
Berlekamp-Massey Algorithm

Erin Casey

University of Minnesota
REU Summer 2000

1

Berlekamp-Massey Algorithm

Erin Casey

Introduction

The main purpose of this paper is to acquaint the reader with the Berlekamp-Massey algorithm, it's
proof and some of it's applications. In these last six weeks, I have studied many di�erent topics ranging from
�rst year Calculus reviews to second and third year graduate school topics. I chose to study the Berlekamp-
Massey Algorithm more closely because this experience has been my �rst introduction to coding and I think
it is very interesting. I have particular interest the binary BCH codes because of the simplicity of their
design. Since the Berlekamp-Massey Algorithm is one of the most widely used algorithms used to decode
them, I felt that studying it would be something I would enjoy.

However, because of the time frame of the project I was limited to studying Berlekamp's original
algorithm and the mathematical concepts used in the proof of the algorithm rather than the relatively more
exciting variations and applications. I primarily used Berlekamp's own work as my source on the algorithm
and it's capabilities. Unfortunately, I was unfamiliar with the many of the ideas used by Berlekamp in his
algorithm and therefore I spent much of the six weeks trying to get acquainted with their basic concepts. I
have included short summaries of a few of these areas in this paper to provide a short background for the
basis of the algorithm. Therefore, since I spent much of my time studying background for the algorithm
and attempting to understand the processes used in the algorithm, I was not able to look more closely at
the algorithm when it is actually applied. Even so, I am coming out of this experience with a very clear
understanding of the Berlekamp-Massey Algorithm, di�erent ways to proof it and also di�erent ways in
which the algorithm can be applied.

The Point of the Algorithm

The main purpose of the Berlekamp-Massey Algorithm is to evaluate Binary BCH codes. Berlekamp
published his algorithm in 1968 and it was followed shortly by Massey's publication of a variation on the
algorithm in 1969. The algorithm is most widely used as a fast way to invert matrices with constant
diagonals. It works over any �eld, but the �nite �elds that occur most in coding theory are the most often
used. The algorithm is speci�cally helpful for decoding various algebraic codes. Berlekamp's publication of
the algorithm uses a \key equation" to input a known number of coeÆcients of the generating function and
then determine the remaining coeÆcients of the polynomial. This process is equivalent to �nding the linear
complexity of the system. What is useful about this algorithm is that one only needs a small portion of
the encoded message to be able to decode it. The crucial step is to reformulate the problem in a way that
avoids thinking about n by n matrices explicitly since the work and storage volume of such an operation is
too great. This reformulation was done by Berlekamp and his key equation and again done by Massey and
his variation of the algorithm.

The applications and implementation of this algorithm were advanced and extended by Massey who
used the physical interpretation of a linear feedback shift register (LFSR) as a tool to better understand the
algorithm. What the variation does is synthesize LFSR's that have a speci�ed output sequence. This physical
interpretation of LFSR's provides a physical explanation of the length of the encoded message needed to be
able to decode it using the algorithm. The length of message needed is only twice the length of the LFSR
used or 2n. Now that we have a handle on what the algorithm is trying to do, we can see where it is useful.

Applications of the Algorithm

As stated above, the algorithm deals with the decoding of Binary BCH codes, Reed-Solomon codes
included. Fortunately for Berlekamp, at the time of publication of his algorithm Reed-Solomon codes were
widely used in a variety of di�erent �elds. His algorithm's more eÆcient way of decoding these type of codes
was of immediate interest. The use of his algorithm as a decoding tool has ranged from the standard for
NASA deep space communication to the decoding done in compact disc players. In addition, many variations
and similar algorithms are also being used in similar decoding procedures.

2

The topics of Linear Feedback Shift Registers, Cyclotomic Polynomials, and Primitive Roots will be
brie
y discussed to provide a basis for the derivation of the key equation and for the proof of the algorithm.

Linear Feedback Shift Registers

Linear Feedback Shift Registers are used in cryptography as tools to make ciphers more eÆcient. The
terminology used to describe them is very appropriate when one evaluates what a feedback shift register
actually does. In very basic terms, linear feedback shift registers are tools used in the encoding and decoding
of a sequence by the use of a simple linear formula.

To create a linear feedback shift register, we �rst �x a size N , this N is the number of coeÆcients chosen
and also the size of the initial seed. Also choose a modulus m (usually m=2). Then choose coeÆcients
c = (c0; c1; :::; cN�1) and also choose the initial state or seed s = (s0; s1; :::; sN�1). From these simple
de�nitions, we can recursively de�ne sn+1 when n+ 1 � N .

sn+1 = c0sn + c1sn�1 + c2sn�2 + :::+ cN�1s0 reduced modulo m

This recursive de�nition that can be used to de�ne the entire key stream can be written very easily in terms
of matrices. As an example, let us choose N=5 and m=2. So our coeÆcients are c = (c0; c1; c2; c3; c4) and
we can then make the matrix

C =

0
BBB@
c0 c1 c2 c3 c4
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

1
CCCA

and from this matrix, the recursion relation can be written as0
BBB@
sn+1
sn
sn�1
sn�2
sn�3

1
CCCA = C �

0
BBB@

sn
sn�1
sn�2
sn�3
sn�4

1
CCCA (all modulo m=2)

From this equation, one can see that di�erent choices for c = (c0; c1; c2; c3; c4) and for s = (s0; s1; s2; s3; s4)
di�erent key-streams will be generated and the key-streams will have di�erent periods.

(Example adapted from Garrett, Cryptography).

The Berlekamp-Massey Algorithm then solves for all c = (c0; c1; :::; cN�1) using only 2n terms where
n =the length of the period of the LFSR associated with a particular key-stream. Before we can give a proof
of the algorithm or even attempt to understand it, we need to understand how Berlekamp arrived at his
\key equation". Once we have established this, we can move on to how to solve the key equation.

Before starting the derivation, I am going to give a brief section on cyclotomic polynomials. This is
a topic I was unfamiliar with prior to this project and therefore my statement of it here is partly to help
familiarize the reader with the concept in order to understand the proof of the algorithm given and partly
as a record of my studies.

Cyclotomic Polynomials and Primitive Roots

We can start by �nding all complex zeros of xn � 1. Let ! = cos (2�
n
) + i sin (2�

n
). It follows from

DeMoivre's Theorem which states

For every positive integer n, and every real number �, (cos � + i sin �)n = cosn� + i sinn�

that !n = 1 and !k 6= 1 for 1 � k < n. Therefore, each of 1; !; !2; :::; !n�1 is a zero of sn = 1 and by a
corollary to the division algorithm for polynomials which states

A polynomial of degree n over a �eld has at most n zeros counting multiplicity

3

that there are no other zeros. The complex number ! is called a primitive nth root of unity. In order to
use this notion of primitive roots to show how the cyclotomic polynomials are computed, it will be helpful
to have a more formal de�nition of primitive roots. Primitive roots are similar to generators of cyclic
groups. Consider the ! as de�ned above, it is a generator of a cyclic group of order n under the operation
of multiplication. This cyclic group can be denoted as < ! > and from the following theorem about the
generators of cyclic groups, we know that the generators of < ! > are the elements of the form !k where
1 � k � n and gcd(n; k) = 1. These generators are called the primitive nth roots of unity.

Theorem: Generators of Cyclic Groups

Let G =< a > be a cyclic group of order n. Then G =< ak > if and only if gcd(n; k) = 1:

(Theorem adapted from Gallian).

Now that we have a better grasp of what a primitive root is, we can move on to cyclotomic polynomials
and why they are important. Recalling the Euler function �(n) as the notation for the number of positive
integers less than or equal to n and relatively prime to n. Therefore, for every positive integer n there are
exactly �(n) primitive nth roots of unity. The polynomials whose zeros fall on the �(n) primitive nth roots
of unity are called cyclotomic polynomials.

De�nition: Cyclotomic Polynomials

For any positive integer n, let !1; !2; :::; !�(n) denote the primitive nth roots of unity. The nth

cyclotomic polynomial over Q is the polynomial �n(x) = (x� !1)(x � !2) � � � (x� !�(n)).

Note: �n(x)is monic and has degree �(n)where �(n)is Euler's funcion.

Rather than using this de�nition of �n(x) to compute it, it is easier in practice to use the following formula
and then make recursive use of the result.

For every positive integer n, xn � 1 =
Y
djn

�d(x)where the product runs over all positive divisors dof n:

Cyclotomic polynomials and primitive roots are two very widely used and basic concepts in abstract algebra
and a basic knowledge of both is necessary to understand much of higher mathematics. Now that we are
more familiar with primitive roots and cyclotomic polynomials we can move onto the key equation and how
Berlekamp arrived at it as the basis for his algorithm.

Derivation of Key Equation
Adapted from Berlekamp's Algebraic Coding Theory, Revised edition, 1984.

In order to construct a binary BCH code capable of correcting t or fewer errors, �rst select an irreducible
binary factor of the cyclotomic polynomial �n over Q. The degree of the irreducible binary factor is the
multiplicative order of 2 mod n which is denoted by m. Since we know the degree of the irreducible binary
factor is m, and that 2m mod n = 1 in the �nite �eld GF (2m) we can from here, let � � GF (2m) be a root
of the irreducible binary polynomial. Once we have established a root of our irreducible binary polynomial,
we can construct our binary BCH code.

Determination of the key equation for decoding binary BCH codes

Suppose the encoder transmits a binary BCH codeword

C(x) =

n�1X
i=0

Cix
i

In the transmission of the word it is possible that the channel noise could cause additive errors in the
coeÆcients of the binary polynomial. These errors can be represented by the following equation

E(x) =

n�1X
i=0

Eix
i

4

These errors then change the received code word to R(x) = C(x) +E(x) or

R(x) =

n�1X
i=0

Rix
i =

n�1X
i=0

Cix
i+

n�1X
i=0

Eix
i Equation A

For j = 1; 2; :::; 2t the codeword is a multiple of the minimal polynomial of �j . Let M (j)(x), be the minimal
polynomial of �j given that (1 � j � 2t). So then the received word can be written as

R(�j) = 0+

n�1X
i=0

Ei�
ji =

eX
k=1

X
j
k = Sj Equation B

Here, t is the maximum number of errors that the code can correct, e is the number of errors that have
occurred. The Galois �eld error location X1; X2; :::; Xe denote positions where Ei = 1 (where an error has
occurred). Now, if the received word R(x) from Equation A is divided by M (j)(x) then Sj = R(�j) may be
computed from the remainder r(j)(�j) This can be done using a parity check matrix.

As an example: if the received word R(x) is represented as above, and S1 gives the sum of the error
locations, and S2 gives the sum of the squares of the error locations, then S1 = R(�) and S2 = R(�2)
So to compute S � 1, we divide R(x) by M (1)(x)and obtain remainder r(1)(x) and therefore S1 = r(1)(�).
Similarly, to compute S2, we divide R(x) byM

(2)(x), and obtain the remainder r(2)(x). Then S2 = r(2)(�2).
A further discussion of parity check matrices is located in Garrett, Error Correcting Codes.

After calculating S1; S2; :::; S2t, the question is to �nd X1; X2; :::; Xe from the equations

eX
i=1

X
j
i = Sj where j = 1; 2; :::; 2t Equation C

These equations have many solutions, each corresponding to a di�erent error pattern in the same coset of
the additive group of codewords. For obvious reasons, we want to �nd the solution with the minimal value
of e. To do this I must introduce Berlekamp's error-locator polynomial

�(z) =

eY
i=1

(1�Xiz) = 1+

eX
j=1

�jzj Equation D

Berlekamp's method for �nding this equation is too extensive for this paper but can be found in his book,
Algebraic Coding Theory, Revised Edition, 1984 Ch.1.

Once the decoder has found the error-locator polynomial �(z), the reciprocal roots (multiplicative in-
verses) can be found by completing a Chien search. Once this is completed, the errors can be corrected.
The most diÆcult part of the decoding is �nding the �(z)'s from the S's. To obtain a relationship between
the �(z)'s and the S's, we need to bring in the generating function

S(z) =

1X
j=1

Sjz
j =

1X
j=1

eX
i=1

X
j
i z

j =

eX
i=1

Xiz

1�Xiz
Equation E

We can now eliminate the fractions in the last sum by multiplying the Equation E through by �(z). This
then yields the following equation.

S(z)�(z) =

eX
i=1

Xiz

1�Xiz

eY
j=1

(1�Xjz) =

eX
i=1

Xiz
Y
j 6=i

(1�Xjz)

From here adding �(z) to both sides and de�ning the polynomial !(z) =
Pe

i=1 !kz
k by the following equation.

!(z) = �(z)+

eX
i=1

Xiz
Y
j 6=i

(1�Xjz) Equation F

5

Then we have the equation [1 + S(z)]�(z) = !(z) Generally, the decoder only knows a limited number of
the coeÆcients of the powers of z in S(z). (Namely only the �rst 2t powers). So the unknown terms are
S2t+1; S2t+2; S2t+3; ::: So although S(z) is unknown, because of modular arithmetic, the decoder does know
S(z) mod z2t+1 This fact, reveals Berlekamp's Key Equation.

KEY EQUATION [1+S(z)]�(z) � !(z) mod z2t+1 Equation G

Here S(z) is the known generating function and its coeÆcients are the known inputs to the problem. �(z)
and !(z) are two unknown polynomials with degree � e (e is the number of errors that actually occurred).
The coeÆcients of these polynomials will become the algorithm's outputs. The challenge Berlekamp faced
was to �nd a faster algorithm to �nd the coeÆcients of these polynomials.

Massey's Interpretation of the Key Equation

Under Massey's interpretation S(x) is the generating function for the terms along the successive diagonals
of the traditional matrix. In this \physical interpretation" the key equation may be written as

Sk +

k�1X
i=1

�iSk�i + �k = !k

or similarly, it could be written as

Sk = !k �

k�1X
i=1

�iSk�i � �k

This equation gives the kth output of a feedback shift register, as discussed earlier. These feedback shift
registers are wired in accordance to the coeÆcients of �(z) and initially loaded with the coeÆcients of
!(z). Therefore, the key equation is actually a mathematical problem in the �eld of feedback-shift-register
synthesis. We are given the output sequence 1 + S(z) and want to determine the connections �(z) and the
initial conditions !(z) of the shortest feedback shift register with our given output sequence.

Note: For our decoding purpose, the polynomial �(z) is our only interest but there are other applications
where !(z) is important.

Proof of Berlekamp-Massey Algorithm
Adapted from Berlekamp's Algebraic Coding Theory, Revised Edition, 1984
Solving the Key Equation

Now that we have derived the key equation, we need to develop an algorithm to solve it over any �eld.

KEY EQUATION [1+S(z)]�(z) � !(z) mod z2t+1 Equation G

To solve the key equation for the polynomials, �(z) and !(z) given S(z) mod z2t+1 we must break the
problem up into manageable pieces. Consider the sequence of equations

(1+S)�(k) � !(k) mod zk+1 Equation 1

So for each k = 0; 1; 2; :::; 2t �nd polynomials

�(k) =
X
i

�
(k)
i zi and !(k) =

X
i

!(k)zi

which solve Equation 1.
As I stated before, these equations for �(k) and !(k) may have many solutions. Since the degree of � is

the number of errors, a good solution for decoding is one where the degrees of � and ! are relatively small.
If our solutions, �(k) and !(k) work for the above congruence given in Equation 1, we would like to say that
they also work for the related statement.

(1 + S)�(k) � !(k) mod zk+2 ?

6

Unfortunately, we do not know this for sure, but by the properties of modular arithmetic we do know that
by adding a multiple of zk+1 we can adapt the it to

(1+S)�(k) � !(k)+�
(k)
1 zk+1 mod zk+2 Equation 2

where �
(k)
1 is the coeÆcient of zk+1 in the product (1+S)�(k). If �

(k)
1 = 0, then we can take the statements

�(k+1) = �(k) and !(k+1) = !(k) to be true. If �
(k)
1 6= 0, then we must �nd alternate de�nitions for the

successive �'s and !'s, speci�cally �(k+1) and !(k+1). Consider auxiliary polynomials � (k) and
(k) which
we can choose to then solve the auxiliary equation

(1+S)� (k) �
(k)+zk mod zk+1 Equation 3

Obviously, since the degrees of functions � (k) and
(k) are still related to the number of errors that actually
occurred, the degrees should be relatively small for both functions. Now, using these auxiliary polynomials,
we can de�ne the successive �'s and !'s the following way.

�(k+1) = �(k)��
(k)
1 z� (k) and !(k+1) = !(k)��

(k)
1 z
(k) Equations 4 and 5

From these de�nitions, it can now be seen that �(k+1) and !(k+1) satisfy the equation

(1 + S)�(k+1) � !(k+1) mod z(k+1)+1

And so if �(k) and !(k) satisfy Equation 1 and � (k) and
(k) satisfy Equation 3, than there are two choices
for the de�nitions of � (k+1) and
(k+1). Either

� (k+1) = z� (k) and
(k+1) = z
(k) Equation 6

or

� (k+1) =
�(k)

�
(k)
1

and
(k+1) =
!(k)

�
(k)
1

Equation 7

Either of these choices will satisfy the equation

(1 + S)� (k+1) �
(k=1) + zk+1 mod zk+2

if �(k) and !(k)satisfy Equation 1 and � (k) and
(k) satisfy Equation 3. If �
(k)
1 = 0, then the second de�nition

is meaningless, and we must use the �rst de�nition. However if �
(k)
1 6= 0 then our choice of de�nition depends

on our need to minimize the degree of � (k+1) and
(k+1). The equations for the degrees of �(k+1), � (k+1),
!(k+1), and
(k+1) are given by Berlekamp and restated here.

deg �(k+1) =

�
deg �(k) if �

(k)
1 = 0 or if deg �(k) > 1 + deg � (k)

1 + deg � (k) if �
(k)
1 6= 0 and if deg � (k) > deg �(k) � 1

�
Equation 8

deg �(k+1) � either of above if �
(k)
1 6= 0 and if deg �(k) = 1 + deg � (k)

deg � (k+1) =

�
1 + deg � (k) if we use Equation 6
deg �(k) if we use Equation 7

�
Equation 9

deg !(k+1) =

�
deg !(k) if �

(k)
1 = 0 or if deg !(k) > 1 + deg
(k)

1 + deg
(k) if �
(k)
1 6= 0 and if deg
(k) > deg !(k) � 1

�
Equation 10

deg !(k+1) � either of above if �
(k)
1 6= 0 and if deg !(k) = 1 + deg
(k)

7

deg
(k+1) =

�
1 + deg
(k) if we use Equation 6
deg !(k) if we use Equation 7

�
Equation 11

These equations are not as precise as we need them to be however.
An example of this is the degree of �(k+1) is subject to an unavoidable decrease if deg �(k) = 1+ deg

� (k) and the leading coeÆcients of �(k) and �
(k)
1 � (k) are equal. In order to avoid such situations, we must

base our choice of Equation 6 or 7 not on the actual degrees of �(k), � (k), !(k), and
(k) but instead on an
upper bound D(k) which is independent of such things to make sure accidental situations, like the one given
above, will not arise. We will de�ne the integral valued function D(k) so that

deg �(k) � D(k) Equation 12

deg � (k) � k�D(k) Equation 13

and then from Equation 8 for the degrees of �(k+1) and Equations 12 and 13, we can give a recursive
de�nition for D(k)

D(k+1) =

(
D(k) if �

(k)
1 = 0 or if D(k) � k+1

2

k + 1�D(k) if �
(k)
1 6= 0 and D(k) � k+1

2

)
Equation 14

It can be easily seen that if deg �(k) � D(k) and deg � (k) � k � D(k), then deg �(k+1) � D(k + 1).
This similarly holds for ! and
. However, to ensure that deg � (k+1) � (k + 1) � D(k + 1) and that

(k+1) � (k + 1)�D(k + 1), we must establish yet another criteria for choosing between equations 6 and 7.

Use

(
Equation 6 if �

(k)
1 = 0 or if D(k) > k+1

2

Equation 7 if �
(k)
1 6= 0 and D(k) < k+1

2

)
Rule 15

If �
(k)
1 6= 0 and D(k) = k+1

2 , then either equation 6 or 7 will give us polynomials that satisfy the
equations,

deg � (k+1) � k + 1�D(k + 1) and deg
(k+1) � k + 1�D(k + 1)

If you are having trouble deciding between which equation 6 or 7 to use, don't decide right away and wait
until you have examined all of the given criterion.

To review, the initial equations are

(1 + S)�(0) � !(0) mod z

(1 + S)� (0) �
(0) + 1 mod z

The easiest way to solve these equations is with the following initializations

�(0) = �(0) = !(0) = 1 and
(0) = 0 and D(0) = 0 Equation 16

From these initalizaitions, we notice that deg �(0) = deg � (0) = deg !(0) = 0 = D(0) but that deg

(0) = �1 < D(0). (Since the degree of the product of several polynomials is the sum of their degrees, we
must de�ne deg 0 = �1) Thus, at least initially, we can do better than our restrictions

deg !(k) � D(k)

deg
(k) � k �D(k)

In actuality, at least one of these equations must be satis�ed for a strict inequality. To accomplish this
we can introduce the Boolean function B(k), where the initial value is B(0) = 0. [We will not worry about
the actual Boolean function and how it works but rather just note that, in general, B(k) = 0 or B(k) = 1.]
So once this function is de�ned a new relation can be established.

deg !(k) � D(k)�B(k) Equation 17

8

deg
(k) � k�D(k)�[1�B(k)] Equation 18

From here it can be seen that if the proper choice is made between Equations 6 and 7 in the case where

�
(k)
1 6= 0 and D(k) = k+1

2 and then if we de�ne B(k) \carefully", then we can be sure that above two
equations hold for all k. By referring back to Equations 10 and 11 we can see that the proper choice is

Use

(
Equation 6 if �

(k)
1 6= 0; D(k) = k+1

2 ; and B(k) = 0

Equation 7 if �
(k)
1 6= 0; D(k) = k+1

2 ; and B(k) = 1

)
Rule 19

B(k+1) =

�
B(k) when using Equation 6

1�B(k) when using Equation 7

�
Equation 20

Re-cap of Proof

Start from the initial conditions in Equation 16. Then proceed recursively. Start by De�ning �
(k)
1 from

Equation 2, �(k+1) from Equation 4, !(k+1) from Equation 5, and �nally de�ne D(k + 1) by Equation 14.
From here according to Rules 15 and 19 we can de�ne � (k+1) and
(k+1) by Equations 6 or 7 and similarly
de�ne B(k + 1) by Equation 20. Each of these polynomials is therefore de�ned in this recursive manner so
that they satisfy Equations 1, 3, 12, 13, 17 and 18.

Statement of the Berlekamp-Massey Algorithm
Copied from Berlekamp's Algebraic Coding Theory, Revised Edition, 1984 Ch. 7

AN ALGORITHM FOR SOLVING THE KEY EQUATION OVER ANY FIELD

Initially de�ne �(0) = 1; � (0) = 1; !(0) = 1;
(0) = 0; D(0) = 0; B(0) = 0. Proceed recursively as follows.

If Sk+1 is unknown, stop; otherwise de�ne �
(k)
1 as the coeÆcient of zk+1 in the product (1 + S)�(k) and let

�(k+1) = �(k) ��
(k)
1 z� (k)

!(k+1) = !(k) ��
(k)
1 z
(k)

If �
(k)
1 = 0, or if D(k) > k+1

2 , or if �
(k)
1 6= 0 and D(k) = k+1

2 and B(k) = 0, set

D(k + 1) = D(k)
B(k + 1) = B(k)
� (k+1) = z� (k)

(k+1) = z
(k)

But if �
(k)
1 6= 0 and either D(k) < k+1

2 or D(k) = k+1
2 and B(k) = 1, set

D(k + 1) = k + 1�D(k)
B(k + 1) = 1�B(k)

� (k+1) = �(k)

�
(k)
1

(k+1) = !(k)

�
(k)
1

Conclusion

As you can see from the proof and expression of the algorithm, understanding it (much less imple-
menting it) is a complex process. Through this project I have been able to make a complete e�ort toward
understanding the Berlekamp-Massey Algorithm and Berlekamp's proof of it. I now feel prepared to look
at implementations of the algorithm. I plan to further look into this subject on my own in my next year of
study.

9

Bibliography

Berlekamp, Elwyn R. Algebraic Coding Theory, Revised Edition. Aegean Park Press, Laguna Hills,
CA 1984.

Elwyn Berlekamp's Homepage <http://math.berkley.edu/ berlek/>

Gallian, Joseph A. Contemporary Abstract Algebra. Houghton Mi�in Company, Boston, 1998.

Garrett, Paul. Error Correcting Codes. Notes 1999-2000.

Garrett, Paul. Introduction to Cryptography. Notes. 2000.

Pan, Victor. \New Techniques for the Computation of Linear Recurrence CoeÆcients" Finite Fields
and Their Applications. Vol 6. 2000, p.93-118.

Riesel, Hans. Prime Numbers and Computer Methods for Factorization. Birkhauser, Boston, 1994.

10

