CRITICAL GROUPS OF GRAPHS

BRIAN JACOBSON

ABSTRACT. In this thesis, we solve two open problems concerning the structure
of critical groups of graphs.

Firstly, we compute explicitly the critical groups of threshold graphs, com-
pleting work started by Christianson and Reiner [3]. We also provide bounds
on the number of invariant factors of these groups.

Secondly, we prove a conjecture of Kuperberg about critical groups of pla-
nar graphs. Propp and others [5] have found a bijection between spanning
trees of a planar graph G and perfect matchings of a related bipartite graph
H. These numbers are equal to the determinants of the reduced Laplacian
matrix L(G) of G and the Kasteleyn-Percus matrix M(H) of H. Kuperberg
[6] conjectured further that the critical group K(G) of G is isomorphic to the
cokernel of M(H). We prove this using different presentations of the critical
group.

1. INTRODUCTION

Let G be a loopless, undirected graph on vertex set V and edge set E. The
Laplacian matriz L(G) of G is the |V| x |V| matrix satisfying

L(G)o = {deg(v) if v =w,

—ey,w Otherwise,

where deg(v) is the degree of vertex v and e, ,, is the number of edges from v to w.
Considering L(G) : ZV — ZV as a homomorphism of abelian groups, the critical
group K(G) of G is the torsion subgroup of the cokernel of L(G), cokerz(L(QG)).
(For a thorough discussion of critical groups, see [4].) Although the critical group is
an interesting isomorphism invariant of a graph, there have been few results either
relating the structures of G and K(G) or determining the critical group explicitly
for families of graphs (see e.g. [2, 7]). In this thesis, we solve two open problems
about K(G). Firstly, we compute explicitly the critical groups of threshold graphs
and provide bounds on the number of invariant factors of these groups. Secondly,
we prove a conjecture of Kuperberg refining a bijection between spanning trees of
a planar graph G and perfect matchings of a related bipartite graph H.

In sections 2-3 we will discuss threshold graphs and some known facts related
to its critical group structure, follow with a theorem (almost) explicitly describing
its structure, and end with a proof of the theorem. In sections 4-7, we will discuss
another interpretation of the critical group, explain the bijection between spanning
trees of G and perfect matchings of H, and conclude with a proof of Kuperberg’s
conjecture.
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F1GURE 1. A threshold graph on 16 vertices with building se-
quence (isolated, cone, isolated, cone, cone, cone, isolated, isolated,
isolated, isolated, cone, cone, isolated, cone, cone) and degree se-
quence (15,15,14,14,10,10,10,9,8,8,7,4,4,4.42). Here, the vertices
are named {1%,24,3c,...} in the order of the building sequence,
where * corresponds to the initial vertex, ¢ to an isolated vertex
and c¢ to a cone vertex.

2. THRESHOLD GRAPHS

Christianson and Reiner [3] provide motivation for studying threshold graphs
and give some results. Here we will include only the results necessary for the proof
of our theorem. We start with a characterization of threshold graphs. A graph
G is threshold if and only if it can be obtained from a single vertex by iterating
the operations of adding a new vertex that is either connected to no other vertex
(an isolated vertex) or connected to every other vertex (a cone vertex). Call this
sequence of operations the building sequence of G. For example, complete graphs
are threshold graphs given by the building sequence (cone, cone, ..., cone). A
threshold graph on 16 vertices is shown in Figure 1.

The order of K(G), k(G), is equal to the number of spanning forests in G (or
spanning trees if G is connected). The following is a version of Kirchoff’s Matrix-
Tree Theorem which relates x(G) to the eigenvalues of L(G) (called the Laplacian
eigenvalues of G).

Theorem 1. [2] Let G be a connected graph. If \y > Ay > ... > Ay, = 0 are the
eigenvalues of L(G), then

Merris [8] found a beautiful expression for the Laplacian eigenvalues of a thresh-
old graph.
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FIGURE 2. Ferrers diagram of the degree sequence d of a threshold
graph. D is the Durfee square of d; A and A! are conjugate parti-
tions.

Theorem 2. [8] Let G be a threshold graph. If d = (di,...,d,) is the degree
sequence of G, and A = (\1,..., ;) are the non-zero eigenvalues of L(G) listed in
weakly decreasing order, then d and X are conjugate partitions.

In particular, if G is connected then A\; = n and one concludes from Theorem 1

that kK(G) = A2+ An_1. There is another formulation of this idea related to the
building sequence of G.
Proposition 3. Let G be a connected threshold graph with vertices indexed in the
order of the building sequence of G (see e.g. Figure 1). Let the sequence ¢ =
(0,c2,-..,¢n) be so that ¢; = deg(v;) if v; is an isolated vertex and ¢; = deg(v;) +1
if v; is a cone vertex. Then c is a list of the Laplacian eigenvalues of G. Also,
K(G)=ca2 1.

In the graph in Figure 1, one has

c=1(0,8,10,7,11,11,11,4,4,4,4,15,15,2, 16, 16).

Proof. In light of Theorem 2, it is enough to show that ¢, ..., ¢, are the column
lengths of the Ferrers diagram of d, the degree sequence of G. This is immediate
once we have another characterization of threshold graphs, that the Ferrers diagram
of their degree sequence has the form in Figure 2 (a proof is given in [9]). The second
assertion follows from Theorem 2 since ¢, = n. O

Notice some simple properties of the sequence ¢ resulting from the building se-
quence of G. Suppose that there is a set of consecutive vertices {vj41,Vit2,- -, Uitk }
that are of the same type; that is, either each vertex is an isolated vertex, or each
vertex is a cone vertex. Inspection shows that these vertices have the same de-
gree, so in particular ¢;11 = ¢y2 = -+ = ¢4x. On the other hand, suppose that
{Vi41,Vi42,---, vtk } 18 & set of consecutive vertices of the same type and suppose
that v; and vi4 41 have different type than v;y1. Then the degrees of v; and vy g1
differ by exactly k, so that ¢;4x+1 = ¢; £ k, where the sign is positive if v; is a cone
vertex and negative if v; is an isolated vertex.

We are now ready to state the main theorem. Notice that if G is a disconnected
threshold graph, then it contains at most one component not consisting of a single
vertex. The critical groups of G and its non-trivial component are easily seen to be
equal, so one loses no generality by assuming the graph is connected.
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Theorem 4. Let G be a connected threshold graph with vertices indexed in the
order of the building sequence of G, and c be defined as in Proposition 3. Define a
partition p of the sequence (ca,...,cn—1) by placing ¢; and c;y1 in the same block
if they are unequal but not relatively prime. Then

K(G) = @ cokerz(Mp),
blocks B of u

where if B = (Ci41,Cl4+2,- -+, Clrk), then
Ci4+1 0 0 e 0
Cl+1 +1 Ci42 0 s 0
Mp := 0 Cl+2 +1 Ci+3 . ,
: K K . 0
0 E 0 cyr—1E1 cyp

where the sign in c;; £ 1 is positive if vi; is a cone vertexr and negative if viy; is
an isolated vertex.

In particular, if B = (¢j41,¢42,-- -, Ci+k) arises from Theorem 4, then the ver-
tices {vi41, Vit2,- .., vitr } alternate in type. Since ¢j4i42 = ¢4 = 1, one has
g1 0 0 o0
c43 c42 0 e 0
MB = 0 Cl+4 Ci4+3
0
0 0  ciyrt1 Cgr

The matrices Mg and hence groups cokerz(Mp) are not difficult to determine
in practice; in particular, if B has at most three elements, then cokerz(Mp) =
Z[(Il.cp €)Z- The graph in Figure 1 has u consisting of blocks of single elements
except for vertices 2 and 3 (since gcd(8,10) = 2) and vertices 14 and 15 (since

ged(2,16) = 2). Thus its critical group is isomorphic to
Z/8-10)Z & Z)772.& (Z/11Z)3 & (Z/4Z)* & (Z/15Z)* © 7./ (2 16)Z.

A note should be made about the similarities between Theorem 4 and Christian-
son and Reiner’s conjecture in [3]. They conjectured (in different terminology) that
cokerz(Mp) = Z/([I.cp c)Z for all blocks B of . This turns out to be false, al-
though the smallest counterexample to their claim is a graph with 21 vertices. This
graph has degree sequence (20, ...,20,19,15,15,15,15,15,14) and it can be verified
that it has the decomposition p = {(15), (15), (15), (15,20, 14,21), (21),...,(21)}.
For B = (15,20, 14,21), one has

15 0 0 0
14 20 0 0
Mp=1 4 91 14 0
0 0 13 21

The product 15 -20- 14 - 21 = 88400, however,
cokerz(M (B)) = Z /37 ® 7 /294007 % 7./88400Z.
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3. PROOF OF THEOREM 4

The proof of Theorem 4 is very specific to threshold graphs, although the tech-
niques used are common to most problems in determining critical groups. We start
by describing a more hands-on approach to the critical group. The critical group of
a (connected) graph G was originally defined as the torsion subgroup of the coker-
nel of L(G@) : ZV — ZV. Note that the image of L(G) actually lies in the subspace
of ZV orthogonal to the vector 1 = (1,...,1), and that 1 corresponds to the free
copy of Z in the cokernel. Therefore we have K(G) = 11/im L(G). An alternate
definition of the critical group is as follows.

Recall that the Smith Normal Form (SNF) of an integer matrix M is the unique
diagonal matrix D with entries dy,ds, ..., d, satisfying d;|d; 1, where D = PMQ
for some unimodular matrices P and ). Constructing P and @ is equivalent to
performing integer row and column operations, defined as

e Interchanging two rows (columns),
e Adding a multiple of one row (column) to another row (column), and
e Multiplying a row (column) by +1.
Suppose G is a connected graph and let dy, ..., d, be the diagonal entries of D,
the SNF of L(G). Notice that d,, is the only zero diagonal entry of D. Since P and
() are unimodular, one has

K(G)=1"/imL(G) = Téb 7/diZ..

Note that in the previous statement, it was only necessary for D to be in diagonal

form. We are now ready to begin the proof of Theorem 4, which will consist of two
lemmas.
Lemma 5. Let G be a connected threshold graph with vertices indexed in the order
of the building sequence of G, and let ¢ be defined as in Proposition 3. Define a
partition p of the sequence (co,...,cn_1) by placing ¢; and c;11 in the same block
if they are unequal (but possibly relatively prime). Then

K(G) = EB cokerz(Mpg),
blocks B of
where Mp is defined in Theorem 4.
Lemma 6. Consider B = (¢iy1,.-.,¢+k) and Mp as defined in Theorem 4. If
some cj4; ond ci4jy1 ore relatively prime, then

cokerZ(MB) = cokerZ(MBl) D (}OI{E!I‘Z(MB2 ),

where By = (¢i41, .-, C45) and By = (Ci4j41, -+ Cltk)-
Proof of Lemma 5. Tt will be enough to show that we can achieve the matrix

180 @ Mg

blocks B of p

from L(G) by a sequence of integer row and column operations. The proof will
consist of six steps that bring L(G) to the required form. At each stage we will
fully decribe the resulting intermediate matrix, but will not provide the tedious
proof that these descriptions are correct. We will also demonstrate the steps using
the graph G in Figure 1. To begin, L(G) is given below (with zeros suppressed).
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1% 24 3c 41 5c 6c Tc 8¢ 94 107 114 12¢ 13¢ 144 15¢ 16¢
1% 8 —1 —1 —1 —1 —1 —1 —1 —1
24 8 -1 -1 -1 -1 -1 -1 -1 -1
3c -1 -1 9 —1 —1 —1 —1 —1 —1 —1
41 7 -1 -1 -1 -1 -1 -1 -1
5¢ -1 -1 -1 -1 10 -1 -1 -1 -1 -1 -1
6¢c -1 -1 -1 -1 -1 10 -1 -1 -1 -1 -1
Te -1 -1 -1 —1 -1 -1 10 —1 -1 -1 -1
81 4 —1 —1 —1 —1
9% 4 —1 -1 -1 -1
107 4 —1 —1 —1 —1
114 4 —1 -1 -1 -1
12¢ -1 -1 -1 —1 -1 -1 -1 -1 -1 —1 -1 14 -1 -1 -1
13¢ —1 —1 -1 -1 —1 —1 -1 —1 —1 -1 —1 —1 14 —1 —1
144 2 -1 -1
15¢ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15 -1
16¢ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15
Step 1. One can make every entry in the last row and first column zero by

first adding

matrix (mi,j)

each row to the last row and then each column to the first column.
This produces the 0 diagonal entry in the SNF of L(G). The last column then has
entries of -1 except in the last row (because our graph is connected). Subtract this
column from each column corresponding to a cone vertex (those columns which
have a -1 in the first row). Then use the -1 entry in the first row and last column to
eliminate the other entries in the last column. Finally, multiply this column by -1 to
produce a 1 as diagonal entry in the SNF of L(G). One now has a lower triangular

i,5=2,..

Proposition 3. A full description is as follows.

1 With diagonal entries corresponding to ¢; as described in

0 ifi>j,
¢ ifi=1j,
m;; =4q1  if v; is isolated, v; is cone,
—1 if v; is cone, v; is isolated,
0 otherwise.
21 3c 41 5¢ 6¢ Tc 8i 97 10¢ 11¢ 12¢ 13c 147 15¢
21 8
3c -1 10
414 1 7
5¢ -1 -1 11
6¢c -1 -1 11
Te -1 -1 11
8% 1 1 1 1 4
91 1 1 1 1 4
107 1 1 1 1 4
114 1 1 1 1 4
12¢ -1 -1 -1 -1 -1 -1 15
13¢ —1 —1 —1 —1 —1 —1 15
144 1 1 1 1 1 1 2
15¢ -1 -1 -1 -1 -1 -1 -1 16

Step 2. Let v; denote the next vertex after vertex v; of the same type. Starting
with the first column, subtract column j' from column j, whenever j' is defined.
Then one has

mij =

Ci

if i =g,

if § = j,

if j <i < j' and v; is cone,
if j <i < j' and v; is isolated,
otherwise, i.e. i &[4, ']
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2i 3c 4i 5¢c 6¢ Tc 8i 9i 10¢ 114 12¢ 13¢ 149 15¢
21 8
3c -1 10
44 -7 1 7
5¢ —11 -1 11
6¢ -1 —11 11
Tc -1 —11 11
81 —4 1 4
9 1 —4 4
10¢ 1 -4 4
114 1 —4 4
12¢ —15 -1 15
13c -1 —15 15
147 -2 1 2

15¢

—16

-1

16

Step 3. Notice that almost every column sums to zero. Starting with the last
row, add to each row each of the rows above it. Then one has

ci if i = j,
S cj+i—j if j <i<j and v; is cone,
i, — . . ep . . . ..
cj—i+j if j <i<j and v; is isolated,
0 otherwise, i.e. i & [j,J')-
24 3c 44 5¢ 6¢c Tc 81 97 107 114 12¢ 13c 144 15¢
21 8
3c 7 10
43 11

5¢
6c

11
11

e
81
94
107
114
12¢
13¢
144
15¢

[N |

11
12
13
14
15

N W o

15
15
16 2
1

16

Steps 4-6 will resolve local problems stemming from consecutive vertices of the
same type. For example, in column 7, we have entries 12, 13, 14, 15 which cor-
respond to the four isolated vertices 8-11. The general procedure begins with the
right-most set of consecutive vertices of the same type. In our case, this is the two

cone vertices 12 and 13.

Step 4. Let v;,...,v; be a (maximal) set of more than two consecutive vertices
of the same type. (Here maximal means that both v;_; and v;;; are of different
type than v;,...,v;.) Note that the other entry in row ¢ — 1 (if there is another) is
exactly ¢;. Therefore when one subtracts row ¢ — 1 from row 4 one gets 1 in the
entry (4,7 — 1) and —c; somewhere else. Since ¢; is the only entry in column 4, one
can use it to eliminate the —c¢;. At the end of Step 6 one reverses this procedure to
change the +1 back to ¢;—1 = 1. An example with a consecutive set in G is shown
below.

| 7e  11i  12¢  13c | 7e 115  12¢  13c | 7e 118  12¢  13c
11¢ 15 4 0 0 114 15 4 0 0 11¢ 15 4 0 0
12¢ 0 3 15 0 12¢ —15 -1 15 0 12¢ 0 -1 15 0
13¢ 0 2 0 15 13¢ 0 2 0 15 13¢ 0 2 0 15

(1) Subtract row 11 from row 12. (2) Add column 12 to column 7.

Step 5. For each vertex in the middle of the group, i.e. v for i < k < j, one can
eliminate the off-diagonal entry in its row. Since one has the +1 entry in row ¢, one
can add some multiple of it to row k to eliminate the off-diagonal entry, introducing
a multiple of ¢; in column 4. But ¢ = ¢; is the only entry in column k so one can
use it to eliminate the multiple of ¢;.
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Step 6. Proceed in the same way as Step 5 for v;, adding to row j some multiple
of row i. Since there is another entry in column j, when one adds the multiple of
column j to column 4, one ends up with a multiple of the other entry in column 1.
Notice that this multiple is equal to the next diagonal entry c;i1 except possibly
for a sign (it can be shown that this always happens because of the structure of the
matrix after Step 3). Therefore, one can use that diagonal to eliminate the entry in
the first column, introducing a multiple of the next diagonal entry in the next row
of the first column. This process stops eventually, when one gets to a column with
only one nonzero entry. This occurs when either one is at the end of the matrix
or when one is at another set of consecutive vertices of the same type. (Remember
that this procedure started with the rightmost such set, so the first vertex in the
next group encountered will be the only entry in its column.) The example is shown
below.

| 12 13c 147 15c | 12¢  13c 14 15¢c
12¢ 15 0 0 0 12¢ 15 0 0 0
13¢ | —2-15 15 0 0 — 13c 0 15 0 0 -

144 0 16 2 0 14i | 16-2 16 2 0
15¢ 0 0 1 16 15¢ 0 0 1 16
| 12¢ 13c  14i  15c | 12¢  13¢  14i  15c

12¢ 15 0 0 0 12¢ | 15 0 0 0
13¢ 0 15 0 0 — 13| O© 15 0 0
144 0 16 2 0 14i 0 16 2 0
15¢ | —1-16 0 1 16 15¢ | O 0 1 16

(1) Add 2 times column 13 to column 12. (2) Subtract 16 times
column 14 from column 12. (3) Add column 15 to column 12.

After Step 6 one uses Step 4 to change the +1 entry at (i,i — 1) back to ¢; 1 £1.
One next performs Steps 4—6 with the next rightmost set of consecutive vertices of
the same type. The final matrix one obtains with G is shown below.

20 3¢ 49 B¢ 6ec Te 8 99 10¢ 11¢ 12¢ 13¢ 147 15¢
2 8

3c 7 10

41 11 7

5¢ 6 11

6¢ 11

Te 11

81 12 4

9i 4

107 4

114
12¢ 15

13¢ 15

144 16 2

15¢ 1 16

w

When finished, one has exactly the matrix

160 @ Mp

blocks B of u

This concludes the proof.
O

Proof of Lemma 6. To prove this lemma, we will show that the SNFs of the matrices
Mp and Mp, ® Mp, are equal. This uses another characterization of the SNF.

Proposition 7. Let A; be the greatest common divisor (gcd) of the determinants
of all i x i submatrices of an integer matriz M. Then the SNF of M has diagonal
entries dy, . ..,d, satisfying A; = H;:1 d;, for each i.
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A B.
- 5-Block

FI1GURE 3. Creating choices in Mp, ® Mp, from one in Mp.

Thus it will be enough to show that A; = A}, where A; corresponds to Mg
and A} corresponds to Mp, & Mp,. Notice that the nonzero determinants of 7 x i
submatrices of Mp correspond exactly to the product of 4 nonzero entries, with no
two in the same row or column. (Call such a selection of entries and its product
a choice.) Since Mp and Mp, ® Mp, differ in only the (5 + 1, 7) entry (which we
name e), it is clear that every choice in Mp, ® Mp, will also be a choice in Mp.
Therefore A; divides A}. To prove that these values are equal, it will be enough
to show that for every choice C' involving e, there are some choices not involving e,
whose ged divides C.

Given a choice C involving e, consider the string S of off-diagonal entries in C
that contains e; that is, the set of entries

S={(m+1,m),(m+2,m+1),...,(n+1,n)} CC

such that (j +1,5) € S but (m,m —1) ¢ C and (n+2,n+ 1) ¢ C. If this string
consists only of e, consider the two choices which instead of e have either ¢; or ¢j41.
This is a valid choice, since there are no entries in the adjacent off-diagonals. By
hypothesis ¢; and c¢j4+1 are relatively prime, so the ged of these two choices will be
exactly C/e. Therefore there are two choices whose ged divides C.

If the set S consists of more than one element, one can find choices by the
following procedure. First, remove both the first and last elements in the set.
Then instead of selecting the off-diagonal entries in the set, choose those entries
two columns to the right and one row down (see Figure 3). The structure of Mg
guarantees that these entries are the same, and this is a valid choice because the
last element of S has been removed. Notice that there is now at least a 5-block
(three diagonal entries and two off-diagonal entries, as shown in Figure 3) of legal
positions. One needs two entries in this 5-block to create a choice. If it is possible
to find some valid choices in this 5-block which have a gcd equal to 1, then there
will be some choices that divide C' and the proof will be complete. This is possible,
and breaks into three cases, illustrated in Figure 4.

Case I: e is in the left off-diagonal. The choices (4,C) and (A4, D) imply that
the ged divides A (since C = D £1). The choices (4,C) and (C, E) imply that the
ged divides C (since A = E +1). By hypothesis A and C are relative prime, so the
ged equals 1.

Case II: e is in the right off-diagonal. The choices (4, C) and (C, E) imply that
the ged divides C (since A = E +1). The choices (A, E) and (B, E) imply that the
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FIGURE 4. Three cases in Lemma 6. The shaded square represents e.

ged divides E (since A = B +1). By hypothesis C' and E are relatively prime, so
the ged equals 1.

Case III: ¢ is in neither off-diagonal. The choices (4, C) and (C, E) imply that
the ged divides C (since A = E +1). The choices (A, D) and (B, D) imply that
the ged divides D (since A = B +1). The ged divides both C' and D, and since
C = D £ 1 the gcd equals 1.

O

We conclude this section with some discussion of consequences of Theorem 4. We
first point out that one cannot expect a more precise statement about the structure
of cokerz(Mp) in general, without encountering interactions of prime factorizations
of the entries B = (¢i41,..-,C+k)- If B has at most three elements, Mp is at most
a 5-block, so we conclude that cokerz(Mp) = Z /([ ].cp ¢)Z. However, when B has
more than three elements, we are not guaranteed that Az = 1. In the 21 vertex
counterexample mentioned earlier, there is a block B which results in A3 = 3. This
gives cokerz(Mp) = Z /37 & 7 /294007 instead of Z/88200Z. On the other hand,
Theorem 4 does have the following general corollary.

Corollary 8. The number of invariant factors of K(G) for a connected threshold
graph G is bounded below and above by the number of invariant factors of

@ Z/(HC)Z and ne_alZ/ciZ,

blocks B of u cEB
respectively, where u and ¢ = (ca,...,cn—1) are defined in Theorem 4.
Proof. It is enough to show that for each B = (¢j41,...,¢+r), the number of

invariant factors of cokerz(Mp) is bounded below and above by the number of
invariant factors of

k k
7/ (H c,+,~> Z and Pz/ayil,
i=1 i=1

respectively. The first bound is obvious, since there is just one invariant factor.
Note that if M is a non-singular k& x k matrix with A; defined in Proposition 7,
then the number of invariant factors of cokerz(M) is equal to k — ¢ where

i =max{j|A; = 1}.

Let Mp be the matrix with nonzero entries m;; = ¢;44. If A and A’ correspond
to Mp and Mp, respectively, then A; divides A} for each ¢, since every choice in
Mp is also a choice in Mp. Thus if k£ — 4 is the number of invariant factors of
cokerz(Mp), then A} =1, so A; =1 and cokerz(Mp) has at most k — ¢ invariant
factors. O
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4. LAPLACIAN AND KASTELEYN-PERCUS MATRICES

We now shift our attention towards understanding the conjecture of Kuperberg.
We start by recalling another version of Kirchoff’s Matrix-Tree theorem.

Theorem 9. [2] Let k(G) denote the number of spanning trees in a connected graph
G and let the reduced Laplacian (G)v be L(G) with row and column v removed.
Then for any v € V,

&(G) = det(Z(G)").

Since this result does not depend on the choice of vertex v, one often writes L(G)
instead of L(G) . Considering L(G) : ZV — ZV as a homomorphism of abelian
groups, we had defined the critical group K(G) to be the torsion subgroup of the
cokernel of L(G), cokerz(L(G)). If G is connected, then K (G) = cokerz(L(G)).

Let H be a bipartite graph with vertex set V3 U V5. Assign a weight of +1 to
each edge (these weights are sometimes thought of as signs + or —). The bipartite
adjacency matriz M (H) is a |V1| x |Va| matrix with nonzero entries

M(H)v,w = Z Weight(e)a

where the sum is taken over all edges e with endpoints v and w. The following
theorem is due to Percus.

Theorem 10. [6] Let p(H) denote the number of (perfect) matchings in a simple,
planar, bipartite graph H. Then H admits a weight assignment so that

p(H) = det(M(H)).

Such a M(H) is called a Kasteleyn-Percus matriz for H. Propp and others [5]
have found a nice bijection between spanning trees in any connected, planar graph
G and perfect matchings in a related simple, planar, bipartite graph H. Kuperberg
[6] has further conjectured that cokerz(M(H)) = K(G). In this rest of this paper,
we will further discuss the critical group, explain the bijection found by Propp, and
conclude by proving Kuperberg’s conjecture.

5. SPACES AND LATTICES OF CuTS AND FLOWS

We start by discussing the critical group of a graph. It has another description
in terms of the cut and flow space of the graph. (For a more thorough discussion,
see [1] or [4].) Inside these spaces are relavant lattices, so we begin by stating a few
results about lattices in general.

Consider R™ with the usually inner product (-, -). Let Ck be a rational subspace
of R™ (meaning Cr has a basis in Q™ or equivalently Z™), and let Fr be its
orthogonal complement. Define the rational lattices

C = Crnzm™
C* = {z€Cr|(z,y) €Z,Vye C}

and F and F* similarly. An example is shown in Figure 5, where

CR:H]]R, cz[ﬂz, and cﬁz[fﬁ]z

Since F' C F*, one can consider the determinant group F* /F.
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X X X X X X X 2
X X 4 X X 2 X X
X X X 3 2 X X X X
X X 2 X X X
2 X X 1 X X X
-2 -1 1 2 3 4
X X -1 X X 2 X X
X X X -2 X X X X
X X 2] X X X 2] X

FIGURE 5. An example of a rational lattice.

Theorem 11. [1] For rational lattices C' and F defined above, one has

Z™/(C @ F) = F¢[F(=C*/C).

Proof. Notice that the natural projection map 7g, : R™ — Fg restricts to mp, :
Z™ — F*, since for any x € Z™ and y € F C Z™ we have (rr, (z),y) = (z,y) € Z.
One can show that the composite

zm I8 Ft S FY R
has kernel F @ C. Note that 2 € Z™ is in the kernel if and only if g, (z) € F. This
happens if and only if
r=z—7p(x)+7E(x),
——— —\—
€CRNZ™=C €F

that is, if and only if z € C&F. Thus one has an injection Z™/C®F — F*/F. This
map can also be shown to be a surjection (see [1]), which completes the proof. O

Theorem 12. Suppose L is a rank r sublattice of Z™ inside R™ and {z1,...,2,}
s an integer basis for L. Then

Lﬂ/L = cokerz ({2, zj>)i,j=1,...,r .
Proof. The matrix ((2;,2;))
Since {21,...,2-} is an integer basis for L, there is an integer basis for L* given
by the unique wy, ..., w, € Lg satisfying (w;, z;) = d;;. Therefore when expressing
one basis in terms of the other,

iy is known as the Gram matriz of {z1,...,2.}.
4,j=1,...,r

T
Zi = E :Ci,jwjv
=1
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FIGURE 6. An example of consistent orientations. The edges of
G* always point just clockwise of their counterparts in G.

and one concludes that ¢; ; = (z;, 2;). Thus

L}/ = (Zu® - ®Zw.)|(Z21® - © Lz
Z"[im ((ziazj))i,j:L___,r

cokerz, ({2, 2;))

i,J=1,...,7 "

O

We now are ready to apply this theory to graphs. Define an orientation on a
graph G by assigning a direction on each edge. The incidence matriz 0 of G is the
|V| x |E| matrix with nonzero entries

61)6:

)

1  if v is the head of edge e,
—1 if v is the tail of edge e.

The cutspace C of G is the rowspace of 8 in RF; the flowspace F is the orthogonal
complement of C, which is the nullspace of . The reason for this terminology is
that these two spaces are spanned by vectors corresponding to cuts (or bonds) and
flows (or cycles) in the graph, respectively. An example is given in Figure 6. The
incidence matrices are given below.

-1 1 -1 0 0 0 1 0 -1 0 -1 -1

o | v -1 0o -1 1 0| o [-1 -1 0 0 0 o0
=l o 0o 1 1 0 -1 |"?T| 0o 1 1 -1 0 o0
0 0 0 0 -1 1 0o 0 o0 1 1 1

For any vertex v, let 8’ be & with row v removed. Then for any v € V, the rows
of 8" will be an integer basis for C. Note that L(G) = 88" for any orientation on
G. One concludes from Theorem 12 that

Corollary 13. Let 0 be an incidence matriz of a connected graph G. Then
Ct)C cokerZ(EEJ') = cokerz(L(G)) =2 K(G).

Let G be a planar graph and let G* be its dual graph. It is not hard to see
that a set of edges is a cut (flow) in G if and only if it is a flow (cut) in G*.
Therefore, if consistent orientations are put on G and G* (see Figure 6), then the
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FI1GURE 7. In each row, the first column is a graph G, the second
column is G and G*, and the third column is the resulting graph
H. The first row illustrates the construction of H. The second row
gives an example of finding a matching in H from a spanning tree
in G. The third row shows how to assign weights to the edges of
H based on an orientation on G.

cutspace (flowspace) of G will be the flowspace (cutspace) of G*. From Theorem
11, F*/F = C*/C, so then K(G) = K(G*).

6. TEMPERLEY BIJECTION

We are now ready to explain the bijection between spanning trees in a planar
graph G and perfect matchings in a related planar, bipartite graph H. The bijection
was originally due to Temperley, although Propp and others [5] have generalized
his argument to weighted, directed trees and weighted matchings. However, we will
only need the original bijection for the proof of Kuperberg’s conjecture.

Let G be a connected, planar graph. We will now describe a method for creating
a simple, planar, bipartite graph H so that &(G) = p(H).

Graph Construction. Let G* be the dual graph to G. Create the simple graph
H' on vertex set V U V* LU E by forming an edge (v,e) in H' whenever v € V U V*
is incident to edge e (here the edges of G and G* are identified). This process is
illustrated in the first row of Figure 7. Let v € V and v* € V* be two vertices
incident to the same edge. Then define the graph H to be H' with the vertices v
and v* (and all edges incident to either vertex in H') removed.

Theorem 14. If G and H are the graphs described above, then x(G) = p(H).



CRITICAL GROUPS OF GRAPHS 15

Proof. We will show a bijection between spanning trees of G and perfect matchings
in H. Given a spanning tree T in G, let T* be the graph in G* consisting exactly of
the edges not in T'. It is not hard to see that 7 is a spanning tree of G*. Direct the
edges of T and T™ so that the edges point towards v and v*, respectively. Create
the set of edges M in H by taking the half-edges corresponding to tail ends of
edges in T or T*. (This process is illustrated in Figure 7.) Then M is a perfect
matching. On the other hand, given a perfect matching M in H, we can construct
spanning trees T and T* of G and G*, respectively, in a similar manner. (A more
detailed proof can be found in [5].) O

7. KUPERBERG’S CONJECTURE

We now come to the conjecture of Kuperberg, which we present as a theorem.

Theorem 15. Let G be a connected, planar graph and let H be the associated
bipartite graph in Temperley’s bijection. Let K(G) be the critical group of G and
let M(H) be the Kasteleyn-Percus matriz of H. Then K(G) = cokerz(M (H)).

Proof. Begin by putting consistent orientations on G and G*. Each edge of H
corresponds to a half-edge in either G or G*. Give an edge of H a weight of 1 if
it is on the head end of its corresponding edge in G or G*, and -1 if it is on the
tail end. Let d and 0* be the incidence matrices for G and G*, respectively. If v
and v* are the removed vertices, then M (H) has rows indexed by E and columns
indexed by (V — {v}) U (V* — {v*}). It is not hard to see that in fact

M(H) = (Et : Ft) ,

the side-by-side concatentation of the two matrices 9" and 3. Let F and C be the
flowspace and cutspace of G. Then F' is the rowspace of 9 and C' is the rowspace
of 8*. In light of Theorem 11 and Corollary 13, one has

cokerz (M (H)) = ZZ/im (M(H)) = Z¥/(F & C) = K(G).
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