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Abstract. This thesis investigates the critical groups of McKay-Cartan matrices, a
certain type of avalanche-finite matrix associated to a faithful representation γ of a finite

group G. It computes the order of the critical group in terms of the character values
of γ, and gives some restrictions on its subgroup structure. In addition, the existence

of a certain Smith normal form over Z[t] is shown to imply a nice form for the critical

group. This is used to compute the critical group for the reflection representation of Sn.
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identifies a subset of the superstable configurations, answering a question posed in [3].
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References 26



CRITICAL GROUPS OF MCKAY-CARTAN MATRICES 3

1. Introduction

This thesis will study the critical group, K(C) := coker(Ct : Z` → Z`), which is defined
for C an avalanche-finite matrix. Specifically it will investigate the structure of K(C) when
C is the McKay-Cartan matrix associated to a faithful representation γ of a finite group G.
This matrix has entries cij = nδij −mij for 1 ≤ i, j ≤ ` where the mij are defined by

χγ · χi =
∑̀
j=0

mijχj

and where {1G = χ0, χ1, ..., χ`} is the set of irreducible complex characters of G; in this case
we define K(γ) := K(C). McKay-Cartan matrices were shown to be avalanche-finite in [3].

Later in Section 1 critical groups are introduced in the context of Laplacian matrices of
graphs, which are themselves avalanche-finite matrices. Section 2 defines avalanche-finite
matrices and McKay-Cartan matrices in general and gives certain basic results about the
critical groups of the latter. Section 3 applies some results of Lorenzini in [8] to obtain the
first main Theorem:

Theorem 1. Let G be a finite group with faithful complex representation γ and critical
group K(γ). Let e = c0, c1, ..., c` be a set of conjugacy class representatives for G, then:

i. ∏̀
i=1

(n− χγ(ci)) = |K(γ)| · |G|

ii. If χγ is real-valued, and χγ(c) is an integer character value achieved by m different
conjugacy classes, then K(γ) contains a subgroup isomorphic to
(Z/(n− χγ(c))Z)m−1.

Section 4 derives explicit formulas for critical groups in the case of the reflection repre-
sentation of Sn:

Theorem 2. Let γ be the reflection representation of Sn and let p(k) denote the number
of partitions of the integer k. Then

K(γ) ∼=
p(n)⊕
i=2

Z/qiZ

where

qi =
∏

1≤k≤n
p(k)−p(k−1)≥i

k

Section 5 gives an alternative description of the critical group of a McKay-Cartan matrix
in terms of the representation ring of the associated finite group and discusses two questions
raised in [3], answering one of them:

Theorem 3. Let γ : G ↪→ SL(n,C) be a faithful representation of G with McKay-Cartan
matrix C. Then the standard basis vectors ei corresponding to the non-trivial one-dimensional
characters χi of G are superstable configurations for C.
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1.1. Graph Laplacian matrices. Let Γ be a loopless undirected graph on n vertices
labelled {1, ..., n}. Let cij be the number of edges between vertices i and j, and let di
denote the degree of vertex i. The Laplacian matrix L(Γ) is an n × n integer matrix with
entries:

L(Γ)ij =

{
di if i = j

−cij if i 6= j

Many classical results in algebraic graph theory relate to the Laplacian matrix. Most famous
is Kirchhoff’s Matrix Tree Theorem:

Theorem 4 (Kirchhoff). Let Γ be an undirected graph with Laplacian matrix L = L(Γ).
Let κ(Γ) denote the number of spanning trees of Γ. Then if Lij denotes the matrix L with
row i and column j removed, we have

detLij = κ(Γ)

for all 1 ≤ i, j ≤ n.

In fact, finer results may be obtained. Results (i) and (ii) below are very classical (a
proof can be found, for example, in [4, Corollary 6.5]). Part (iii) is clear from part (i) and
the existence of Smith normal form over Z (see Section 1.3).

Proposition 1. Let Γ be a connected graph on n vertices and L = L(Γ) be its Laplacian
matrix, then

i. L has rank n− 1, with kernel generated by (1, ..., 1)t.
ii. Let λ1, ..., λn−1 be the nonzero eigenvalues of L, then

κ(Γ) =
λ1 · · ·λn−1

n

iii. coker(Zn L−→ Zn) is isomorphic to Z ⊕ K(Γ) where K(Γ) is a finite abelian group
with |K(Γ)| = κ(Γ).

Example 1. Let Γ be the graph

1

2

3 4

Then

L(Γ) =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


We find that the eigenvalues of L(Γ) are 0,1,3,4 and its Smith normal form (see Section 1.3)
is diag(1, 1, 3, 0). Therefore κ(Γ) = 1·3·4

4 = 3 and coker(L) ∼= Z⊕Z/3Z, so K(Γ) ∼= Z/3Z. It
is easy to see that Γ does in fact have 3 spanning trees and that (1, 1, 1, 1)t is the eigenvector
corresponding to the eigenvalue 0.
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1.2. Critical groups of graphs. The finite abelian group K(Γ) from Proposition 1 is
called the critical group of Γ and it provides a finer invariant for Γ than κ(Γ), since there
are many abelian groups of a given order. The group K(Γ) encodes information about the
critical configurations in the abelian sandpile model, a certain dynamical system on Γ. An
introduction to this topic can be found in [7], and applications to areas such as economic
models and energy minimization can be found, for example, in [1, 5].

1.3. Smith normal form and the cokernel of a linear map. Smith normal forms will
be one of our primary tools for calculating critical groups. Several basic facts about Smith
normal form are summarised in this section.

Let R be a ring and A ∈ Rn×n be a matrix. A matrix S is called the Smith normal form
of A if:

• There exist invertible matrices P,Q ∈ Rn×n such that S = PAQ.
• S is a diagonal matrix S = diag(s1, ..., sn) with si|si+1 for i = 1, ..., n− 1.

The Smith normal form of A, if it exists, is unique up to multiplication of the si by units
in R.

Proposition 2. Let A ∈ Rn×n be a matrix and suppose A has Smith normal form S =
diag(s1, ..., sn). Then

coker(A : Rn → Rn) ∼=
n⊕
i=1

R/(si)

Proof. Clearly coker(S) =
⊕n

i=1R/(si). The invertible maps P,Q provide the desired
isomorphism. �

Proposition 3. Let A ∈ Rn×n be a matrix. If R is a PID then A has a Smith normal
form.

Proof. By the classification of finitely generated modules over a PID, coker(A) is isomorphic
to
⊕n

i=1R/(si) for some choice of the si ∈ R with (s1) ⊃ · · · ⊃ (sn). It is easy to see that
S = diag(s1, ..., sn) is the Smith normal form of A. �

2. Avalanche-finite matrices

The abelian sandpile model, which motivated our interest in the critical group K(Γ) of
a graph has recently been found to have a natural generalization to integer matrices other
than graph Laplacians. These more general matrices are called avalanche-finite matrices.
As before, we define the critical group K(C) of such a matrix C as

K(C) := coker(Ct : Z` → Z`)

And, as before, several important classes of configurations (the superstable and the critical
configurations) form distinguished sets of coset representatives in this group.

Definition 1. A matrix C = (cij) in Z`×` with cij ≤ 0 for all i 6= j is called a Z-matrix.

Given a Z-matrix C, we call the elements v = (v1, ..., v`)
t ∈ N` chip configurations, and

we define a dynamical system on the set of such configurations as follows:

• A configuration v is stable if vi < cii for i = 1, ..., `.
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• If v is unstable, then choose some i so that vi ≥ cii and form a new configuration
v′ = (v′1, ..., v

′
`)
t where v′j = vj − cij for j = 1, ..., `. The result v′ is called the

C-toppling of v at position i.

Definition 2. A Z-matrix is called an avalanche-finite matrix if every chip configuration
can be brought to a stable one by a sequence of such topplings.

The superstable configurations of an avalanche-finite matrix are those which are not only
stable, but cannot even be toppled at several positions at once, leaving the accounting to
the end. It is known that the superstable configurations form a set of coset representatives
for K(C) (see [11, Theorem 13.4]).

Definition 3. Let u ∈ N` be a chip configuration for an avalanche-finite matrix C. Then u
is called a superstable configuration if z ∈ N` and u− Ctz ∈ N` together imply that z = 0.

In this thesis we will be interested in understanding the critical groups and superstable
representations of a subset of avalanche-finite matrices called McKay-Cartan matrices.

2.1. McKay-Cartan matrices. Let G be a finite group with irreducible complex charac-
ters χ0, ..., χ`. We will always let χ0 denote the character of the trivial representation. Let γ
be a faithful (not necessarily irreducible) n-dimensional representation of G with character
χγ . Let M ∈ Z(`+1)×(`+1) be the matrix whose entries are defined by the equations

χγ · χi =
∑̀
j=0

mijχj

Definition 4. Let γ be an n-dimensional faithful complex representation of a finite group

G, and let M be defined as above. The extended McKay-Cartan matrix C̃ := nI − M

and the McKay-Cartan matrix C is the submatrix of C̃ obtained by removing the row and
column corresponding to the trivial character χ0.

Proposition 4 (A special case of Proposition 5.3 in [3]). Let γ be a faithful complex repre-
sentation of a finite group G.

i. A full set of orthogonal eigenvectors for C̃ is given by the set of columns of the
character table of G:

δ(g) = (χ0(g), ..., χ`(g))t

as g ranges over a collection of conjugacy class representatives for G.
ii. The corresponding eigenvalues are given by

C̃δ(g) = (n− χγ(g)) · δ(g)

iii. The vector δ(e) = (χ0(e), ..., χ`(e))
t spans the nullspace of both C̃ and C̃t. In par-

ticular, this implies that these matrices have rank `.

Proof. The equation Mδ(g) = χγ(g)δ(g) follows immediately from evaluating both sides of
the defining equations of M at g. Then

C̃δ(g) = (nI −M)δ(g) = (n− χγ(g))δ(g)

This proves (ii). The orthogonality in (i) follows from the second orthogonality relation for
irreducible characters.
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For (iii), note that since γ is faithful, χγ(g) 6= n for n 6= e. Therefore (ii) gives that the

nullspace of C̃ is 1-dimensional, spanned by δ(e). This shows that C̃, and therefore C̃t, has
rank `. Now, the i-th entry in M tδ(e) is∑̀
j=0

mjiχj(e) =
∑
j

(dimχj · 〈χjχγ , χi〉) = 〈(
⊕
j

χ
⊕ dimχj

j ) · χγ , χi〉

= 〈χregχγ , χi〉 =
1

|G|
∑
g∈G

χreg(g)χγ(g)χi(g) =
1

|G|
(|G|χγ(e)χi(e)) = χγ(e)χi(e)

Therefore C̃tδ(e) = (n− χγ(e))δ(e) = 0. �

Finally, we note that McKay-Cartan matrices are indeed avalanche-finite, motivating our
study of their cokernels.

Theorem 5 ([3], Theorem 1.2). The McKay-Cartan matrix C associated to a faithful rep-
resentation γ of a finite group G is an avalanche-finite matrix.

Definition 5 ([3], Definition 5.11). Given a faithful complex representation γ of a finite

group G with McKay-Cartan and extended McKay-Cartan matrices C, C̃, we define its
critical group in either of the following equivalent ways:

K(γ) := coker(Ct) = K(C)

Z⊕K(γ) := coker(C̃t)

Proposition 5 ([3], Proposition 6.12). The critical group K(γ) is unchanged by

a. adding copies of the trivial representation to γ.
b. precomposing with a group automorphism σ : G→ G.

Proof. For (a), replacing χγ with χγ + d · χ0 replaces M with M ′ = M + dI and therefore

replaces C̃ with (n+ d)I − (M + dI) = nI −M = C̃.
For (b), precomposition by σ permutes {χ0, ..., χ`}, this corresponds to a permutation of

the basis for the map C̃, which does not affect the cokernel up to isomorphism. �

Example 2. Let G = S4 and consider the reflection representation γ of G (this is the
action by permutation matrices on C4 with the copy of the trivial representation removed;
the associated partition is (3, 1)). The character table is

e (12) (123) (1234) (12)(34)
χ0 1 1 1 1 1
χ1 1 -1 1 -1 1
χγ 3 1 0 -1 -1
χ3 3 -1 0 1 -1
χ4 2 0 -1 0 2

The matrices M, C̃ and C associated to γ are

M =


0 1 0 0 0
1 1 1 1 0
0 1 0 1 0
0 1 1 1 1
0 0 0 1 0

 C̃ =


3 −1 0 0 0
−1 2 −1 −1 0
0 −1 3 −1 0
0 −1 −1 2 −1
0 0 0 −1 3

C =


2 −1 −1 0
−1 3 −1 0
−1 −1 2 −1
0 0 −1 3


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To calculate K(γ), we calculate that C has Smith normal form diag(1, 1, 1, 4), or equivalently

that C̃ has Smith form diag(1, 1, 1, 4, 0). Thus K(γ) ∼= Z/4Z. Theorem 2 will give the
structure of the critical group for the reflection representations for all Sn.

3. The structure of critical groups for group representations

The following general results of Lorenzini about (`+ 1)× (`+ 1)-integer matrices of rank
` will be useful.

Proposition 6 ([8], Propositions 2.1 and 2.3). Let M be any (`+1)× (`+1)-integer matrix

of rank ` with characteristic polynomial charM (x) = x
∏`
i=1(x − λi). Let R be an integer

vector in lowest terms generating the kernel of M , and let R′ be the corresponding vector

for M t. Let H be the torsion subgroup of the cokernel of Z`+1 M−→ Z`+1.

i. ∏̀
i=1

λi = ±|H|(R ·R′)

ii. Let λ 6= ±1, 0 be an integer eigenvalue of M , and µ(λ) be the maximal number
of linearly independent eigenvectors for the eigenvalue λ. If M is symmetric and
R has at least one entry with value ±1 then C contains a subgroup isomorphic to
(Z/λZ)µ(λ)−1.

Translating this proposition into the context of critical groups of group representations
allows us to prove Theorem 1.

Theorem 1. Let G be a finite group with faithful complex representation γ and critical
group K(γ). Let e = c0, c1, ..., c` be a set of conjugacy class representatives for G, then:

i. ∏̀
i=1

(n− χγ(ci)) = |K(γ)| · |G|

ii. If χγ is real-valued, and χγ(c) is an integer character value achieved by m different
conjugacy classes, then K(γ) contains a subgroup isomorphic to
(Z/(n− χγ(c))Z)m−1.

Proof. Part (i) follows from Proposition 6 (i) with M = C̃: the eigenvalues of C̃ are given in
Proposition 4 (ii), and we have that in this case R = R′ = (χ0(e), ..., χ`(e))

t by Proposition
4 (iii). Therefore

R ·R′ =
∑̀
i=0

(dimχi)
2 = |G|

The product on the left hand side is positive since the complex conjugate of a term n−χγ(c)
also appears in the product as n− χγ(c′) where c′ is conjugate to c−1.
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For part (ii), notice that µ(n−χγ(c)) = m since the eigenvectors of C̃ are orthogonal by
Proposition 4 (i). If χγ is real valued then

〈χj , χγχi〉 =
1

|G|
∑
g∈G

χj(g)χγ(g)χi(g)

=
1

|G|
∑
g∈G

χj(g)χγ(g)χi(g) = 〈χjχγ , χi〉

so C̃ is symmetric in this case. Finally, χγ(c) < n, so we can rule out the cases λ = 0,−1 in
Proposition 6 (ii). Applying this proposition then gives the desired result. �

Example 3. Let γ be the defining permutation representation of the alternating group An
for n ≥ 5, which clearly has a real-valued character. This group always has a split class, a
conjugacy class of Sn which splits into two classes in An. This means that χγ has the same

value on representatives c1, c2 of two different conjugacy classes, with c1, c2 6= e. Thus C̃
has a repeated eigenvalue λ = n − χγ(c1) ≥ 2. By Theorem 1 (ii), this implies that K(γ)
has a subgroup isomorphic to Z/λZ.

Corollary 1. In the context of Theorem 1, if χγ is Q-valued, then Sylp(K(γ)) = 0 unless
p ≤ 2n.

Proof. The fact that χγ is Q-valued implies that it is Z-valued since a sum of roots of unity
is rational if and only if it is integral. Thus −n ≤ χγ(ci) < n for all i, and so the product
on the left hand side of part (i) of the theorem is a product of integers which are at most
2n. �

Example 4. The requirement that χγ is Q-valued in Corollary 1 is necessary. If G =
〈g|gm = 1〉 is a cyclic group and γ is given by

g 7→
(
e2πi/m 0

0 e−2πi/m

)
then K(γ) ∼= Z/mZ (see Appendix B.1). In this case |K(γ)| may have prime divisors up to
m which are larger than 2n = 4.

Corollary 2. For any faithful n-dimensional representation γ of G∏`
i=1(n− χγ(ci))

|G|

lies in Z.

Proof. By Theorem 1 (i), this is, up to sign, the order of K(γ). �

Theorem 1 (i) gives us the order of the abelian group K(γ) and part (ii) gives some
restrictions on the structure of this group, however this is not enough to uniquely specify

K(γ) in general. Below we analyse the Smith normal form of tI − C̃ over Q[t] which will
allow us to explicitly determine the critical group corresponding to the irreducible reflection
representation of Sn in Section 4.
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Proposition 7. Let G be a nontrivial finite group whose irreducible characters are Z-valued
(for example, a Weyl group) and let γ be a faithful complex representation of G. Let m(λ)

denote the multiplicity of an eigenvalue λ of C̃. Then, up to multiplication of the rows by

nonzero rational numbers, the Smith normal form over Q[t] of tI − C̃ is diag(α`+1, ..., α1)
where

αi =
∏
λ

m(λ)≥i

(t− λ)

In addition, α`+1 = 1 and t|αi if and only if i = 1.

Proof. Recall that two matrices A,B with entries in a common field F are similar (over F )
if and only if tI −A and tI −B have the same Smith normal form over F [t]. Let T be the
character table of G, the (` + 1) × (` + 1)-matrix whose rows are the irreducible character

values. By Proposition 4, T is the matrix of eigenvectors for C̃, therefore D := T−1C̃T is

the diagonalization of C̃. Since T has integer entries we know T−1 has rational entries; this

implies that tI − C̃ and tI −D have the same Smith normal form over Q[t].
Now, tI −D = diag(t− λ0, ..., t− λ`). Since Q[t] is a Euclidean domain, 2× 2 principal

minors can be transformed(
f(t) 0

0 g(t)

)
→
(

gcd(f, g) 0
0 lcm(f, g)

)
using elementary row operations without affecting the rest of the matrix. This is essentially
the same algorithm used for computing integer Smith normal forms. Repeated applications
of these local transformations gives the desired Smith normal form.

Finally, since γ is faithful, χγ takes on at least two distinct values, and therefore C̃ has at
least two distinct eigenvalues. Thus {λ|m(λ) = `+1} is empty, so α`+1 = 1. By Proposition
4, m(0) = 1 so t|αi if and only if i = 1. �

Corollary 3. In the context of Proposition 7, if in addition tI − C̃ has a Smith normal
form 1 over Z[t] then

i. The Smith normal form over Z[t] is diag(α`+1, ..., α1) up to multiplication of each
αi by ±1.

ii. The critical group is

K(γ) ∼=
`+1⊕
i=2

(Z/|αi(0)|Z)

Proof. Let S = diag(s`+1, ..., s1) be the Smith normal form of tI − C̃ over Z[t]. It is a basic

fact about Smith normal forms that detS is equal to det(tI− C̃) up to an invertible multiple

in Z[t], that is, up to ±1. Since det(tI − C̃) is monic, so must be det(S), and therefore each

of the si is monic. Now, S is also a Smith normal form for tI − C̃ over Q[t], therefore the
si agree with the αi up to nonzero rational multiple. Since both are monic, we see that in
fact si = ±αi.

For (ii), evaluating at t = 0 gives that diag(α`+1(0), ..., α1(0)) is the Smith normal form

for C̃. By the proposition, αi(0) = 0 if and only if i = 1, which gives the desired result. �

1This is not guaranteed, since Z[t] is not a PID.
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4. Critical groups for the reflection representation of Sn

The following proposition gives a formula for the Kronecker product of a Schur function
sλ with the Schur function s(n−1,1). This can be reinterpreted as a formula for the rows of

C̃ associated to the reflection representation of Sn.

Proposition 8 ([2], proof of Proposition 4.1). Let n be a positive integer and λ ` n then

(1) s(n−1,1) ∗ sλ = C(λ)sλ +
∑

sµ

where C(λ) = |{i|λi > λi+1, 1 ≤ i ≤ l(λ) − 1}| and the sum is over all partitions different
from λ that can be obtained by removing one box and then adding a box to λ.

Theorem 6 ([6], special case of Theorem 1.2). Let Y denote Young’s lattice, and let U and
D be the up and down maps in ZY , the free abelian group with basis Y . Then UD− tI has
a Smith normal form over Z[t].

We can now prove Theorem 2.

Theorem 2. Let γ be the reflection representation of Sn and let C̃ be the associated extended
McKay-Cartan matrix. Let p(k) denote the number of partitions of the integer k. Then

K(γ) ∼=
p(n)⊕
i=2

Z/qiZ

where

qi =
∏

1≤k≤n
p(k)−p(k−1)≥i

k

Proof. The right hand side of Equation (1) can easily be seen to be the sum of the Schur
functions indexed by the partitions appearing in (UD − I)λ since |C(λ)| is one less than

the number of corners in λ (the set C(λ) excludes the last corner). Therefore tI − C̃ has a
Smith normal form over Z[t] by Theorem 6. Thus, by Corollary 3,

K(γ) ∼=
`+1⊕
i=2

(Z/|αi(0)|Z)

where

αi(t) =
∏
k

m(k)≥i

(t− k)

Thus we just need to understand the multiplicities m(k) of eigenvalues k of C̃. Write
k = n − f , then m(k) is the number of conjugacy classes whose elements have exactly f
fixed points. This in turn is the number of partitions of n with f parts of size 1, which is
the number of partitions of n− f with no fixed points. This is seen to be p(k)− p(k− 1) by
an easy bijection. Therefore |αi(0)| = qi. �

Remark. The existence of Smith normal forms over Z[t] for the operators UD − tI in the
differential posets Y r for r > 1 was recently proven by Nie [10], generalizing Theorem 6.
Of particular interest in the context of critical groups is the case r = 2, since the elements
of Y 2 correspond to irreducible representations of the Weyl group of type Bn, just as Y
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indexes the irreducibles of Sn. One might have hoped that UD − cI would again have
encoded γ⊗ (–), as in Proposition 8, for some irreducible representation γ, thus allowing us
to compute the critical group corresponding to this representation. Some computations for
small values of n, however, show that this is not the case.

5. An alternative expression for critical groups

This section presents an alternative equivalent definition of K(γ) in terms of the rep-
resentation ring R(G). In Section 5.1, we describe a relationship between K(γ) and the

Pontryagin dual Ĝ of the group G. This section primarily follows the exposition from
Section 6 of [3], but also answers Question 6.17 from that paper.

Recall that the representation ring R(G) is the commutative Z-algebra with basis χ0, ..., χ`,
the set of irreducible characters of G. The additive structure is free and the multiplicative
structure reflects pointwise equality of functions G→ C:

χiχj =
∑̀
k=0

ckχk

where the two sides agree as functions. The degree function deg : R(G)→ Z is the Z-algebra
morphism defined by

χi 7→ χi(e) = dimχi

Definition 6. Let γ be a faithful complex n-dimensional representation of G, define the
quotient ring

R(γ) := R(G)/(n− χγ)

Since (n− χγ) ⊂ ker(deg), the degree function descends to an algebra morphism
deg : R(γ)→ Z. Define an ideal I(γ) within R(γ) by

I(γ) := ker(deg : R(γ)→ Z)

Proposition 9 ([3], Proposition 5.20). Let γ be a faithful complex representation of G, then
there are additive group isomorphisms

R(γ) ∼= coker(C̃) (∼= Z⊕K(γ))

I(γ) ∼= coker(C) (∼= K(γ))

which therefore give Z ⊕ K(γ) the structure of a Z-algebra and K(γ) the structure of a
ring-without-unit (rng).

5.1. Critical groups for special linear representations. Recall that the Pontryagin

dual Ĝ of the group G is the group of homomorphisms G → C×. Since C× is abelian,
such a homomorphism factors through the abelianization Gab by the universal property of

abelianization. Thus Ĝ ∼= Ĝab; for finite groups G this implies that Ĝ is isomorphic to Gab.

Definition 7. Let γ be a complex representation of G. Define an element detγ ∈ Ĝ by
detγ = det(γ(–)).

The following theorem relates K(γ) and Ĝ in the case where γ is special-linear, that is,
when im(γ) ⊂ SLn(C).
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Theorem 7 ([3], Theorem 6.2). For a faithful representation γ : G ↪→ SLn(C) of a finite
group G, the homomorphism

Z`+1 π−→ Ĝ

χi 7→ detχi

induces a surjective homomorphism of abelian groups K(γ) � Ĝ.

Corollary 4. Let γ : G ↪→ SLn(C) be a faithful representation of a finite group G and
e = c0, c1, ..., c` be a set of conjugacy class representatives. Then∣∣∣∣∣∏̀

i=1

(n− χγ(ci))

∣∣∣∣∣ ≥ |G| · |Gab|
with equality if and only if K(γ) ∼= Ĝ.

Proof of Corollary. By Theorem 1 (i), the left hand side is equal to |G| · |K(γ)|. Since there

is a surjection K(γ) � Ĝ ∼= Gab, the corollary follows. �

Question 1. [3, Question 6.11] Which finite groups G have a faithful representation γ :

G ↪→ SLn(C) such that the surjection π from Theorem 7 is an isomorphism K(γ) ∼= Ĝ?

Theorem 8 (Part (i) is Theorem 6.13 of [3]). The following finite groups and faithful

representations γ : G ↪→ SLn(C) give isomorphisms K(γ) ∼= Ĝ:

i. Finite subgroups G of SL2(C) with the natural representation.
ii. The following finite subgroups of SO3(R) with the natural representation, and no

others:
- Cyclic groups G = 〈g|gm = 1〉 where g acts on R3 by fixing the x3-axis and

rotating the x1, x2-plane through 2π/m.
- Dihedral groups I2(n) for n odd.
- The alternating group A4 acting as the group of rotational symmetries of a

regular tetrahedron.
- The alternating group A5 acting as the group of rotational symmetries of a

regular dodecahedron or icosahedron.

Proof. Appendices B and C contain explicit calculations of K(γ) when γ is the natural
representation of one of these groups. The SL2(C) case is proved uniformly in Theorem
6.13 of [3] by identifying K(γ) as the fundamental group of a finite root system and relating

|Ĝ| to the index of connection for the root system. �

Remark. Benkart, Klivans, and Reiner show in Corollary 6.10 of [3] that whenever K(γ) ∼= Ĝ
as groups, the rng structure on K(γ) is trivial. This fact is pointed out in the explicit
calculations of K(γ) in Appendices B and C below. Also notice that part (ii) includes all
finite subgroups of SO(3,R) except I2(n) for n even and S4.

Our main tool for showing that K(γ) is not isomorphic to Ĝ for a given choice of γ and G
is via Theorem 1. If repeated character values are known to exist, then Part (ii) of Theorem
1 can be used to show that K(γ) has certain subgroups. If Gab does not have an isomorphic

subgroup, then K(γ) 6∼= Ĝ.
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Example 5. Let γ be the permutation representation of An for n ≥ 5. Since the permuta-
tions in An are even, im(γ) ⊂ SLn(C). By Example 3, K(γ) has a subgroup isomorphic to

Z/λZ for some λ ≥ 2. However Aabn = 0, so K(γ) 6∼= Ân.

Question 2. Are the pairs (G, γ) listed in Theorem 8 the only pairs of a finite group G

and a faithful representation γ : G ↪→ SLn(C) such that K(γ) ∼= Ĝ, up to equivalence of
G-representations and up to adding or removing copies of the trivial representation?

Remark. In [3, Proposition 6.19], Benkart, Klivans, and Reiner include a proof due to S.
Koplewitz that if G is abelian and γ contains no copies of the trivial representation then

K(γ) ∼= Ĝ if and only if G ∼= Z/mZ with G ⊂ SL2(C) as in type Ãm−1 of the McKay
correspondence (see Appendix B.1).

5.2. Superstable configurations. We now recall and prove the last main result, which
answers Question 6.17 in [3] in the affirmative:

Theorem 3. Let γ : G ↪→ SL(n,C) be a faithful representation of G with McKay-Cartan
matrix C. Then the basis vectors corresponding to the non-trivial one-dimensional charac-
ters χi of G are superstable configurations.

Proof. Let ei be the standard basis vector corresponding to a one-dimensional character χi.
Suppose ei − Ctz ∈ N` for some z ∈ N ` with z 6= 0. Let y = Ctz; we have inequalities
yj ≤ 0 for j 6= i and yi ≤ 1. We also have that

∑̀
k=1

yk · dim(χk) < 0

To see this, consider the possibilities giving
∑`
k=1 yk · dim(χk) ≥ 0. They are

(1) y = 0,
(2) yi = 1 and yj = 0 for j 6= i, or
(3) yi = 1, yi′ = −1 for some i′ with dim(χi′) = 1 and yj = 0 for j 6= i, i′.

Each of these is impossible since

(1) Ct is invertible and z 6= 0,
(2) ei /∈ im(Ct : Z` → Z`), and
(3) ei − ei′ /∈ im(Ct : Z` → Z`) since otherwise ei would be equal to ei′ in K(γ),

contradicting the fact that the map K(γ) � Ĝ from Theorem 7 is well-defined.

Now, y = Ctz = (nI − (M ′)t)z, where M ′ is the submatrix of M with 0-th row and
column removed, so for j = 1, ..., `:

yj = nzj −
∑̀
k=1

mkjzk = nzj −
∑̀
k=1

zk · 〈χγχk, χj〉

= nzj −
∑̀
k=1

〈χγχ⊕zkk , χj〉

= nzj − 〈χγ ⊗
⊕̀
k=1

χ⊕zkk , χj〉
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Let ψ = χγ ⊗
⊕`

k=1 χ
⊕zk
k and multiply yj by dim(χj) and sum over all j to get

0 >
∑̀
j=1

yj · dim(χj) = n
∑̀
j=1

zj dim(χj)−
∑̀
j=1

〈χj , ψ〉dim(χj)

But this is a contradiction since

n
∑̀
j=1

zj dim(χj) = dim(ψ)

but ∑̀
j=1

〈χj , ψ〉dim(χj) ≤
∑̀
j=0

〈χj , ψ〉dim(χj) = dim(ψ)

Therefore no such z exists and ei is superstable. �

Remark. Given γ : G ↪→ SL(n,C), Theorem 3, along with the fact that 0 is always super-

stable, identifies |Ĝ| of the superstable configurations for C. Since the superstable configu-
rations form a set of coset representatives for K(γ), Question 1 reduces to determining for
which pairs (G, γ) these are all of the superstables.
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Appendix A. The McKay correspondence

It is possible to nicely classify the finite subgroups of SU(2) and their irreducible rep-
resentations. Using the standard double cover SU(2) → SO(3,R) we can also obtain a
classification of the finite subgroups of SO(3,R).

Definition 8. Let G be a finite group with irreducible complex characters χ0, ..., χ` and
let χγ be the character of a faithful not-necessarily-irreducible representation of G. The
McKay graph of G with respect to γ has vertex set {χ0, ..., χ`} and weighted directed edges

χi
mij−−→ χj if χi · χγ =

∑`
k=0mijχj .

The classification of the finite subgroups of SU(2) makes use of their McKay graphs with
respect to the natural faithful representation (inclusion of a finite subgroup G into SU(2)).
This classification, often called the McKay correspondence asserts that these graphs are
exactly the affine Dynkin diagrams. A proof can be found, for example, in [13]. The
resulting classification is given in the table below.

Type G ⊂ SU(2) K(γ) ∼= Ĝ Affine diagram labeled by δ(e)

Ãn−1 〈g|gn = 1〉 Z/nZ

1 1 · · · 1 1

1

D̃n+2 〈r, s, t|r2 = s2 = tn = rst〉
{
Z/4Z if n odd

(Z/2Z)2 if n even
1

1

2 2 · · · 2 2

1

1

Ẽ6 〈r, s, t|r2 = s3 = t3 = rst〉 Z/3Z

1 2 3 2 1

2

1

Ẽ7 〈r, s, t|r2 = s3 = t4 = rst〉 Z/2Z

1 2 3 4 3 2 1

2

Ẽ8 〈r, s, t|r2 = s3 = t5 = rst〉 0

1 2 3 4 5 6 4 2

3

Recall from the basic theory of Lie groups that there is a standard double cover SU(2) �
SO(3,R). Therefore any finite subgroup of SO(3,R) may be pulled back to a finite subgroup
of SU(2) of twice the order. The classification above therefore allows us to classify all finite
subgroups of SO(3,R):
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Type G ⊂ SO(3,R) Ĝ

Ãn−1 Z/nZ Z/nZ

D̃n+2 Dihedral
group I2(n)
of order 2n

{
Z/2Z if n is odd

(Z/2Z)2 if n is even

Ẽ6 A4 Z/3Z

Ẽ7 S4 Z/2Z

Ẽ8 A5 0

Appendix B. Calculation of K(γ) for finite subgroups of SU(2)

All two-dimensional faithful representations G ↪→ SU(2) are irreducible when G is of

type D̃n+2 or Ẽ6, Ẽ7 or Ẽ8, therefore in these cases the following proposition will be useful:

Proposition 10. Let G be a finite group, and G→ GL(V ) an irreducible representation of
G with real-valued character. Then V ⊗ V contains exactly one copy of the trivial represen-
tation.

Proof. By assumption χV (g) is real for all g ∈ G. Since V is irreducible, we have

1 = 〈χV , χV 〉 =
1

|G|
∑
g∈G

χV (g)χV (g) =
1

|G|
∑
g∈G

χ2
V (g) = 〈χ0, χ

2
V 〉

Thus V ⊗ V contains exactly one copy of the trivial representation. �

Corollary 5. If G is finite and G→ SU(V ) is a two-dimensional irreducible representation,
then V ⊗ V contains exactly one copy of the trivial representation.

Proof. All elements of SU(2) have real trace, so the Proposition applies. �

B.1. Type Ãn−1. The group G = Z/nZ = 〈g|gn = e〉 corresponds to the affine Dynkin

diagram of type Ãn−1. Take the faithful representation γ given by

g 7→
(
ζ 0
0 ζn−1

)
where ζ = e2πi/n is an n-th root of unity. Since G is abelian, it is easy to see that χi sending
g 7→ ζi for i = 0, ..., n− 1 form a complete set of irreducible representations. Thus R(G) is
generated by χ1 as a Z-algebra. If we let x denote χ1, we have:

R(G) ∼= Z[x]/(xn − 1)
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Now, clearly χγ = χ1 + χn−1 = x+ xn−1 and so

Z⊕K(γ) ∼= Z[x]/(xn − 1, xn−1 + x− 2)

∼= Z[x]/(xn−1 + x− 2, x2 − 2x+ 1)

∼= Z[x]/(x2 − 2x+ 1, n(x− 1))

∼= Z[u]/(u2, nu)

where u = x− 1. Thus

K(γ) ∼= Z/nZ = Gab

and K(γ) has trivial rng structure since u2 = 0.

B.2. Type D̃n+2. The group BD4n of order 4n corresponds to the affine Dynkin diagram

of type D̃n+2. This group is given by

BD4n = 〈g, h|g2n = h4 = 1, gn = h2, hgh−1 = g−1〉

and for j = 1, ..., n− 1 has 2-dimensional irreducible representations Vj defined by

Vj(g) =

(
ζj 0
0 ζ−j

)
Vj(h) =

(
0 1

(−1)j 0

)
where ζ = eπi/n is a 2n-th root of unity. It is easy to check that these representations are
pairwise non-isomorphic and irreducible. We know BD4n has four 1-dimensional characters,
so the fact that 22(n− 1) + 12 · 4 = 4n shows that the Vj are all of the higher dimensional
irreducibles. Some of the Vj are faithful.

Throughout the calculations below, χ0, χ1, χ2, χ3 are the one dimensional irreducible

characters of the group of type D̃n+2 and ψ0, ..., ψn−2 are the two dimensional irreducibles;
they will be used to refer to the irreducible representations and their characters inter-
changeably. Let χ0 always refer to the trivial representation, and fix a faithful irreducible
special-unitary representation ψ0 with respect to which we construct McKay graphs. The
labels of the other representations will be defined by this diagram:

χ0

χ1

ψ0 ψ1 · · · ψn−3 ψn−2

χ2

χ3

The fact that ψ0 is adjacent to χ0 follows from Proposition 10.

B.2.1. Case 1: n is odd. In this case we know that Hom(G,C×) ∼= Z/4Z.

Proposition 11. The character χ1 has order two in Hom(G,C×) ∼= Z/4Z.

Proof. We have ψ0 ⊗ ψ0 = χ0 ⊕ χ1 ⊕ ψ1. Notice from above that all of the 2-dimensional
irreducibles have real trace. This forces χ1 to be real-valued. In particular it must have
order 1 or 2 in Hom(G,C×). Since it is not equal to χ0, it must have order 2. �

Proposition 12. When n is odd, R(G) is generated by ψ0 and χ2 as a Z-algebra.



CRITICAL GROUPS OF MCKAY-CARTAN MATRICES 19

Proof. We need to check that S := Z[ψ0, χ2] contains each of the other irreducible characters.
Since χ2 generates Hom(G,C×) we have χ0, χ1, χ2, χ3 ∈ S. We will now show that S
contains each of the ψi by induction:

Suppose by induction that S contains ψ0, ψ1, ..., ψi−1 for some 2 ≤ i ≤ n − 2. Then S
contains ψ0 ·ψi−1 = ψi−2 +ψi. Since we know by induction that ψi−2 ∈ S, so is ψi. For the
base case, note that ψ2

0 − χ0 − χ1 = ψ1, so ψ1 ∈ S. �

Now we will determine the relations satisfied by the generators x = χ2 and y = ψ0 of
R(G). Since χ2 generates Hom(G,C×), we have x4 = 1. Next notice that

{1, x, x2, x3, y, y2, ..., yn−1}

is linearly independent. This is because for each i = 1, ..., n − 1, yi is the smallest power
of y to contain ψi−1, and each power of x is one of the characters χj . Therefore the linear
independence of these powers follows from the linear independence of irreducible characters.
These elements span R(G), so we need to find relations expressing xy and yn as a linear
combination of these elements.

From the McKay quiver, we can read off the relation

xy = ψn−2

Thus we need to express ψn−2 as a linear combination of powers of x and y. Notice that for
1 ≤ i ≤ n− 3, we have yψi = ψi−1 + ψi+1. Thus we get a recurrence

ψi+1 = yψi − ψi−1(2)

with the initial conditions ψ0 = y and ψ1 = y2− (1+x2). Solving this as a linear recurrence
yields

ψi =

(
y +

√
y2 − 2(1 + x2)

2

)i+1

+

(
y −

√
y2 − 2(1 + x2)

2

)i+1

(3)

Which can be proven by induction. The right hand side of (3) is always polynomial, and it
can be expressed in the basis {1, x, x2, x3, y, ..., yn−1} since x4 = 1 and x2y = y. Call this
resulting polynomial ai(x, y). Therefore we have the relation

xy = an−2(x, y)

Finally, we have the relation

yan−2(x, y) = an−3(x, y) + x+ x3

coming from the right side of the McKay quiver. Thus

R(G) ∼= Z[x, y]/(x4 − 1, xy − an−2(x, y), yan−2(x, y)− an−3(x, y)− x− x3)

Now we want to compute the critical group K(ψ0). To do this notice the effect of setting
y = 2 on the last two relations.

ai(x, 2) :=


2 if i is even

3− x2 if i ≡ 1 mod 4

1 + x2 if i ≡ 3 mod 4
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Which can also be seen by induction. When n is odd, we have

Z⊕K(ψ0) ∼=

{
Z[x]/(x4 − 1, x2 − 2x+ 1) or

Z[x]/(x4 − 1, x2 + 2x− 3, x3 + 2x2 + x− 4)

making the substitution u = x− 1 in either case gives

Z⊕K(ψ0) ∼= Z[u]/(4u, u2)

so K(ψ0) ∼= Z/4Z with trivial rng structure.

B.2.2. Case 2: n is even. In this case we know that Hom(G,C×) ∼= (Z/2Z)2.

Proposition 13. When n is even, R(G) is generated by ψ0, χ1, and χ2 as a Z-algebra.

Proof. We now require two of the three non-trivial one-dimensional characters in order to
generate the others. The rest of the argument is the same is in the previous case. �

Let x = χ2, y = ψ0, z = χ1. Similar to the previous case, the set {1, x, z, xz, y, ..., yn−1}
spans R(G). Since Hom(G,C×) ∼= (Z/2Z)2 in this case, we know x2 = z2 = 1. We still
need relations expressing xy, yz and yn in terms of this basis. From the McKay quiver we
can read off:

yz = y

xy = ψn−2

yψn−2 = ψn−3 + z + xz

The formulas expressing ψi in terms of x, y from above still hold, so

R(G) ∼= Z[x, y, z]/(x2 − 1, z2 − 1, yz − y, xy − an−2(x, y), yan−2(x, y)− an−3(x, y)− z − xz)
Letting y = 2 this gives

Z⊕K(ψ0) ∼= Z[x, z]/(x2 − 1, z2 − 1, 2x− 2, 2z − 2, x+ z + xz − 3)

The substitutions u = x− 1 and v = y − 1 give

Z⊕K(ψ0) ∼= Z[u, v]/(u2, v2, 2u, 2v, uv)

and so K(ψ0) ∼= (Z/2Z)2 with trivial rng structure.

B.3. Types Ẽ6, Ẽ6 and Ẽ8. In each of the three types below, fix a faithful two-dimensional
special unitary representation ψ0 (which is necessarily irreducible). The McKay graph with
respect to ψ0 is shown. The fact that ψ0 and χ0 are adjacent follows from Proposition 10,
the labels of the other representations are defined by this diagram (up to conjugation).

B.3.1. Type Ẽ6.

χ0 ψ0 ψ1 ψ2 χ1

ψ3

χ2

Proposition 14. R(G) is generated by y = ψ0 and x = χ1 as a Z-algebra.
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Proof. We can easily read the following from the fact that Hom(G,C×) ∼= Z/3Z and the
McKay graph:

χ2 = x2

ψ1 = y2 − 1

ψ2 = xy

ψ3 = x2y

�

Thus R(G) has a basis {1, x, y, xy, x2, y2, x2y} so we need relations expressing y3 and xy2

in this basis (we know x3 = 1). From the McKay graph:

y3 = y(χ0 + ψ1) = 2y + ψ2 + ψ3 = 2y + xy + x2y

xy2 = y(ψ2) = ψ1 + χ1 = y2 + x− 1

Thus

R(G) ∼= Z[x, y]/(x3 − 1, y3 − x2y − xy − 2y, xy2 − y2 − x+ 1)

And so

Z⊕K(ψ0) ∼= Z[x]/(x3 − 1, 2x2 + 2x− 4, 3x− 3)

∼= Z[u]/(3u, u2)

where u = x− 1. Thus K(ψ0) ∼= Z/3Z with trivial rng structure.

B.3.2. Type Ẽ7.

χ0 ψ0 ψ1 ψ2 ψ3 ψ4 χ1

ψ5

Proposition 15. R(G) is generated by y = ψ0 and x = χ1 as a Z-algebra.

Proof. We can read these off from the McKay graph:

ψ1 = y2 − 1

ψ2 = yψ1 − ψ1 = y3 − 2y

ψ3 = xy2 − x
ψ4 = xy

ψ5 = yψ2 − ψ1 − ψ3 = y4 − 3y2 − xy2 + x+ 1

�
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Thus R(G) has a basis {1, x, y, xy, y2, y3, xy2, y4}, so we need relations expressing y5 in
this basis (we clearly have x2 = 1). We have

y5 = y3(1 + ψ1) = y2(2y + ψ2)

= y(2 + 3ψ1 + ψ3 + ψ5)

= 5y + 5ψ2 + ψ4 = 5y + 5(y3 − 2y) + xy

= 5y3 + xy − 5y

therefore
R(G) ∼= Z[x, y]/(x2 − 1, y5 − 5y3 − xy + 5y)

and so

Z⊕K(ψ0) ∼= Z[x]/(x2 − 1, 2x− 2)

∼= Z[u]/(2u, u2)

so K(ψ0) ∼= Z/2Z with trivial rng structure.

B.3.3. Type Ẽ8.

χ0 ψ0 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

ψ7

We know by Theorem 6.13 in [3] that K(ψ0) ∼= Gab = 0. Therefore its rng structure is
trivial.

Appendix C. Calculation of K(γ) for finite subgroups of SO(3,R)

C.1. Type Ãn−1. The cyclic group Z/nZ = 〈g|gn = 1〉 is faithfully represented inside
SO(3,R) with g fixing the x3-axis and rotating the x1, x2-plane by 2π/n. After removing
the copy of the trivial representation, this representation is isomorphic to the representation
of Z/nZ inside SU(2). Since adding a copy of the trivial representation does not affect K(γ),

the calculation from Appendix B shows that K(γ) ∼= Z/nZ ∼= Ĝ.

C.2. Type D̃n+2. Let I2(n) denote the dihedral group of order 2n. We have a presentation

I2(n) = 〈g, h|gm = h2 = (hg)2 = e〉
The character table of I2(n) depends on the parity of n:

G = I2(n), n odd e g h

χ0 1 1 1
χh 1 1 -1

ψk (k = 1, 2, ..., n−12 ) 2 ζkn + ζ−kn 0

G = I2(n), n even e g h

χ0 1 1 1
χg 1 -1 1
χh 1 1 -1

χg · χh 1 -1 -1
ψk (k = 1, 2, ..., n−22 ) 2 ζkn + ζ−kn 0
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where ζn = e2πi/n is an n-th root of unity.
Let x denote χh, y denote χg and zk denote ψk. The following relations hold for both n

even and n odd:

x2 = 1

xzk = zk

zkz` = zk+` + zk−`, if k + ` ≤ n− 1

2
and where z0 = 1 + x

This last relation, with ` = 1 gives zk+1 = zkz1− zk−1. Induction shows that x, z1 generate
the rest of the zk. Thus R(G) is generated by x, z1 for n odd and x, y, z1 for n even. We
have the following additional relations depending on the parity of n:

y2 = 1, if n is even

yzk = zn
2−k, if n is even

z1z(n−2)/2 = y + xy, if n is even

z1zn−1
2

= zn−1
2

+ zn−3
2
, if n is odd

Now, the faithful representation γ : G ↪→ SO(3,R) has character χγ = x + z1, so
R(γ) = R(G)/(3− (x+ z1)).

C.2.1. n is odd. The relation z1zk = zk+1 + zk−1 shows that {1, x, z1, z21 , ..., z
(n−1)/2
1 } forms

a basis for R(G). The argument essentially the same as in the type D̃n+2 case for subgroups
of SU(2). We already have the relations x2 = 1 and xz1 = z1, therefore the only remaining

relation expresses z
(n+1)/2
1 in terms of this basis.

Let ai(x, z1) denote the expression for zi in the above basis. The last remaining relation
in R(G) is then

z1a(n−1)/2(x, z1) = a(n−1)/2(x, z1) + a(n−3)/2(x, z1)

Thus

R(G) ∼= Z[x, z1]/(x2 − 1, xz1 − z1, z1a(n−1)/2(x, z1)− a(n−1)/2(x, z1)− a(n−3)/2(x, z1))

Now, we can express the relations for R(γ) in terms of only x by substituting z1 = 3 − x.
In particular this gives x(3 − x) = 3 − x and so 4(x − 1) = 0 in R(γ). We now need to
compute ai(x, 3− x) in order to determine the last relation. We have a0(x, z1) = 1 + x and
a1(x, z1) = z1 and will use the relations 4(x− 1) = 0 and x2 = 1 to reduce at each step:

a0(x, 3− x) = 1 + x

a1(x, 3− x) = 3− x
a2(x, 3− x) = (3− x)a1(x, 3− x)− a0(x, 3− x) = 3x− x2 = 3x− 1 = 3− x
a3(x, 3− x) = (3− x)a2(x, 3− x)− a1(x, 3− x) = 9− 7x = 1 + x

Thus by induction we see that in general

ai(x, 3− x) =

{
1 + x if i is even

3− x if i is odd
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Therefore in R(γ) the last relation becomes{
(3− x)2 = (3− x) + (1 + x) if (n− 1)/2 is odd

(3− x)(1 + x) = (3− x) + (1 + x) if (n− 1)/2 is even

Both of these relations reduce to 2(x− 1) = 0. Thus

R(γ) ∼= Z[x]/(x2 − 1, 4(x− 1), 2(x− 1)) = Z[x]/(x2 − 1, 2(x− 1))

and letting u = x− 1 gives

R(γ) ∼= Z[u]/(u2, 2u)

so K(γ) ∼= Z/2Z = Ĝ with trivial rng structure.

C.2.2. n is even. Similarly to the previous case, we see that {1, x, y, xy, z1, z21 , ..., z
(n−2)/2
1 }

is a basis for R(G) and that the relations x2 = 1, xz1 = z1, and y2 = 1 hold. The remaining
relations are y+xy+a(n−4)/2(x, z1) = z1an/2(x, z1), yz1 = a(n−2)/2(x, z1), and ya2(x, z1) =
a(n−4)/2(x, z1). Thus R(G) is

Z[x, y, z1]

(x2 − 1, y2 − 1, xz1 − z1, y + xy + a(n−4)/2 − z1an/2, yz1 − a(n−2)/2, ya2 − a(n−4)/2)

When we now impose the relation 3− (x+ z1) = 0, this allows us to substitute z1 = 3− x
in each relation. As before, xz1 − z1 = 0 becomes 4(x− 1) = 0. We also get

(3− x)y =

{
3− x if (n− 2)/2 is odd

1 + x if (n− 2)/2 is even

(1 + x)y =

{
1 + x if (n− 2)/2 is even

3− x if (n− 2)/2 is odd

Adding these gives 4y = 4, regardless of the parity of (n − 2)/2. Finally, the relation
y + xy = z1an/2(x, z1) becomes

y + xy =

{
1 + x if (n− 2)/2 is odd

3− x if (n− 2)/2 is even

Let u = x− 1 and v = y − 1 we get

R(γ) ∼=

{
Z[u, v]/(4u, 4v, u2 + 2u, v2 + 2v, uv + 2v) if (n− 2)/2 is odd

Z[u, v]/(4u, 4v, u2 + 2u, v2 + 2v, uv + 2u+ 2v) if (n− 2)/2 is even

Thus in either case I(γ) = (Z/4Z)u+ (Z/4Z)v so

K(γ) ∼= (Z/4Z)2 6∼= (Z/2Z)2 = Ĝ

Notice that the rng structure of I(γ) is nontrivial.

C.3. Types Ẽ6, Ẽ7, and Ẽ8.
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C.3.1. Type Ẽ6. The alternating group A4 has a faithful representation γ inside SO(3,R);
this is the permutation representation with the copy of the trivial representation removed.
The character table for G = A4 is

e (123) (132) (12)(34)
χ0 1 1 1 1
χ1 1 ω ω2 1
χ2 1 ω2 ω 1
χγ 3 0 0 -1

Clearly R(G) is generated by χ1 and χγ as a Z-algebra. We can see from the character
table that

χ3
1 = 1

χ1χγ = χγ

χ2
γ = 2χγ + χ2

1 + χ1 + 1

Therefore if we let x = χ1 and y = χγ we have

R(G) ∼= Z[x, y]/(x3 − 1, xy − y, y2 − 2y − x2 − x− 1)

Now, modding out by the ideal (y − 3) gives

R(γ) ∼= Z[x]/(x3 − 1, 3(x− 1), x2 + x− 2) ∼= Z[x]/(3(x− 1), (x− 1)2)

Letting u = x− 1 we have

R(γ) ∼= Z[u]/(3u, u2)

and so K(γ) ∼= Z/3Z = Ĝ with trivial rng structure.

C.3.2. Type Ẽ7. The symmetric group S4 has a faithful representation γ inside SO(3,R);
this is the permutation representation with the copy of the trivial representation removed.
The character table for G = S4 is

e (12) (123) (1234) (12)(34)
χ0 1 1 1 1 1
χ1 1 -1 1 -1 1
χγ 3 1 0 -1 -1
χ3 3 -1 0 1 -1
χ4 2 0 -1 0 2

It is easy to check that R(G) is generated by x = χ1 and y = χγ as a Z-algebra. We have
relations

x2 = 1

xy2 = y2 + x− 1y3 = 2y2 + xy + 2y + x− 1

Modding out by the ideal (y − 3) gives

R(γ) ∼= Z[x]/(x2 − 1, 4(x− 1))

Letting u = x− 1 gives

R(γ) ∼= Z[u]/(u2 + 2u, 4u)

Thus K(γ) ∼= Z/4Z 6∼= Z/2Z = Ĝ. The rng K(γ) has nontrivial structure since u2 6= 0.
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C.3.3. Type Ẽ8. The alternating group A5 is isomorphic to the group of rotational symme-
tries of a regular dodecahedron or icosahedron, giving a faithful representation γ of G = A5

into SO(3,R). The character table for G = A5 is

e (123) (12)(34) (12345) (13452)
χ0 1 1 1 1 1
χ1 4 1 0 -1 -1
χ2 5 -1 1 0 0

χγ 3 0 -1 1+
√
5

2
1−
√
5

2

χ4 3 0 -1 1−
√
5

2
1+
√
5

2

By decomposing χjγ into irreducibles for j = 2, 3, 4 one can see that R(G) is generated
by χγ as a Z-algebra. Therefore, letting x = χγ , R(G) is a quotient of Z[x], and R(γ) is a

quotient of Z[x]/(x− 3) ∼= Z, so it must in fact be equal. Thus K(γ) = 0 = Ĝ, with trivial
rng structure.
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