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1 Abstract

In the 2016 paper Circuits and Hurwitz action in finite root systems by

Joel Brewster Lewis and Victor Reiner, a conjecture is made that ”In a
well-generated finite complex reflection group, two factorizations of a Cox-
eter element into reflections lie in the same Hurwitz orbit if and only if

they share the same multiset of conjugacy classes”. Here a SageMath/CoCalc
program is used to demonstrate several cases of this conjecture by per-
forming Hurwitz moves to determine the size of the Hurwitz orbit for the
groups G4, G8, and G20. A separate section of code is used to calculate the
number of reflection factorizations with a generating function from Cha-

puy and Stump. These numbers are compared, to test the conjecture.

2 Introduction

In a complex vector space V of dimension n, a reflection is a linear trans-
formation that, when represented as a matrix, has all but one eigenvalue
equal to 1 [2].

Definition 1. A complex reflection group G is a finite group generated by
reflections on V. G of rank n is considered well-generated if it is generated
by a subset of n reflections.

Definition 2. A finite Coxeter group is a group generated by reflections on
a real vector space C. A Coxeter element ¢ in G is an element of order h =
W where R is the set of all reflections in G and R* is the set of all re-

flecting hyperplanes.

Definition 3. A reflecting hyperplane is the kernel of the transformation
matrix of a reflection, i.e., what ends up in the same place after the reflec-
tion.

Definition 4. The Hurwitz move c; acts on a factorization ¢ = ¢;...t; by
mapping (t1, ...t;, tit1, ...t;) to (b1, .0, tig1, t;ﬁltitiﬂ, .., t1). A Hurwitz orbit
is a subset of reflection factorizations such that beginning with any one
factorization, all the others in the orbit can be found by doing one or more



Hurwitz moves on the others.

In this paper I will discuss a SageMath program written by myself and an-
other student, Xuan Liu, that tests the following conjecture [3]:

Conjecture 6.3 In a well-generated finite complex reflection group, two
factorizations of a Coxeter element into reflections lie in the same Hurwitz

orbit if and only if they share the same multiset of conjugacy classes.

3 Background

In [3], Conjecture 3 is proven for finite real reflection groups. In [1], Cha-
puy and Stump give the generating function for the number of Coxeter
element reflection factorizations of each length in any irreducible well-
generated complex reflection group.

Chapuy and Stump’s main theorem reads as follows:

Let W be an irreducible, well-generated complex reflection group of rank n.
Let ¢ be a Coxeter element in W, let R be the set of all reflections in W, and
let R* be the set of all reflecting hyperplanes. Define

4
FACw(t) := Z ﬁ#{(Tl,TQ, 1) €RL Ty = ¢}
>0

to be the exponential generating function of factorizations of c into a prod-
uct of reflections. Then F ACyy (t) is given by the formula

L (tIRIn _ =tiR" |y
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[1]
The SageMath program presented in this paper calculates sizes of Hur-

witz orbits.
For example, with the S3 symmetric group:

S3 = {e, s, t, st ts, sts}

where e is the identity, and s and ¢ are the reflections represented in the
following notations and equivalent linear transformation matrices:



1 2 3
§ = =11 0
2 1 3
L 01_
-1 0 -
1 2 3
t= =10 0 1
1 3 2
_01 d
-1 0 0 -
1 2 3
e= =10 1
1 2 3
-0 0 1 -

Simple matrix multiplication can be used to find the remaining three ele-
ments of the group:

0 0 1 -
1 2 3

st = = 1 0 O
2 3 1

-0 1 0 -

-0 1 _
1 3

ts = =0 0 1
1 2

-1 0 0 “

0 0 1
1 2 3

sts = tst = =10 1 O
3 2 1

1 0 O

From this full group, one Coxeter element with the property s> = t? = e is

1 2 3
c=(1 2 3 )= 9 3 1 )= °

One factorization of ¢ is (s,¢). Starting with this, Hurwitz moves can be
done repeatedly until no more new factorizations are found, at which point
the total number of factorizations is the size of the Hurwitz orbit.

Two Hurwitz actions can be done on a factorization of this length:
(1) (5,t) — (t,t " 'st) = (t,tst)

(2) (5,t) — (s~ 'ts, s) = (sts, s)



Because s? = t2 = e, the equalities s7! = s and t ' = t hold. Next, Hurwitz

moves can be used on each of these new factorizations.

(1) (t,tst) — (tst,tstttst) = (tst,s) = (sts,s)
(2) (t,tst) — (ttstt,t) = (s,1)
(1) (sts,s) — (s, sstss) = (s,1)
(2) (sts,s) — (tst, stsssts) = (sts,t)

Since all of the actions that can be done on the factorizations have been
exhausted, every factorization in the Hurwitz orbit is here. There are
three: (s,t), (¢,tst), and (sts, s).

Definition 5. A Hurwitz map is a graphical representation of reflection
factorizations transformed by Hurwitz moves. A factorization is a vertex
with edges connecting two factorizations if doing one Hurwitz move on one
of them creates the other.

In this example, since there are only three factorizations, the Hurwitz
map will look like a triangle. For a more interesting example, one can look

at Figure 4 from Muhle and Ripoli [4].

In this figure, the reflections can be represented as:

t1 = (12)
to = (24)
tz3 = (23)

t oty =ty ity = (14)
t7 sty = t3 Mty = (13)

ts Moty =t Mty = (34)

The figure shows the Hurwitz map of factorizations:
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(34)(14)(12) — (34)(24)(14)
FIGURE 4. The Hurwitz graph of the long cycle ¢ = (12 3 4) in
the symmetric group &4 generated by its transpositions.
In this case, the map shows a Hurwitz orbit of 16 factorizations, each of
length 3.

In the original exmaple in S3, the size of the Hurwitz orbit can be com-
pared to [1]. In symmetric groups such as this one, |R| = |[R*| = (}). Soin

(3
RI= (R = (3) =3

this example,

So using the formula,

1 iR 1 B
FACw(t) = W(etlnl/n — e HRI/myn — §(€3t/2 — e73t/2)2



expands to
3t 2mtt 207tS

ot e

so there are 3 factorizations of length 3, 27 of length 4, and 207 of length
6. Further terms of the series would tell the number of factorizations of
longer lengths.

As shown, there are also 3 factorizations in the Hurwitz orbit of a Cox-
eter element in S3, which is evidence of the conjecture. Of course, since

S5 is a real reflection group, the theorem that applies has already been
proven. The SageMath program is designed to test the conjecture for com-
plex groups.

4 Program and Results

Here the Sage program that tests Reiner and Lewis’ conjecture for com-

plex reflection groups will be explained.

The following code performs the Hurwitz action, switching two tuples and
conjugating one tuple.

def hurwitz(t k):
to = list{t)
to[k-1] = tp[k]
to[k] = —t[k]*t[k-1]*E[k]
retun tuple(ip)

To find the Hurwitz orbit, two group of factorizations are created: one
called ”old” to keep track of those already found, and another called "new”
to keep track of all factorizations, including the ones that have just re-
sulted from Hurwitz moves. When all possible Hurwitz moves are done to
all existing factorizations but no new factorizations result, the size of “old”
will be the same as the size of "new”, and the loop terminates, as the Hur-
witz orbit is full.



def hurwitz_orbit_size(t):
ald = gat(}
nienw = sat{[t]}
while len{old} < len{new]:
ald = copy{new}
far itern in old:
for kin range(1,len(t]):
a = hurwitz({item, k)
new.add(a)
returm{len{new})

For example, here is the code that was run on the group Gy4:

First, the series from Chapuy and Stump’s equation is calculated:

W=ReflectionGroup(B)

M=W.number_aof_reflectional);

Mztar=W_number_of reflection_hyperolanes();
g=1len{W"{exp(N "% 2-exp{-MNatar =22,

g-taylor{=,0,10]

17935831 7510 + JDBL2T*x™0 + 19026/7*x*8 + G315 x T + 2457/5*x G
+ 182%c*5 + 45 N + Ot + I3 4eh2

The last four terms of the series simplify to:

10440 . 1080 , 54 5 3
TR TR TR TR

To demonstrate the conjecture, the Hurwitz orbit of length 2 will need to
have 3 factorizations, that of length 3 will need to have 54 factorizations,
that of length 4 will need to have 1080 factorizations, and that of length 5
will need to have 19440 factorizations.

First, the code is used to find the Hurwitz orbit for reflection factorizations
of length 2 and 3:



s=list{W.simple_reflections{)}[0]
t=list{W . simple_reflections{)}1]
fac2 = tuple{[s 4])
hurwitz_orbit_size{fac2)

3

fac3=tupla([s*3,5*2 )
hurwitz_orbit_size{facd)
54

While each of these only have one Hurwitz orbit, for length 4 and length

5, each has four Hurwitz orbits. The sum of the sizes of each of their Hur-
witz orbits should equal the number from the Chapuy and Stump series, if
Reiner and Lewis’ conjecture is true.

facda=tupla{[s"3, 82 "3 12])
facdb=tuple{[=*2 82 = 1])
facdc=tuple([s*3,5%3,5"3.1])
facad=tuple{[=.LLt23])
a=hurwitz_orbit_size(facda).a
b=hurwitz_orbit_sizelfacdb):b
c=hurwitz_orbit_size{facdc)c
d=hurwitz_orbit_size(facdd)d
324

324

108

a4



facSa=tuplef[z"2,5,5,5.1])

facho=tuple{[z"3 5,5, t*2.13])

fache=tuple([s"2 83 43 43 123])
fachd=tuple{[s*2,s2 "2 543 1]}

a=hurwitz_orbit_sizelfacha):a
b=hurwitz_orbit_size(fachb)b
c=hurwitz_orbit_size{facSc)c
d=hurwitz_orbit_sizelfachd):d

1620
avzo
1620
G480

For length 3, 324 + 324 + 108 + 324 = 1080, and for length 4, 1620 + 9720 +
1620 + 6480 = 19440. For each of lengths 2, 3, 4, and 5, the sum of the fac-
torizations is the same as the number from the series. Therefore, Reiner

and Lewis’ conjecture has been demonstrated to work for these lengths in

this group.

The following table shows the sizes of the Hurwitz orbits of certain lengths
in certain groups, as found using the code.

Data Collected from Code

Group Length 2 Length 3 Length 4 Length 5 Length 6
Hurwitz Hurwitz Hurwitz Hurwitz Hurwitz
Orbit Totals | Orbit Total | Orbit Totals | Orbit Totals | Orbit Totals

G4 3 18 180 1320 11088

G5 4 48 960 14080

G8 3 54 1080 19440 353808

G20 5 150 7500
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