i) → i(H) and (xH, G/H) → xH.

These mappings both have the property that they identify C as the associated poset of

Xα
C and also of X

β
C ; that is, the objects which map to a single object in C in every case

constitute a complete isomorphism class. We do not greatly distinguish between a category

and its nerve, but when we do so the notation will be that Xα
C and Xβ

C are the nerves of

Xα
C and X

β
C . We adopt the convention used by Dwyer that the term space will be used to

mean a simplicial set.

Associated to any G-space X and RG-module M is the so-called isotropy spectral

sequence converging to the equivariant homology HG
u (X; M) ([6], see also [4]). The

E1 page of this spectral sequence consists of a lot of sequences which have the form

TorZG
u (C.(X), M) where C.(X) is the chain complex of X. We propose to call these se-

quences of groups also isotropy sequences. It is proved in [14] that if X satisfies the condi-

tion that for all non-identity p-subgroups Q ≤ G the fixed point space XQ is contractible,

then the augmented isotropy sequences, augmented by the morphism

TorZG
u (C0(X), M) → TorZG

u (Z, M) = Hu(G, M),

are all contractible, that is, chain homotopic to the zero complex. (In [14] the condition

that X be finite dimensional was not used in the proof of this theorem.) This condition

is verified in many cases for the spaces Xα
C and Xβ

C by Dwyer [6], and we know from his

work that in the circumstances of the Main Theorem the isotropy sequences for Xα
C and

Xβ
C are contractible. The arguments which prove this can also be extracted from Section

3 of the present paper.
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The problem we now face is that the isotropy sequences associated to Dwyer’s spaces

have infinite length, since Xα
C and Xβ

C are in general infinite dimensional. In order to

deal with this we construct a spectral sequence converging to the homology of the isotropy

sequence TorZG
u (C.(X), M) for each G-category X. We already know in the cases of interest

that this homology is Hu(G, M) concentrated in degree zero. The sequences which make

up the E1 page of the spectral sequence are the sequences of the Main Theorem.

The general situation in which we construct the spectral sequence is that of a G-

category X with the property that the composite of any two non-isomorphisms is again a

non-isomorphism, a property satisfied by Xα
C and X

β
C . There is a direct sum decomposition

of the degree n chain group Cn(X) =
⊕

r+s=n Cr,s where Cr,s is the span of the chains

which have precisely r non-isomorphisms and s isomorphisms. Applying the boundary

operator d we have d(Cr,s) ⊆ Cr−1,s⊕Cr,s−1 and so we have a double complex whose total

complex is the chain complex C.(X). (We comment that we could more generally consider

any partition of the morphisms of the category into two sets, A and B each closed under

composition, and define Cr,s to be the span of the chains which have precisely r morphisms

in A and s morphisms in B. This will give a variety of double complexes whose utility will

depend on our ingenuity in choosing A and B.)

Applying the functor TorZG
u ( , M) to this double complex we obtain a decomposition

of each of the isotropy sequences as a double complex with terms

TorZG
u (Cn(X), M) =

⊕

r+s=n

TorZG
u (Cr,s, M).

From the double complex we obtain two spectral sequences each converging to the homol-

ogy of the isotropy sequence. We will consider one of these, namely the spectral sequence

obtained by filtering the double complex by the subspaces spanned by the TorZG
u (Ci,s, M)

with i ≤ r for some fixed r. The rest of this section is devoted to describing the E0 and

E1 pages of this spectral sequence.

(2.1) PROPOSITION. The component sequences

Cr,∗ = · · · → Cr,2 → Cr,1 → Cr,0

where 0 ≤ r ≤ dim |C| have the form

Cr,∗
∼=

{

⊕

σ∈[G\ sdr(C)] C.(E(Gσ/CG(σt))) ↑
G
Gσ

if X = Xα
C

⊕

σ∈[G\ sdr(C)] C.(E(Gσ/σb)) ↑
G
Gσ

if X = X
β
C .

as complexes of ZG modules. Here E(H) is a contractible space on which H acts freely,

for each group H.

Proof. The two cases of the proposition are proved in the same way, and the common

feature is that we have an equivariant map f : X → C which identifies C as the poset

associated to the preordered set X.
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Step 1. For each chain σ ∈ sdr(C) of length r in C we will write C(σ) for the span of

the chains τ in C.(X) for which f(τ) = σ. Such τ have precisely r non-isomorphisms and

an arbitrary number of isomorphisms. The non-isomorphisms are mapped under f to the

non-isomorphisms which make up σ. We thus have

Cr,∗ =
⊕

σ∈sdr C

C(σ)[r],

where [r] denotes a degree shift of size r. This identification gives C(σ) the structure of a

chain complex, and its boundary map has a component zero each time a non-isomorphism

is omitted from a chain. We see also that G permutes the summands in the above direct

sum, and the stabilizer of the complex C(σ) is the stabilizer Gσ of σ. Thus we may also

write

Cr,∗ =
⊕

σ∈[G\ sdr C]

C(σ) ↑G
Gσ

[r],

as a sum of G-complexes.

Step 2. We prove that if σ = H0 < · · · < Hr then C(σ) ∼= C(H0)⊗· · ·⊗C(Hr)[−r] as

complexes of Gσ-modules, where the action of Gσ on the tensor product is diagonal. We

may explain this by noting that the chains τ in C(σ) biject with (r +1)-tuples (ρ0, . . . , ρr)

of chains ρi ∈ C(Hi) where each ρi is a chain consisting of isomorphisms which all map

under f to the identity map on Hi. Here τ is obtained by splicing the chains ρi. These

(r+1)-tuples form a basis for the chain complex C(H0)⊗· · ·⊗C(Hr), and on shifting by r

we see that the isomorphism with C(σ) given by the correspondence of basis elements just

described is an isomorphism which preserves the boundary map. Since elements of G act

on chains by acting on all the terms in the chains, the action of Gσ on C(σ) is transported

to the diagonal action of Gσ on the tensor product.

Step 3. We show that if H is a subgroup in C then

C(H) ∼=

{

C.(E(NG(H)/CG(H))) if X = Xα
C

C.(E(NG(H)/H)) if X = X
β
C ,

where E(G) denotes a contractible space on which G acts freely. Consider the case X = Xα
C .

An object (K, i) of Xα
C has f(K, i) = H if and only if i(K) = H, and now C(H) is the nerve

of the full subcategory of Xα
C which has these (K, i) as its objects. There is precisely one

morphism from any one of these objects to any other, and we see that the full subcategory

with these objects is equivalent to a skeletal subcategory consisting of a single object with

just the identity morphism. The nerve of the full subcategory is homotopy equivalent to

the nerve of this latter category, which is contractible. The stabilizer of H as an object of

C is NG(H), and the stabilizer of each (K, i) with i(K) = H is CG(H). This shows that

NG(H)/CG(H) acts freely on the full subcategory of such (K, i), and hence the nerve is a

copy of E(NG(H)/CG(H)).

The argument when X = X
β
C is very similar. Here the objects of X

β
C which map to

H are the (xK, G/K) with xK = H. There is a unique morphism from any one of these
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objects to any other, and the stabilizer of each such object is H. This shows that the nerve

of the full subcategory of X
β
C with these objects is contractible, and NG(H)/H acts freely.

Step 4. Writing σ = H0 < · · · < Hr, we show that

C(σ) ∼=

{

C.(E(Gσ/CG(Hr)))[−r] if X = Xα
C

C.(E(Gσ/H0))[−r] if X = X
β
C .

We have in case X = Xα
C ,

C(σ) ∼= C(H0) ⊗ · · · ⊗ C(Hr)[−r]

∼= C.(E(NG(H0)/CG(H0))) ⊗ · · · ⊗ C.(E(NG(Hr)/CG(Hr)))[−r]

∼= C.(E(NG(H0)/CG(H0)) × · · · × E(NG(Hr)/CG(Hr)))[−r]

by the Eilenberg-Zilber theorem. Now E(NG(H0)/CG(H0)) × · · · × E(NG(Hr)/CG(Hr))

is a contractible space, since every term in the product is contractible. Since CG(H0) ≥

· · · ≥ CG(Hr) the subgroup CG(Hr) fixes this space, and in fact Gσ/CG(Hr) acts freely

on it, since it acts freely on the last factor. It follows that E(NG(H0)/CG(H0)) × · · · ×

E(NG(Hr)/CG(Hr)) is Gσ-homotopy equivalent to E(Gσ/CG(Hr)). The argument in case

X = X
β
C is very similar. We work with E(NG(Hi)/Hi) instead of E(NG(Hi)/CG(Hi)) and

use the fact that H0 is the smallest group under consideration, instead of CG(Hr).

Step 5. We put together the previous steps to complete the proof.

We are about to identify the E0 and E1 pages of the spectral sequence obtained from

the double complex {TorZG
u (Cr,s, M)}r,s by filtering by the terms TorZG

u (Ci,s, M) with

i ≤ r and no restriction on s. The calculation we use to do this is really the same as one

used in identifying the terms of the Lyndon-Hochschild-Serre spectral sequence [4, p. 171].

(2.2) LEMMA. Let N be a normal subgroup of K with factor group Q = K/N , let

M be an RK-module, and let F be a resolution of R by projective RQ-modules. Then

the complex TorZK
u (F, M) is isomorphic to the complex F ⊗RQ Hu(N, M). The degree s

homology of these complexes is Hs(Q, Hu(N, M)).

Proof. Let P → M be a resolution of M by projective RK-modules. Writing Fs for

the term of F in degree s we have

TorZK
u (Fs, M) = Hu(Fs ⊗RK P )

= Hu(((Fs ⊗R P )N )Q)

= Hu((Fs ⊗R PN )Q) since N acts trivially on Fs

= Hu(Fs ⊗RQ PN )

= Fs ⊗RQ Hu(PN ) since Fs is flat as a RQ-module

= Fs ⊗RQ Hu(N, M).

These identifications are natural in Fs, and so the complexes are isomorphic. Finally, the

homology of F ⊗RQ Hu(N, M) is exactly the definition of Hs(Q, Hu(N, M)).
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(2.3) PROPOSITION. The spectral sequence obtained by filtering the double com-

plex {TorZG
u (Cr,s, M)}r,s by the terms TorZG

u (Ci,s, M) with i ≤ r has E1 page as follows.

(i) When X = Xα
C we have

E1
r,s

∼=
⊕

σ∈[G\ sdr(C)]

Hs(Gσ/CG(σt), Hu(CG(σt), M)).

(ii) When X = X
β
C we have

E1
r,s

∼=
⊕

σ∈[G\ sdr(C)]

Hs(Gσ/σb, Hu(σb, M)).

Proof. The E0 term is obtained by applying TorZG
u ( , M) to the sequences described

in Proposition 2.1. We use the Eckmann-Schapiro lemma to get sequences with terms

⊕

σ∈[G\ sdr C]

TorZG
u (C.(E(Gσ/CG(σt))) ↑

G
Gσ

, M) ∼=
⊕

σ∈[G\ sdr C]

TorZGσ

u (C.(E(Gσ/CG(σt))), M)

in case X = Xα
C . Taking K = Gσ and N = CG(σt) we may apply the last lemma, since

C.(E(Gσ/CG(σt))) is a resolution of R by projective R[Gσ/CG(σt)]-modules. The degree

s homology is exactly as stated in the proposition. The appropriate expressions when

X = X
β
C are obtained similarly.

The E1 page is in fact made up of a lot of sequences with terms as just described,

and these are the sequences of the Main Theorem, augmented by the term Hu(G, M) in

the case of the sequence at s = 0.
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3. Contractibility of the sequences

In this section we prove the contractibility of the sequences of the Main Theorem.

We have just seen that these sequences make up the E1 page of a spectral sequence which

converges to the homology of an isotropy sequence TorZG
u (C.(X), M). In the cases of

interest in the Main Theorem, this isotropy sequence is contractible. We will see that

this contraction can be given by a chain homotopy equivalence of a certain form, which

we describe in the next lemma, and it is this property which enables us to deduce the

contractibility of the sequences in the Main Theorem.

(3.1) LEMMA. Let Dr,s be a first quadrant double complex with a map T : D → D

of total degree +1 so that Td + dT = 1 and T (Dr,s) ⊆
⊕

a+b=r+s+1

a≤r+1

Da,b. Let us write

d = d1+d2 where d1 : Dr,s → Dr−1,s and d2 : Dr,s → Dr,s−1. Then on the homology H(d2)

of d2 there is induced a map T1 : H(d2) → H(d2) of degree +1 such that T1d1 + d1T1 = 1.

The crucial hypothesis in this lemma is that a ≤ r + 1. We comment that this is

automatically satisfied if s = 0, which corresponds to considering the terms along an edge

of the double complex. When we come to apply this lemma to prove the contractibility of

the sequences in the main theorem the sequences along the edge are the ones which have

the term Hu(G, M) in them.

Proof. The idea is simply that a contracting homotopy of a filtered complex which

raises the filtration degree by one also induces a contracting homotopy on the filtration

quotients. We spell out the details of this idea.

We may write T =
∑

i≥0 fi where fi : Dr,s → Dr+1−i,s+i and now the condition

Td + dT = 1 implies the equations

f0d2 + d2f0 = 0

f0d1 + d1f0 + f1d2 + d2f1 = 1

as well as some other equations which we do not write down. If now z ∈ Dr,s with d2(z) = 0

then the first equation implies that

d2f0(z) = −f0d2(z) = 0,

so that f0(z) is a cycle. Also if z ∈ Dr,s has the form z = d2(w) for some w ∈ Dr,s+1 then

the first equation shows that

f0(z) = f0d2(w) = −d2f0(w)

is a boundary. This shows that the component f0 induces a map on homology T1 : H(d2) →

H(d2).
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We now show that T1d1 + d1T1 = 1 on H(d2). This follows from the second equation,

which shows that on Dr,s we have

f0d1 + d1f0 − 1 = −f1d2 − d2f1.

If z is a cycle then

(−f1d2 − d2f1)(z) = −d2f1(z)

which is zero in homology, so we deduce that f0d1 + d1f0 − 1 induces zero on H(d2).

We will apply this lemma to the double complex whose terms are TorZG
u (Cr,s, M),

augmented by introducing a further term Hu(G, M) = TorZG
u (Z, M) in bidegree (−1, 0),

with the differential component d1 : TorZG
u (C0,0, M) → Hu(G, M) being induced by the

augmentation C0,0 → Z. The total complex of this augmented double complex is now the

augmented isotropy sequence associated to the space X. We will show that when X is

one of Xα
C or Xβ

C where C is one of the possibilities mentioned in the Main Theorem, the

augmented isotropy sequence is chain homotopy equivalent to the zero complex by a chain

homotopy satisfying the condition of Lemma 3.1. This will show that the sequences in the

Main Theorem are contractible.

Proof that the sequences of the Main Theorem are contractible. Ultimately we will

consider the cases Xα
C and Xβ

C separately, but the initial part of the argument works in all

cases.

Step 1: reduction to p-subgroups. Let P be a Sylow p-subgroup of G. The restriction

map TorZG
u (Cr,s, M) → TorZP

u (Cr,s, M) is a natural transformation of cohomological func-

tors which is naturally split by a scalar multiple of corestriction, and so these mappings

express the double complex TorZG
u (Cr,s, M) as a direct summand of the double complex

TorZP
u (Cr,s, M). It follows that the homology with respect to d2 of the first complex is a

direct summand of the homology with respect to d2 of the second complex, and since direct

summands of contractible complexes are contractible, it suffices to show that the sequences

which make up the homology with respect to d2 of the TorZP
u (Cr,s, M) are contractible.

Step 2: removal of free orbits. Since TorZP
u (Cr,s, M) vanishes on the span in Cr,s

of the chains in free orbits under the action of P , we may replace X by the subspace

consisting of the simplices where the action of P is not free, and this is
⋃

16=Q≤P XQ. It is

the nerve of the subcategory
⋃

16=Q≤P XQ where XQ is the subcategory of X whose objects

and morphisms are fixed by Q.

Step 3: analysis of the contracting homotopy. It is known, as in [6] and [11], that
⋃

16=Q≤P XQ is contractible equivariantly for P , and that the contraction may be given

by a sequence of functors of the form described in the next lemma and corollary. These

results allow us to show that the hypothesis of Lemma 3.1 is satisfied.
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(3.2) LEMMA. Let F1, F2 : X → X be functors with either a natural transformation

η : F1 → F2 or a natural transformation η : F2 → F1. Then there is a map T : C.(X) →

C.(X) of degree +1 which is induced by η and satisfies Td+dT = F2−F1 with the property

that for each chain γ, T (γ) is a sum of terms each of which only has at most one more

non-isomorphism in it than γ.

Proof. Assume that η : F1 → F2, the other case being treated by interchanging F1

and F2 and replacing T by −T . If γ = x0 → x1 → · · · → xr the construction of T (γ) is

that it is the alternating sum

T (γ) =

r
∑

i=0

(−1)iF1(x0) → · · · → F1(xi) → F2(xi) → · · · → F2(xr).

If any xi−1 → xi is an isomorphism then so are F1(xi−1) → F1(xi) and F2(xi−1) → F2(xi),

so that the morphisms other than F1(xi) → F2(xi) in each summand of T (γ) account for at

most as many non-isomorphisms as there were in γ. The extra morphism F1(xi) → F2(xi)

introduces at most one more.

We comment that the condition that each term of T (γ) has at most one more non-

isomorphism than γ is the link with Lemma 3.1 in our particular application, since it

guarantees the condition a ≤ r + 1 which appears in Lemma 3.1. We extend Lemma 3.2

to apply to a sequence of functors linked by natural transformations.

(3.3) COROLLARY. Suppose we have functors F1, . . . , Fa such that for each i there is

either a natural transformation ηi : Fi → Fi+1 or a natural transformation ηi : Fi+1 → Fi.

Then there is a mapping T : C.(X) → C.(X) of degree +1 which is induced by the ηi and

satisfies Td+dT = Fa−F1 with the property that for each chain γ, T (γ) is a sum of terms

each of which only has at most one more non-isomorphism in it than γ.

Proof. For each i by Lemma 3.2 we find Ti so that Tid + dTi = Fi+1 − Fi and

each summand of Ti(γ) has at most one more non-isomorphism than γ. Now putting

T = T1 + · · · + Ta−1 we have Td + dT = Fa − F1 and still the summands of T (γ) have at

most one more non-isomorphism than γ.

We now show for the particular choices of X in the Main Theorem that the space
⋃

16=Q≤P XQ is contractible by a chain of functors as in Corollary 3.3, which are also

equivariant for P . When X = Xα
C and C is any set of non-identity p-subgroups of G

which contains the non-identity elementary abelian p-subgroups of G, we contract Y =
⋃

16=Q≤P (Xα
C )Q by the functors F1, F2, F3 : Y → Y such that F1 is the identity,

F2(H, i) = (i(H) · Ω1Z(P ), inclusion)
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and

F3(H, i) = (Ω1Z(P ), inclusion),

where Ω1Z(P ) denotes the largest elementary abelian subgroup of the centre of P . Thus

F3 is a constant functor. There are natural transformations η1 : F1 → F2 and η2 : F3 → F2

specified at each object as the unique possible morphism.

When X = X
β
C and C is the set of all non-identity p-subgroups of G we contract

Y =
⋃

16=Q≤P (Xβ
C)Q by the functors F1, F2, F3 : Y → Y such that F1 is the identity,

F2(xH, G/H) = (P ∩ xH, G/(P ∩ xH))

and

F3(xH, G/H) = (P, G/P ).

There are natural transformations η1 : F2 → F1 and η2 : F2 → F3 specified at each object

as the unique possible morphism. We note also that if (xH, G/H) is fixed by Q then

Q ⊆ xH so that P ∩ xH 6= 1.

The remaining case of X = X
β
C where C is a subset of the non-identity p-subgroups

of G containing the p-radical subgroups is more complicated. It is known from [11] that

X = X
β
C is equivariantly homotopy equivalent to the corresponding space for the set of

all non-identity p-groups, which enables us to deduce that
⋃

16=Q≤P (Xβ
C)Q is equivariantly

contractible for the action of P since it is also true for the case of all non-identity p-

subgroups and this property is preserved under the equivariant homotopy equivalence.

The comment immediately after the statement of Lemma 3.1 now allows us to deduce

without further effort that the sequence of the Main Theorem which contains Hu(G, M)

is contractible in this case.

The ingredients in the proof of the Main Theorem are now all in place, and we sum-

marize the argument. The sequences of the Main Theorem are obtained by Proposition 2.3

as the homology of a double complex with respect to the differential in one direction, in

the manner of Lemma 3.1. To show these sequences are contractible it suffices to consider

the action of a Sylow p-subgroup P of G on a subspace
⋃

16=Q≤P XQ. We have just verified

that this subspace has a P -equivariant contraction of the kind required as a hypothesis for

Lemma 3.1. Finally by Lemma 3.1 we obtain the contractibility of the sequences of the

Main Theorem.

Acknowledgement: We wish to thank the referee for his or her careful reading of the

manuscript and constructive comments.
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