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1. Introduction

This paper is an overview of what the author has learned about the critical group
of a graph, including some new results. In particular we discuss the critical group
of a graph in relation to that of its line graph when the original graph is regular.
We begin by introducing the critical group from various aspects. We then study the
subdivision graph and line graph in relation to the critical group, the latter when
the graph is regular. We discribe a homomorphism between the critcal groups of
the line graph and the subdivision graph in this situation. Lastly, we conjecture
some results about the kernel of this homomorphism and the structure of the critcal
group of some particular graphs.

2. The critical group

The critical group of a graph is a subtle isomorphism invariant of the graph which
is a finite abelian group whose order is the spanning tree number of the graph. It
arises in a number of seemingly unrelated places and hence has a number of nice
interpretations in terms of the graph. We take the most immediate interpretation
as our starting place. Let G = (V,E) be a directed graph with vertex set V and
edge set E which, for the sake of simplicity, we take to be without loops or multiple
(unoriented) edges. We define the Laplacian to be the |V | × |V | matrix defined by

L(G)v,v′ =





degG(v) if, v = v′,
−1 if the unoriented edge, vv′ ∈ E,

0 otherwise.

Let L(G)
v,v′

be the matrix obtained by striking out row v and column v′ from

L(G). Define the critical groupK(G) to be Z|V |−1/im(L(G)
v,v′

) where im(·) refers
to the integer span of the columns of the argument. It is not difficult to see that
this definition is independent of the choice of v and v′. The critical group is also
known as the Jacobian group and the Picard group as in [3],[1], while in the physics
literature it is known as the abelian sandpile group. The matrix-tree theorem of
Kirchhoff relates the order of K(G) to the spanning tree number τ(G).

Theorem 1. For a loopless graph G we have

τ(G) = det(L(G)
v,v′

).

Also, if λ1, . . . , λ|V |−1, 0 are the eigenvalues of L(G) then

τ(G) =
λ1 · · ·λ|V |−1

|V | .

1



2 ANDREW BERGET

This is a standard theorem, for its proof see [4, Theorem 5.4]. The first part of
the theorem gives the following nice result.

Corollary 2. The order of the critical group of G is its spanning tree number.

Proof. The order of the abelian group Z|V |−1/im(L(G)
v,v′

) is det(L(G)
v,v′

), by
Kirchhoff’s theorem this is τ(G). ¤

We will also take a different approach to the critical group in this paper by
defining it in terms of the cycle space of G. To do so we let ∂ be the |V | × |E|
incidence matrix of G:

∂v,e =





1 if e = v′v,

−1 if e = vv′,
0 otherwise.

We see that ∂ defines a linear transform from the real vector space of real-valued
functions on E, C0(E), to the real vector space of real-valued functions on V ,
C0(V ). For α ∈ C0(E) we see that (∂α)(v) is, roughly speaking, the net accumu-
lation of α at the vertex v. More precisely

(∂α)(v) =
∑

e=v′v∈E

α(e)−
∑

e=vv′∈E

α(e).

It is natural to consider the kernel of this map. To do this we consider cycles in G.
A cycle in G is a list (v1, v2, . . . , vk), where vi ∈ V , vi = vj if and only if i = j and
vi is adjacent to vi+1 when the entries are read modulo k + 1. Given a cycle Q in
G define its characteristic vector ζQ : E → V to be the function

ζQ(v′v) =





1 if the sequence v′, v occurs in Q,

−1 if the sequence v, v′ occurs in Q,

0 otherwise.

We will identify edges with their coordinate vectors and the negative of the co-
ordinate vector of e = vv′ ∈ E will be denoted v′v = −e. It will be convenient
to identify a cycle with its characteristic vector. With this convention it is clear
that the characteristic vector of a cycle is the sum of the edges comprising it. We
will often pass from lists of edges to sums without mention, as it is a convenient
notational device and helps to better understand a given situation.

We claim that ∂ζQ = 0. Note that if the vertex v is in a cycle v′, v, v′′ occurs in
the cycle where v, v′ and v, v′′ are unoriented edges of G. From our above formula
for (∂α)v we get,

ζQ(vv′)− ζQ(vv′′) = 1− 1.

Linear algebra provides the orthogonal decomposition

C0(E) = ker ∂ ⊕ (ker ∂)⊥

where the space (ker ∂)⊥ is of definite interest as it is the row space of ∂. To see
this suppose that 〈a, ker ∂〉 = 0. If bv is the vth row of ∂ then supposing that

a +
∑

v

cvbv 6= 0

for any choice of the constants cv gives a contradiction by taking the inner product
with k ∈ ker ∂. The arguement clearly reverses.
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If we take a non-empty proper subset U of V and define

bU (v′v) =





1 if v ∈ U and v′ /∈ U,

−1 if v′ ∈ U and v /∈ U,

0 otherwise

then an argument similar to that for ζQ ∈ ker ∂ shows that bQ ∈ (ker ∂)⊥. The set
of edges having exactly one edge in U is called a cut (or sometimes a bond) and we
see that bU (e) 6= 0 exactly when e is in the cut of U . When U = v we see that bU

is the v-th row of ∂. Hence the space of cuts is spanned by the rows of ∂.
It is a simple exercise to show that the kernel of ∂T is the set of all functions in

C0(V ) that are constant on each connected component of G. This shows that the
rank of ∂T is |V | − c where c is the number of connected component of G. Since
the row rank of a matrix is the column rank we get that the rank of ∂ is |V | − c.
This implies that dim(ker ∂) = |E|− |V |+c and hence dim((ker ∂)⊥) = |V |−c. For
the sake of brevity we define β(G) = |E| − |V | + c. Fix a spanning forest T ⊂ E
of G. There is a unique path in T connecting the endpoints of any edge e ∈ E \ T .
If Q(e) denotes the cycle obtained by adding the end points of e to this path then,{
ζQ(e) : e ∈ E − T

}
is a basis for ker ∂.

Taking the intersections ker ∂ ∩ Z|E| and (ker ∂)⊥ ∩ Z|E| yields what are known
as the lattice of integral flows and lattice of integral cuts of G which we denote by
Z(G) and B(G) and will refer to more briefly as the cycle space and the bond space
of G. These spaces are, as stated, integer lattices in R|E| and as such it is natural
to consider the lattices dual to them.

Given any lattice L ⊂ RN we define the dual lattice

L∗ :=
{
z ∈ RN : (∀x ∈ L) 〈z, x〉 ∈ ZN

}

where 〈·, ·〉 is the standard inner product on RN . These dual lattices help relate
the critical group to the cycle space and bond space of G. To state this relation we
will generalize the notion of the critical group in terms of lattices.

Given a lattice L ⊂ Rn consider an integer basis {λ1, . . . , λr, } for L (which
is guaranteed to exist according to the general theory). Letting M be the matrix
whose columns are the λi we define the cokernel of M to be coker(M) = Zr/im(M).
With a bit more thought we deduce the following

Lemma 3. Let L ⊂ ZN be a rank r lattice and M be the matrix having rows given
by {λ1, . . . , λr}, an integer basis for L. Then

L∗/L ∼= coker(MMT ).

Proof. We have the basis {λ1, . . . , λr, } for L and claim that an integer basis for L∗
is given by some {λ∗1, . . . , λ∗r , } ⊂ LR where

〈
λi, λ

∗
j

〉
= δij (here δij is the Kronecker

delta). For a fixed i we certainly can solve for λ∗j ∈ LR since dimR LR = r. That
this is an integer basis for L∗ follows since we have enough vectors and we can pick
off the i-th coefficient of λ∗ =

∑
ciλ

∗
i by taking the inner product with λi which

will be an integer when λ∗ ∈ L∗.
Since λi ∈ L∗ we can write

λi =
r∑

j=1

cijλ
∗
j .
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Then we see that cij is given by taking the inner product with λj , that is to say,
cij = 〈λi, λj〉 which is the i, j-entry of MMT .

We now make the natural identification Zr ∼= L∗ by sending the the j-th stan-
dard basis vector to λ∗j . This sends the integer span of the columns of MMT

isomorphically to L. Taking quotients gives the result. ¤

To relate our lattices Z(G) and B(Z) to the critical group we consider following
basic fact.

Proposition 4. The incidence matrix and Laplacian of G are related by L(G) =
∂∂T .

The proof is left to the reader.
The proposition shows us that (L(G))

v,v
= ∂v∂T

v where ∂v is the matrix ob-
tained from ∂ by striking out the v-th row. Since the vth row of ∂ is exactly the
characteristic vector of the bond associated with v and ∂v has n− c rows forming
a basis for B(G) we have K(G) ∼= B(G)∗/B(G) by Lemma 3.

It is a well known result that Z∗(G)/Z(G) ∼= B∗(G)/B(G) (see [1, Prop.3]).
Hence we have three different approaches to the critical group at our disposal, via
the Laplacian, the cycle space, or the bond space. We can add two more approaches
since Lemma 3 now gives K(G) as coker(MZMT

Z ) and coker(MBMT
B ) where MZ

and MB are the matrices with lattice basis vectors of Z(G) and B(G) for columns.
In some cases it is reasonable to deal with the Laplacian directly, for instance,

when it has a highly symmetric form. If we reduce L(G) to its Smith normal form,
that is, the unique diagonal form diag(d1, . . . , dβ(G), 0, . . . , 0) where di|di+1, then

K(G) ∼= Z/d1Z⊕ · · · ⊕ Z/dβ(G)Z.

Taking this approach we find that K(Kn) ∼= (Z/nZ)n−2, which yields a simple
proof of Cayley’s formula. The di are referred to as the invariant factors of both
L(G) and K(G).

3. The subdivision of a graph

The subdivision of the graph G = (V, E) is the graph obtained by placing a
vertex in the center of every edge of G. More formally the subdivision of G is the
graph Sd(G) with vertex set V ∪ E and edge set

ESd = {ve : v ∈ V, e ∈ E and e = v′v} ∪ {ev : v ∈ V, e ∈ E and e = vv′} .

As before we identify edges in ESd with their coordinate vectors and (e, v) with
−(v, e).

We immediately note the natural bijection between cycles in G and those in
Sd(G) and suspect a simple relationship between K(G) and K(Sd(G)). This is
indeed the case, for we have

Proposition 5 (Lorenzini [6]). If K(G) has invariant factors d1, . . . , dβ(G) then
K(Sd(G)) has invariant factors 2d1, . . . , 2dβ(G).

Proof. As noted, given a lattice basis for Z(G) we may obtain a basis for Z(Sd(G))
by subdividing the basis cycles of Z(G). If M is the matrix with columns given
by the basis vectors for Z(G) and N is the same but for Z(Sd(G)), then MMT =
2NNT since there are twice as many edges to traverse in Sd(G). We know that
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K(G) ∼= coker(MMT ) and that K(G) ∼= coker(NNT ). There are invertible ele-
mentary matrices so that Q(MMT )P is the diagonal matrix of invariant factors
of K(G). Then Q(MMT )P = 2Q(NNT )P . This gives us the invariant factors of
Sd(G) and indeed they have the desired form. ¤

Corollary 6. We have τ(Sd(G)) = 2β(G)τ(G).

Proof. This follows directly Proposition 2. We can see this combinatorially. Take
a spanning tree of G and subdivide it. Every edge off the spanning tree for G
(there are β(G) of them) yields two possible edges in Sd(G) which will extend the
subdivided tree to a spanning tree of Sd(G). It is clear that every spanning tree of
Sd(G) occurs in this way. ¤

4. Line graphs

Given a graph G = (V, E) we define the line graph line(G) to have vertex set
E and e, e′ ∈ E are adjacent in line(G) if and only if e and e′ share an endpoint.
Denote the edge set of line(G) by Eline. Every edge in the line graph can be written
as a pair of edges [e, e′] and as before we will identify [e, e′] with its coordinate vector
and [e′, e] with its additive inverse. We will make the convention that [±e,±e′] (the
±’s vary independently) all describe the same edge [e, e′].

In [2] the critical group of line(Km,n) was totally described. This was done via
the Laplacian description of the critical group, and the proof consisted of integer
row and column operations. In general, given a reasonably complicated graph G
understanding the relationship between K(G) and K(line(G)) looks very unpromis-
ing. Should we impose the condition that every vertex of the original graph have
the same degree, however, things become much simpler.

Proposition 7. Let G be a d-regular graph. Then the spanning tree numbers of
line(G) and Sd(G) are related by

τ(line(G)) = dβ(G)−2τ(Sd(G)).

Sketch of proof. Consider the unsigned incidence matrix D of G obtained by
replacing every entry of ∂ with its absolute value. For d-regular graphs we have the
relations

DDT = 2dI − L(G),

DT D = 2dI − L(line(G)).

It is a result of linear algebra that DDT and DT D have the same non-zero eigen-
values. Applying the second part of Kirchhoff’s theorem gives the result. ¤

Recalling that τ(G) = |K(G)|, Proposition 7 suggests a simple relationship be-
tween K(Sd(G)) and K(line(G)) when G is regular. Naively, we hope for the short
exact sequence

0 → (Z/dZ)β(G)−2 → K(line(G)) → K(Sd(G)) → 0

This hope is validated in many cases, as was seen by computer trials.
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5. The homomorphism from K(line(G)) to K(Sd(G)).

The occurrence of β(G) in our relation suggest that we approach K(G) in terms
of the cycle space of G. However, before we proceed it is necessary to obtain a more
algebraic relationship between G and its line graph.

Recall that every edge e ∈ ESd may be written as an ordered pair comprised of an
edge of G and a vertex of G, were the vertex is an endpoint of the edge. Hence every
(e, e′) ∈ Eline corresponds in a natural way to exactly two edges of Sd(G), namely,
those two edges of Sd(G) whose edge component is e and vertex component is the
agree. For example, (vv′, v′′v) ∈ Eline corresponds to edges (v, vv′) and (v′′v, v) of
Sd(G). We can extend this identification to the vector space of edges of line(G)
and the vector space of edges of Sd(G) by stating that if e ∈ Eline corresponds to
ε1 and ε2 in ESd then −e corresponds to −ε1 and −ε2.

Figure 1. The natural mapping of an edge in line(G) to its cor-
responding edges in Sd(G)

We can now make a formal definition.

Definition 8. Let f : R|Eline| → R|ESd| be the linear mapping defined

f((v1v2), (v2v3)) = (v1v2, v2) + (v2, v2v3).

Proposition 9. The map f restricts to a surjective map Z(line(G)) → Z(Sd(G)).
When G is regular f restricts to a map Z∗(line(G)) → Z∗(Sd(G)) hence we have
the induced map K(line(G)) → K(Sd(G)).

When no confusion will arise we will denote all these homomorphisms by f .

Proof. To every vertex in G corresponds a subgraph Kd(v) of line(G) where d(v) is
the degree of v. Cycles within this Kd(v) will be referred to as trivial cycles of G.
By definition, every vertex in a trivial cycle is of the form vu where v is fixed an u
varies. The reader is invited to check that a trivial cycle is in ker f by traversing

Figure 2. A trivial cycle.

a trivial cycle in line(G) while simultaneously traversing its image under f . More
generally if we have a path that takes place entirely in this Kd(v) then we can write
it as ζ = (vu1, vu2) + (vu2, vu3) + · · ·+ (vuk−1, vuk) so that

f(ζ) = (vu1, v) + (v, vuk).
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We may think of this as saying that the map f only cares where a path in line(G)
starts and ends in a given Kd(v). Since cycles are closed paths we have shown that
f restricts to Z(line(G)) → Z(Sd(G)). The reader should convince themself of
surjectivity in this case.

To prove the second statement of the proposition we will need the following
general result.

Lemma 10. Suppose that φ : Rm → Rm′
and we have the lattices L ⊂ Zm,

L′ ⊂ Zm′
. Suppose that φ restricts to L → L′. Then φ restricts to a map L∗ → L′∗

if and only if φT : Rm′ → Rm restricts to L′ → L.

Proof. We make the observation that (L∗)∗ = L, which follows immediately from
the definition. Since (φT )T = φ we see that we only need to prove one implication.

Suppose that φT restricts to L′ → L. For λ ∈ L∗ we must check that 〈φ(λ), z〉 ∈
Z for every z ∈ L′. To see this we write

〈φ(λ), z〉 =
〈
λ, φT (z)

〉 ∈ Z
since λ ∈ L∗ and φT (z) ∈ L. ¤

We now prove the second restriction of Proposition 9. Suppose that G is d-
regular. We have

(fT )(vv′, v′) =
∑

(vv′, v′u)

where the sum runs over all u which are adjacent to v′. So we take ξ = (v1v2, v2)+
(v2, v2v3) for which we get

(fT )(ξ) =
∑

(v1v2, v2u) +
∑

(v2u, v2v3)

=
∑̂

((v1v2, v2u) + (v2u, v2v3) + (v2v3, v1v2))− (d− 2)(v1v2, v2v3)

where the hatted sum rums over all u adjacent to v2 except v1 and v3. We now
consider a cycle which ξ is on.

ξ′ = (v1v2, v2) + (v2, v2v3) + (v2v3, v3) + (v3, v3v4) + · · ·+ (vkv1, v1) + (v1, v1v2).

The regularity hypothesis implies that vi has d− 2 neighbors off the cycle and we
label these ui

1, . . . , u
i
d−2. Then we can write

(fT )(ξ′) = −(d− 2)ζ + ζ1 + · · ·+ ζd−2,

ζ = (v1v2, v2v3) + (v2v3, v3v4) + · · ·+ (vkv1, v1v2) ∈ Z(line(G))
ζi = (v1v2, v2u

2
i ) + (v2u

2
i , v2v3) + . . . + (vkv1, v1u

1
i ) + (v1u

1
i , v1v2)

∈ Z(line(G)).

We see that (fT )(ξ′) is an integer combination of cycles in line(G) so that (fT )(ξ′) ∈
Z(line(G)).

The last statement of the proposition simply follows from K(G) ∼= Z∗(G)/Z(G).
¤

It is disappointing to see that the result of Proposition 9 cannot be strengthened:
the map f : Z∗(line(G)) → Z∗(Sd(G)) is not necessarily a surjective map and
appears in many cases not to be.
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6. Conjectures

Let G be a d-regular graph. For the investigation of our problem one must
resist the temptation to use the case d = 2 since then line(G) is isomorphic to G.
Hence the simplest examples occur when G is 3-regular. Already this makes things
reasonably complicated. We can show that

K(line(K4)) ∼= K(Sd(K4))⊕ Z/3Z,

but to prove this small case requires considerably more effort than it is worth.
Instead, we conjecture the following.

Conjecture 11. For even n ≥ 4 there is a short exact sequence

0 → (Z/(n− 1)Z)β(Kn)−2 → K(line(Kn))
f→ K(Sd(Kn)) → 0.

For any n > 4

K(line(Kn)) ∼= (Z/2n(n− 1)Z)n−2 ⊕ (Z/2(n− 1)Z)β(Kn)−(n−2)−2 ⊕A4

where A4 = (Z/2Z)2 if n is even and A = Z/4Z if n is odd.

The method which is used to prove the result for K4 is the one employed in tackel
this problem. The details of a proof are currently being refined. The particularly
nice behaivior for even n is though to be a result of the proven fact that f :
Z∗(line(Kn)) → Z∗(Sd(Kn)) surejects when n is even, but not when n is odd. This
general type of result appeared to be typical since many examples done with a
computer showed that K(line(G)) was obtained by multiplying d to β(G)−2 of the
invariant factors of K(Sd(G)) and taking the direct sum with A4. In [2] the critcal
group of the line graph of all 3 regular graphs on 10 vertices except two were seen
to have the form

K(line(G)) ∼=
(

r⊕

i=1

Z2ddi

)
⊕ Zβ(G)−r−2

2d ⊕A4,

where d1, . . . , dr are the non-zero,one invariant factors of K(G). It was conjectured
that the complete multipartite graph with parts of equal size (to ensure regularity),
had such a form. For the precise conjecture refer to [2]. The determination of A4

appears to be very sensitive to the structure of the graph and in general one should
not hope to determine it. These conjectures suggest the following more general
conjecture for an arbitrary d-regular graph.

Conjecture 12. The kernel of the map f : K(line(G)) → K(Sd(G)) is all d-
torsion. This is to say, for any z∗ ∈ Z∗(line(G)) such that f(z∗) ∈ Z(Sd(G)) we
have dz∗ ∈ Z(line(G)).

The answer to all these questions is currently under investigation.
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