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Chip firing

A matrix C = (¢;) in Z“ with ¢; <0 for all i # j is called a
Z-matrix.

Given a Z-matrix C, we call the elements v = (vq, ..., )" € N¢
chip configurations, and we define a dynamical system on the set
of such configurations as follows:

» A configuration v is stable if v; < ¢;j for i =1,..., L.

» If v is unstable, then choose some i so that v; > ¢;; and form
a new configuration v/ = (v, ..., v;)" where v/ = v; — ¢;; for
j=1,...,0. The result v/ is called the C-toppling of v at
position J.
A Z-matrix is called an avalanche-finite matrix if any chip
configuration can be brought to a stable one by a sequence of
these topplings.



Example: chip firing on graphs
If C is the (reduced) Laplacian matrix of a graph I, then toppling
at position i corresponds to sending chips along the edges incident
to vertex i. One of the vertices (corresponding the the removed
row and column in the Laplacian matrix) is a "black hole”.

.
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Reduced Laplacian is
2 -1 -1 0
-1 2 -1 0

-1 -1 3 -1



Example: chip firing on graphs

Give each node some number of chips, this corresponds to picking
the configuration v. In this case v = (1,1, 3,0).

Subtracting the 3rd row of the Laplacian:

v=(1,1,3,0)— (-1,-1,3,-1) = (2,2,0,1) = V/



Critical groups

If C is an avalanche-finite matrix the critical group of C is
K(C) = coker (z* S %) = Z Jim (C)

This gives a finite group, since avalanche-finite matrices are
invertible.

» It turns out that critical configurations (those which are stable
and recurrent) form a set of coset representatives in K(C).

» Another special set of configurations, the superstable
configurations also form a set of coset representatives.



Smith normal form basics

Let R be a ring and A € R"*" be a matrix. A matrix S is called
the Smith normal form of A if:

» There exist invertible matrices P, @ € R"*" such that

S = PAQ.
» S is a diagonal matrix S = diag(si, ..., Sp) with s;|sj+1 for
i=1,...,n—1.
Proposition

Let A€ R™" be a matrix and suppose A has Smith normal form
S = diag(s1, ..., sn). Then coker (A: R" — R™) = @7 ; R/(si)
Proposition

Let A€ R"™" be a matrix. If R is a PID then A has a Smith
normal form.



Notation

For the rest of the talk:
> G is a finite group
» 1¢ = Xxo0, X1, ..., ¢ are its irreducible complex characters
» ~ is a faithful (not-necessarily-irreducible) n-dimensional
representation of G with character x,



McKay-Cartan matrices

Let M be the (/4 1) x (£ + 1) integer matrix with entries m;;
defined by

)4
Xy Xi = > miX;
j=0
The extended McKay-Cartan matrix Cis
C:=nl-M

and the McKay-Cartan matrix C is the £ X £ submatrix formed by
removing the row and column corresponding to xo from C. The
critical group is K(v) = K(C).

Theorem (G. Benkart, C. Klivans, and V. Reiner)

The McKay-Cartan matrix associated to a faithful representation -y
is an avalanche-finite matrix.



Example: McKay-Cartan matrix for G4

Let G = G4 and v be the reflection representation. This
corresponds to the partition (3, 1).

e | (12) | (123) | (1234) | (12)(34)
X0 1 1 1 1 1
Xy =Xx1 |3 1 0 -1 -1
X2 21 0 -1 0 2
X3 3| -1 0 1 -1
X4 1| -1 1 -1 1




Example: McKay-Cartan matrix for G4

Let G = G4 and ~ be the reflection representation.
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Example: McKay-Cartan matrix for G4

2 -1 -1 0 1
c_ |-t 3 -1 0o s [0
-1 -1 2 -1 0
0 0 -1 3 0

Thus K(v) = coker (C) = Z/4Z.

O O = O

o= OO

~ O O O



Theorem 1

Let e = ¢, c1, ..., ¢ be a set of conjugacy class representatives for
G, then:

I
l

[I(n = () = KM -6

i=1

ii. If x is real-valued, and x(c) is an integer character value
achieved by m different conjugacy classes, then K(v) contains
a subgroup isomorphic to (Z/(n — x~(c))Z)™ !,



Example: checking Theorem 1

We will use the reflection representation of &4 again. Recall that
K(v) 2 Z/AZ.

e | (12) | (123) | (1234) | (12)(34)
Xv=x1]3]| 1 0 1 1

i. In this case we have

l
[1(n— () =2-3-4-4=96
i=1

K| - 1G] =4-41=96

il. X~ is real-valued and has the repeated character value —1
with multiplicity 2. Thus K(+) should have a subgroup
isomorphic to (Z/47).



Critical groups for reflection representations of &,,.

In the previous example, Theorem 1 was enough to uniquely
determine K(y). However, this does not happen in general. It
turns out we can use the following proposition:

Proposition (A. Miller and V. Reiner)

Suppose an (¢ + 1) x (¢ + 1) integer matrix A has a Smith normal
form over Z[t] for t| — A, then this Smith form must be

se+1(t)
Sl(t)
where
s(t)= [ (t=»
by
m(A)=i

and where 1(\) denote the dimension of the A-eigenspace for A.



Why is this proposition useful?

» It turns out that t/ — C has a Smith form over Z[t] when 7 is
the reflection representation of &,,.

» Setting t = 0 then gives us the critical group K (7).



Two facts

1. Forall A+ n:

Xn-1.1) X2 = CO)xa + D _ X

Where the sum is over those partitions p which can be
obtained from A\ by removing and then adding a box. And
C() is one less than the number of corners of A (Ballantine
and Orellana)

2. The map UD — tl in Young's lattice has a Smith normal form
over Z[t] (Cai and Stanley).



Putting it together

Theorem 2 N

Let v be the reflection representation of G, and let C be the
associated extended McKay-Cartan matrix. Let p(k) denote the
number of partitions of the integer k. Then

p(n)—p(n—1)

Km= @ Z/az

i=2

where

1<k<n
p(k)—p(k—1)>i



Example: checking Theorem 2

|
[Pt [1]2]3]5]7]11]

For n = 4, we have

Thus K(v) =2 Z/4Z.



Example: using Theorem 2

etk [t]2]3]5][7][11]

For a more interesting example, let's try the case n = 6:

g = 11 k| =4.5-6=120
1<k<6
p(k)—p(k—1)>2

q3 = H k|=6

1<k<6
p(k)—p(k—1)>3

qs =6

Thus K(v) 2 Z/120Z ® Z/6Z & Z/6Z.



Thanks for coming

Are there any questions?
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