SYMMETRIC INTERVAL ORDERS AND SIGNED
POSETS

SEZAI ATA

1. INTRODUCTION

In this paper, we want to find signed poset generalizations of some
results about interval orders and unit interval orders. Ordered sets, and
specifically interval orders, are used extensively in other sciences such
as in dating the findings in archaeology, in decision problems in eco-
nomics and political science, and in queueing time-dependent processes
in computer science.[2], [14]

Signed posets were first defined by Reiner [13] The motivation for
such a definition comes from viewing a poset as a subset of a root
system for the symmetric group S,,. He applies the same idea to the
hyperoctahedral group B, and defines a signed poset as a subset of a
root system for B, satisfying certain conditions.
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2. BACKGROUND AND DEFINITIONS

2.1. Interval Orders. Altough the idea of an interval order was first
disccussed by N. Wiener(1914), it was first used explicitly by P. Fis-
burn(1970).

For a given set of intervals {[ay,bi], ..., [an, b,]} in R, we can order
them by defining [a;, b;] < [a;,b;] if b; < a;. A poset P is called an
interval order if it can be represented as a set of closed intervals in this
way. Moreover, if each interval can be made of unit length, P is called
a unit interval order.

L]

(2+2) (1+3)

The poset consisting of disjoint union of two chains with cardinalities
a and b is denoted by (a+b).

The following two theorems characterize the posets that can repre-
sented by intervals and unit intervals.

Theorem 2.1. (Fishburn-Mirkin Theorem, 1970) A poset is an inter-
val order if and only if it avoids (242) as an induced subposet.

Theorem 2.2. (Scott-Suppes Theorem, 1958) A poset is a unit interval
order if and only if it avoids (2+2) and (34+1) as induced subposets.

For both theorems, there are proofs that construct the (unit) interval
order explicitly [5],[12] or inductively [1].

2.2. Signed Posets. Before defining a signed poset, we need some pre-
liminaries. Let B,, be the hyperoctahedral group or the group of signed
permutations, which consists of all permutations and sign changes of
the coordinates in R™.

The root system of B,, is the set of vectors

O ={te;:1<i<n}U{te;xe;:1<i<j<n}
We may choose as positive roots
O ={+e;:1<i<n}U{+e;+e;,+e;—e;:1<i<j<n}
and the simple roots
H={e;—e1:1<i<n}U{+e,}
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A subset S of a root system ® is isotropic if « € S = —a ¢ S. We

define the positive linear closure of S in ® by

S = {a€®:a=73 5 5cs0 for some ¢ > 0}

Now we define a signed poset as a positively linearly closed isotropic
subset of the root system B,,.

Let +[n] be the set {—n,—n+1,...,—2,-1,1,2,....,n— 1,n} and P
be a poset on %[n] which is self-dual in the sense that ¢ < j in P if and
only if —j < —i in P. An element ¢ € P is called a bottom half element
of P if 1 < —i in P, called a top half element of P if —¢ < ¢ in P, and
called a non-comparable element of P if 1 and —¢ are incomparable. P
is called a complete self-dual poset if it is self-dual and every top half
element is above every bottom half element of P.

We know from Fischer [9] that the set of signed posets which are con-
tained in the root system B,, is in one-to-one correspondence with the
set of complete self-dual posets on £[n]. The poset P(S) corresponding
to S is given by

te; te; € S & i <Fjin P(5)

and
te; € S < +i < Fiin P(5)
One can embed ordinary posets as signed posets via the following

construction : given QQ an ordinary poset on [n], thought as a subset of
A,_1={e; —€;: 0 <i#j <n}, we define the embedding as

Si(Q) = QU{+etiz12,. 0 U{+e +e}i<ici<n

A collection of intervals I = {[ay, b1],. .., [a, b}, in R is centrally
symmetric if there is a fixed point free involution f : I — I such that
f([ai, bz]) = [—bz, —ai] for all i = 1, 2, ceey 2k

We see that any such collection obviously give rise to a complete
self-dual poset P, and hence the signed poset S with P(S) = S.

It is natural to ask whether similar statements to Theorems 2.1 and
2.2 can be made for signed posets and (unit) symmetric interval orders
as was done for (unit) interval orders. That is, for a given signed poset
P, we want to know what are the necessary and sufficient conditions
for P to be a (unit) symmetric interval order.

Visual Represention of Signed Posets: We can visualize a signed
poset inside B,, by defining its signed digraph D(P) = (V, E) with the
set of vertices V' = {1,2,...,n}, and the set of edges E which is con-
structed as follows: if +e; € P attach the loop shown in (a) below;
if —e; € P attach the loop shown in (b); if +e; + e; € P attach the
edge shown in (c); if —e; —e; € P attach the edge shown in (d); if
+e; — e; € P attach the edge shown in (e).
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Two signed posets P; and P, are isomorphic if there exists a signed
permutation w € B, such that wP, = P,. For a signed poset P on
n elements and T' C [n], the induced signed subposet of P on T is the
signed poset Pr on |T| elements consisting of only those roots in P
whose nonzero coordinates lie in 7.

We have the following theorem:

Theorem 2.3. A signed poset P is a symmetric interval order if and
only if P does not have an induced signed subposet which is isomorphic
to a signed poset which fits one of the 3 descriptions in Figure 1.

@"‘ i@‘>+
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I
I
I

+ +
|
+ 1
unique in B, unique in B3 no real relation crossing the line but
more edges and loops can be added
(real relations are those edges with endpoints of opposite sign)
(a) (b) (c)

FIGURE 1.

Let’s define X to be the set of all posets which fit one of the 3 de-
scriptions in Figure 1. The theorem follows from the following lemmas.

Lemma 2.4. Fvery complete self-dual poset which is an interval order
18 also a symmetric interval order.

Proof. Let P be a finite complete self-dual poset on +n which is an
interval order.So in P:

0l j& —) < —1

e i< —jand j<—j=j< —itandi< —j

From the given interval order representation of P, we want to get a
symmetric interval representation without changing any relation be-
tween elements.

To construct the symmetric interval order, first we write the interval
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representing i as I; = [a;, b;]. WLOG, we can assume a; = 1 is the left
most point of all top-half elements, and -1 is the right most point of
all bottom-half elements. Let’s call the interval representing i that we
will get after our construction I

First for all top elements i, define I, = I,. For bottom half elements
i, define [; = —1I;, = [—b;, —a;]. If i and j are both non-comparable,
we see 1 and j must be incomparable to each other, otherwise, if 1 < j
then we have —j < —i but ¢ £ —i and j £ —j. This is impossible
in an interval order, as it would give rise to a (242). There are a
finite number of top half elements and all are represented by intervals
completely right of those representing the bottom half elements. We
see that none of the non-comparable elements can be completely right
to the 1, because if 7 is completely right to the 1, then ¢ is bigger than
all bottom elements, so —i is smaller than all top elements, that implies
—1i is completely left to the 1, but then we get —i < 7, a contradiction.
Similarly none of non-comparable elements can be completely left to
-1.

Now for a non-comparable element I; = [a;, b;], if a; > —1 pull @; to
the origin by stretching or contracting the interval, and if b; < 1 do
the same thing. With this operation we did not change any relation
of non-comparable elements with top and bottom half elements, and
all non-comparable elements now include the origin so they are still
incomparable with each other. For a non-comparable element i, define

i = ([~1,00] N ) U (—([1,00] N I_y)).

Here we did not change the part of I; which is right to the -1 so did
not change any relation of ¢ with top half elements. We did not change
any relation of ¢ with bottom half elements either because we did not
change any relation of —¢ with top elements.

Finally define I =—1I,., We completed the construction of a sym-
metric interval order. 0

To complete the proof of Theorem 2.3, note that all of the signed
posets in X create (2+2)’s, so it is easy to see that the signed poset
of P cannot have any induced signed subposet isomorphic to a poset
in X. On the other hand if P is not an interval order we can check by
brute force that, up to isomorphism, this leads to the 3 cases (a), (b),
(c) in Figure 1.

Conjecture 2.5. A signed poset P is a unit symmetric interval order
if and only if P does not have an induced signed subposet which is
isomorphic to a signed poset which fits into one of the 6 descriptions
i Figures 1 or 2.
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Let’s define Y to be the set of all posets which fit one of the 6
descriptions in Figures 1 or 2. Conjecture 2.5 would follow from the
following conjecture and lemma.

Conjecture 2.6. Every complete self-dual poset which is a unit inter-
val order is also a symmetric unit interval order.

Proof. 1t is on my to-do list. O

One can do a similar brute force check that, up to isomorphism, the
only complete self-dual posets containing a (341) or (24-2) are those
in Figures 1 and 2. For example, Figure 3 shows some of the different
ways in which (242) can occur.

Lemma 2.7. A complete self-dual poset P is a unit interval order if
and only if its signed poset does not have an induced signed subposet
which fits into one of the 6 descriptions in Figures 1 and 2.
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FIGURE 3.

3. ENUMERATION

It is known that the number of unit interval orders on [n] up to
isomorphism is the Catalan number C,. Conjecture 2.6 would imply a
similar result for symmetric unit interval orders as we explain here.

For a poset P labeled on n elements, define its antiadjacency matrix
A = (a;;) asa;; = 1ifi < jin P, and a;; = 0 otherwise. We see different
labelings of P can give different antiadjacency matrices. Following [15]
to define a canonical labeling, first, we define the altitude of an element
x in P to be a(z) = #{u € Plu < 2} — #{u € P|u > z} A labeling
of P respects altitude if the elements are labelled in order of weakly
increasing altitude.

The first part of following lemma is given in [15].
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Lemma 3.1. If P is an n element poset, and A its the antiadjacency
matrix corresponding to an altitude-respecting labeling of P. Then P is
a unit interval order if and only if the zero entries of A form a Ferrers
shape X in the upper right corner of A.

Furthermore, in this situation P is a complete self-dual poset (i.e. P
is a symmetric interval order) if and only if \ is anti-diagonal sym-
metric.

Let x; be the element of P with label 3.

Proof. For the first equivalence, first we assume P is a unit interval
order. We show the zero entries of A form a Ferrers shape in the upper
right corner of A. For a contradiction assume the zero entries of A do
not form a Ferrers shape in the upper right corner of A. Then we must
have i, 7 with ¢ <p 7 and at least one of the following

(i) there is k such that j < k and i £p k

(ii) there is [ such that | <i and [ £p j

If (i) holds then j £p k, because otherwise i <p j <p k implies
i <p k, and (i) also implies a(z;) < a(x;) < a(zg), so ¢ #p j and
1 #p k. That shows k is incomparable to ¢ and j. Altitude of xy is
bigger than the altitude of x; and bigger than or equal to the altitude
of x;, so there exists at least one element [ such that either [ <p k and
l£p korl>pjandl #p k. These last two requirements imply P has
a (242) or (341), respectively. Case (ii) also implies the existence of
a (242) or (3+1) with the same kind of argument. That shows if P
is a unit interval order then the zero entries of A form a Ferrers shape
in the upper right corner of A.

For the converse statement, assume for a contradiction that P is not
a unit interval order, so P has an induced (2+2) or (3+1). A (2+2)
implies that there exist k, [, m,n such that in the antiadjacency matrix
a;j, we have ap = 0, am, = 0, but ap; = 0, a,,, = 0. This says
the zero entries of A do not form a Ferrers shape in the upper right
corner of A. A (3 + 1) implies that there exist k, I, m,n such that in
the antiadjacency matrix a;;, we have ay = 0, ai, = 0, ag, = 0, but
apn =1, a1p =1, appp = 1. Wemay have [ <iori <l <jorj<l<k
or k < [. In each case a simple argument shows that the inequality
implies the zero entries of A do not form a Ferrers shape in the upper
right corner of A. So if the zero entries of A form a Ferrers shape in
the upper right corner of A then P is a unit interval order.

For the second equivalence, first assume P is a complete self-dual
poset. WLOG, we can choose an altitude-respecting label so that |z;| =
|zon41-i]. Now, we see that self-duality of P implies the anti-diagonal
symmetry of A. Conversely, anti-diagonal symmetry of A, together
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with the fact that A is a Ferrers shape forces P to be self-dual and
complete. 0

We do not have an exact formula for the number of interval orders
on n elements, but for the unit interval orders, we have the following
known result.

Corollary 3.2. The number of unit interval orders on [n| up to iso-

morphism is the Catalan number n+r1 (27?)

Conjecture 2.6 together with the second assertion of Lemma 3.1
would imply

Corollary 3.3. The number of unit symmetric interval orders on £[n]
up to signed poset isomorphisms is (2:)

Proof. Anti-diagonal symmetric Ferrers shapes correspond to self-conjugate
Ferrers shapes inside the staircase da,—1 = (2n — 1,2n —2,...,1) , and
these are in one-to-one correspondence with the lattice paths (0,0) —
(2n, k) for any k staying weakly above z-axis with the allowed steps
northeast and southeast, e.g., each step consists of moving one unit to
the right and then moving one unit up or down. The boundary of a
Ferrers shape, after rotating 45 degrees clockwise, gives the steps of
the corresponding lattice. All paths (0,1) — (2n,> 1) are counted by
Y reo (2:) The paths crossing the z-axis, by reflection principle, are in
one-to-one correspondence with the lattice paths (0,—1) — (2n,> 1)
and these are counted by >3~} (2,?) So the paths (0,0) — (2n, k) for
an}2/ 1){, staying weakly above z-axis are counted by the difference which
is( ™). O
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4. QUESTIONS FOR THE THESIS
4.1. Proving conjecture 2.6 is high on the list of things to-do.

4.2. Chain Polynomial and Real Roots. Let
fot) =1+t + cot? + ...+ cqt?

be the chain polynomial or f-polynomial of a poset P, where ¢; is the
number of i-element chains in P, and let A be the antiadjacency matrix
defined earlier for a poset P. Stanley’s path counting theorem [15] says

fp(t) = det(At + I)

In [15], Skandera proves that when P is a unit interval order, the an-
tiadjacency matrix A has only real eigenvalues. So f,(t) has only real
Zeros.

In a recent paper [6], Chudnovsky and Seymour showed that the
stable set polynomial of a graph G has all real roots when G is clawfree.
If we translate this into poset language via the incomparability graph
of a poset, stable sets correspond to chains and clawfreeness to (3+1)-
freeness. Then Chudnovsky and Seymour’s result, improving the result
mentioned above, says for a (3+1)-free poset P, f,(t) has only real
Zeros.

We first want to define two versions of a signed chain polynomial

gigned(t) — 14+ cgignedt 4o+ C;jignedtd

both of which generalize fq(t) above via the @ — S, (@) construction
defined earlier.

The first version of ¢ counts the number of symmetric k-chains
which are 2k-element chains in P(S) invariant under i — —i. We see
that, in this version, f;qig(ge)d(t) = fol(t).

As a second version, Fisher defines a signed chain as an isotropic
chain in P(S), that is one which includes at most one of each +i. Fisher
and Hanlon uses this to associate a simplicial complex to a signed poset.

Then their version of ;" counts the number of (k — 1)-dimensional

Signed
k

simplices inthis complex. In this version, we have fssig(ge)d(t) = fo(21).

We want to prove f59"“(t) has only real roots for symmetric interval

orders S with either or both versions of cfig"e‘i. We also want to find a
Type B analogue of Chudnovsky and Seymour’s result for our signed
chain polynomial in either or both versions.

4.3. Order Dimension. The order dimension of a poset P on the
ground set [n] is the least d such that intersection of d linear orders on
[n] gives P. Similarly, one can define the signed order dimension of a
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signed poset S by using P(S) on +[n| and requiring the linear orders on
+[n| to be complete self-dual. Rabinovitch showed that the dimension
of a unit interval order is at most three [11]. He also showed that an
interval order P has dim(P) < 1 + height(P)[10]. We want to find
similar upper bounds for signed order dimension of (unit) symmetric
interval orders.
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