
Approximation Algorithms for Network

Connectivity

Owen Levin

Submitted under the supervision of Volkan Isler and Victor Reiner to
the University Honors Program at the University of Minnesota-Twin
Cities in partial fulfillment of the requirements for the degree of
Bachelor Science, summa cum laude in Mathematics.

May 11, 2018

Abstract

Herein we discuss previous work on the Euclidean Connectivity
Problem with the objective of minimizing maximum movement. We
provide new algorithms which both in approximation factor and em-
pirically outperform the state-of-the-art.

1 Introduction

While working with multiple mobile robots or sensors for data collection
in an unknown environment, it is frequently beneficial to have the robots
exchange and combine information collected. Quite often, mobile sensing
robots have some method or instrument allowing long range communication
to other robots. However, generally bandwidth constraints prevent the shar-
ing of sensor data such as photos, audio or videos through these methods.
To share this sort of data, the communication range is typically short, so the
robots must move closer together in order to stably transmit sensor data to
one another. Despite this, long-range communication methods are sufficient
for small messages such as GPS-coordinates to be broadcast between robots.

The problem we study in this thesis addresses the issue of connectivity:
how should the robots travel when they are far away from each other and
they need to form a connected network as quickly as possible. We model this
problem by minimizing the furthest distance travelled to reach a connected
network. With the assumption that all robots move with the same speed,
this corresponds to connecting robots in the shortest time.

We say a robot can communicate with another when they are within each
other’s connectivity radius r. For a connected communication network, the
robots’ positions must induce a connected graph G, where the edge lengths
are the pairwise Euclidean distances between nodes, and no edge length is
greater than r. Here, a connected network of robots allows for transmission
of a message through intermediary robots. Let the r-disk graph G(P, r) on a
finite set of points P ⊂ Rd be the graph with vertex set P and edges between
all points p, q ∈ P such that |p − q| ≤ r. Since we can always normalize
distance units so that the radius for connectivity is 1. Then a configuration
of robots P is called connected exactly when G(P, 1) is connected.

The remainder of this thesis is organized as follows. In Section 2 we
give an exact formulation of the problem we wish to solve. Afterward in
Section 3 we describe some motivation for studying the problem and previous

2

work in the area. In Section 4 an algorithm by Anari et al. from their
paper [AFGS16] using a homothety is described and we discuss how its
analysis can be thought of in terms of Euclidean minimal spanning trees
(EMST). We then describe an algorithm of our own more directly tied to
EMSTs to approximate solutions to the Euclidean Connectivity Problem
in Section 5. Along with this, we provide an analysis of the worst-case
approximation factors and give a heuristic to improve the performance of
both our algorithm and the Homothety algorithm in [AFGS16]. Afterward
another new algorithm is proposed and analyzed which greedily connects P
in Section 6. We conclude with an analysis of the average case approximation
factor bound for each algorithm on uniformly distributed points in a square
in Section 7 and a brief discussion of the run-time of each algorithm in
Section 8.

2 Problem Formulation

We consider a set P of n points in Euclidean space Rd. Now, given another
point set P ′ ⊂ Rd with the cardinality of P denoted |P ′| = n, let

f∗P ′ = argmin
bijective f :P→P ′

max
p∈P
|p− f(p)| (1)

where |p−f(p)| denotes the length of the vector p−f(p) and argmin denotes
the argument f that minimizes the quantity (as opposed to the minimum
quantity itself). Informally, f∗P ′ is the bijective mapping that minimizes the
maximum distance travelled between points in P and P ′.

Then formally, the Euclidean Connectivity Problem is to find P ′ ⊂ Rd
with |P ′| = n

argmin
P ′ is connected

max
p∈P
|p− f∗P ′(p)| (2)

along with its associated f∗P ′ . We will be working under the assumption
that all connectivity radii are the same length. So we note again that we
may scale the distance units for our computations such that the radius for
connectivity is 1. Thus P ′ connected will always mean that the unit disk
graph G(P ′, 1) is connected.

For the P ′ optimizing Equation 2, we will denote f∗ by Aopt for the
optimal algorithm, and we will let maxp∈P |p−Aopt(p)| be denoted by OPT
for the maximum movement of the optimal solution. In general, we will let

3

Pf denote the f inal point configuration after some (potentially non-optimal)
algorithm translates points in P to a connected configuration.

We say that an algorithm with maximum movement M has approxi-
mation factor of α if M/OPT = α. Typically, α is some function of the
number of points, α(n). If limn→∞ α(n) ≤ cg(n) for some function g(n) and
positive constant c, we say that the approximation factor of that algorithm
is O(g(n)).

Anari et al. proved in [AFGS16] that there is no polynomial-time algo-
rithm for the Euclidean Connectivity Problem with an approximation factor

of less than
(

2−
√
2
2

)
unless P = NP . This was done via a reduction from

the Euclidean Connectivity Problem to a variant of the Hamiltonian cycle
problem on 3-regular planar graphs.

3 Motivation and Related Work

A large body of networking work studies algorithms dealing with accom-
plishing tasks using a connected network of mobile robots or sensors. It is
a general assumption that the network is already connected in these sce-
narios, and the goal is to perform the task without disconnecting the net-
work as in the work of Stump, Kumar, Jadbabaie, and Zavlanos et al. in
[ZP08, ZEP11, ZTJP09, SJK08]. In [AAY07], Abasi et al. studied fault
tolerance and repairing connectivity: if a point is removed from a connected
P, how can we move points to reconnect the network with minimum max-
imum movement. For each of these bodies of work to apply, we require a
pre-constructed connected P.

3.1 Discrete Connectivity Problem

The connectivity problem given an initially disconnected P was originally
introduced by Demaine et al. in the discrete setting. In that context, points
in P are a subset of vertices of a weighted graph G and may only move
along the edges of G to form a subgraph H with highest weight edge at most
the connectivity radius. With the optimization objective of minimizing the
maximum graph distance travelled, an approximation factor of O(

√
n) was

achieved.

4

The authors also proved an approximation factor of O(n
√
n) for points

placed anywhere in R2[DHM+09a]. To do so they use a scaled integer lattice
as their graph, then prove the approximation factor to be proportional to√
n(1 + d(n+ 1)

√
2) for some constant d ∈ R

Since then, new algorithms reducing the discrete case approximation fac-
tor to O(1) were studied by Demaine, Hajiaghayi, and Marx, as well as
Berman, Demaine, and Zadimoghaddam in [DHM09b, BDZ11] along with
many related variants forming some other network topology and optimiz-
ing with respect to quantities beside minimization of maximum movement.
Using the same method as in [DHM+09a], these more recent results induce
an approximation factor which is linear in n = |P ′|, but with a very large
constant coefficient in the Euclidean case.

4 Euclidean Connectivity Problem

More often than not, in real scenarios robots are not constrained to move
along edges of some graph. They may move essentially freely through Eu-
clidean space. However, once we consider robots free to roam Euclidean
space, algorithms consisting of movements restricted to be within some
graph may no longer be as effective compared to optimal Euclidean move-
ments. This is largely the motivation behind directly studying the Euclidean
Connectivity Problem.

In the literature, apart from the work in [BDZ11, DHM09b, DHM+09a]
where the Euclidean case was secondary to the main problems addressed,
algorithms for the Euclidean Connectivity Problem have only been discussed
a few times.

The one dimensional Euclidean case was analyzed by Sharma in his mas-
ter’s thesis [Sha14]. In Sharma’s work, an optimal algorithm was given
for points lying on a single line by essentially dynamic programming. The
morally correct idea here is that the maximum movement is minimized by
finding the midpoint on the line between the two most distant points and
centering the new configuration there. The resulting connected configura-
tion is then essentially fully determined by the connectivity radius. We do
have to be careful to make sure points do not travel if they are already
connected and may not have to move.

Unfortunately, as soon as we increase the number of dimensions this

5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 1: Here we see a configuration which is disconnected in R2, but
connected along projections to either axis

does not generalize well. The primary issue at hand is that many discon-
nected configurations in Rd are connected when projected onto lines. In such
cases, it’s not even always clear how one should apply the one dimensional
algorithm to a set of points. One possibility is to use a technique like prin-
cipal component analysis (PCA) and use the coordinate frame of the largest
eigenvectors of the covariance matrix of the set of points. This will give the
dimensions along which the points have highest variance, so perhaps con-
necting along these axes will always give a connected configuration. See e.g.
Chapter 12 of [Bis06] for more details on PCA. Still, it’s not immediately
clear that connecting along just these dimensions will result in a connected
configuration in Rd.

The author has not spent the time to find a truly pathological configura-
tion where PCA then d iterations of the R1 optimal solution fail to connect
the configuration at all. However, we suspect that for a random point cloud
in Rd, very often when given enough points, the configuration will look con-
nected in probably any projection into a 1 dimensional euclidean subspace,
but will be disconnected in Rd. In Figure 1, we give a more structured
example of a box in R2 where along the x axis and the y axis projections,
the configuration is connected yet still disconnected in R2. Beyond the one
dimensional case, Sharma also discussed optimal solutions in R2 for when
|P| ≤ 4 in [Sha14]. Rather, Sharma described geometric configurations that
appear to be optimal, then claimed they were optimal. It was then concluded

6

that the general problem was hard.

There has been some discussion of algorithms for the R2 case of the
Euclidean Connectivity problem in [LWZ+15, DMM13], though these works
have differing constraints on the problem. In [LWZ+15], the total movement
of all points is minimized, and in [DMM13] the connectivity problem requires
using a set of fixed points and connecting all other points to them. The latter
work also gives no theoretical approximation factors.

Anari et al. were the first to discuss the Euclidean connectivity problem
in general with a theoretical bound on their approximation factor for Rd
in [AFGS16]. As far as the author of this thesis is aware, Anari et al. are
the only authors that have studied the theoretical side of the Euclidean
connectivity problem beyond the corollaries mentioned in analyses of the
discrete cases in [BDZ11, DHM09b, DHM+09a].

4.1 Connecting points with a Homothety

The idea behind the algorithm of Anari et al. was to use the affine trans-
formation known as a homothety. A homothety is determined by a choice
of center, c and a scale factor λ. Each point p ∈ Rd is scaled by a factor of
λ along the ray from c to p

Explicitly, a homothety hc,λ : Rd → Rd is given by p
hc,λ7→ c+ λ(p− c).

The following is particularly useful property of homotheties which was
used by Anari et al.
Lemma 4.1. For positive λ, hc,λ scales all Euclidean lengths by λ.

Proof. To see this fact, note that because hc,λ sends p to c + λ(p − c) we
have that

|hc,λ(x)− hc,λ(y)| = |c+ λx− λc− (c+ λy − λc)| (3)

= |λx− λy| (4)

= |λ(x− y)| (5)

= |λ| · |x− y| (6)

= λ |x− y| because λ is positive (7)

where Equation 6 follows from Equation 4 because the Euclidean metric on
Rd is absolutely homogeneous.

7

Corollary 4.2. For 0 ≤ λ ≤ 1, the distance any point p travels under the
map hc,λ is given by |hc,λ(p)− p| = (1− λ)|p− c|.

Proof. The initial distance between the point and the center is |p− c|. The
distance after applying hc,λ is λ|p − c| by Lemma 4.1. It is also the case
that hc,λ(p) is colinear with both c and p and lies between the two since
0 ≤ λ ≤ 1. Thus, |p− hc,λ(p)| = |p− c| − λ|p− c| = (1− λ)|p− c|

With these properties established, we may describe and analyze the al-
gorithm given by Anari et al. in [AFGS16] to send a P to a P whose unit
disk graph is connected.

Algorithm 1 Homothety-Connect
Applies a homothety, h, to P such that G(h(P), 1) is connected

1: Find the smallest R such that the R-disk graph of the P is connected.
2: Fix an arbitrary point c ∈ P
3: Move each point p ∈ P to hc, 1

R
(p)

Lemma 4.1 ensures that λ = 1
R is the largest choice λ such that the

unit disk graph of the P is connected after Algorithm 1. Considering Corol-
lary 4.2, we see this is the least movement a homothety with center c can
produce while resulting in a connected unit disk graph. Of course, the max-
imum movement depends largely on c, but c is always picked to be in P.
One could often lower the maximum movement of Algorithm 1 if c /∈ P.
However, Anari et al. did not consider such c, and their analysis of the
approximation factor would not necessarily apply to c /∈ P.
Theorem 4.3. ([AFGS16]) There is an O(n)-factor approximation algo-
rithm for the Euclidean Connectivity Problem using Algorithm 1, where
n = |P|

To show this, one can analyze the maximum movement of Algorithm 1
by looking at paths in the Euclidean minimum spanning tree of P. While
this is not the machinery that Anari et al. used to prove Theorem 4.3, it
ends up being roughly equivalent to their analysis and opens doors to a more
direct algorithm.

8

4.2 Relation to trees

To analyze the run-time using trees, we must first build up some tools to
use. We begin with a Lemma about disk graphs:
Lemma 4.4. For any R ≥ 2OPT+1 the R-disk graph G(P, R) is connected.

Proof. We begin by considering the preimages p, q ∈ P of two pointsAopt(p), Aopt(q)
which are adjacent in G(Aopt(P), 1). Then by the triangle inequality, we
have

|p− q| ≤ |p−Aopt(p)|+ |Aopt(p)−Aopt(q)|+ |Aopt(q)− q| (8)

≤ |p−Aopt(p)|+ 1 + |Aopt(q)− q|. (9)

Recalling that |p − Aopt(p)| ≤ OPT for all p ∈ P. The expression in (9) is
less than or equal to OPT +1+OPT = 2 ·OPT +1. Thus, G(P, 2OPT +1)
is connected. Then for R > 2OPT + 1, all edges in G(P, 2OPT + 1) are of
length less than R. Thus, G(P, R) contains a connected subgraph, namely
G(P, 2OPT + 1), which forces it to be connected.

Corollary 4.5. Rc, The minimum R such that G(P, R) is connected satis-
fies Rc ≤ 2OPT + 1, which gives a lower bound on OPT : Rc−1

2 ≤ OPT

Recall that a minimum spanning tree (MST) of an edge-weighted graph
G is a connected acyclic subgraph that minimizes the sum of its edge-weights
while spanning the vertices of G.
Proposition 4.6 (basis exchange). A useful property of spanning trees is
that given two spanning trees T, T ′ of a graph G, for any edge e ∈ T , there
exists an edge f ∈ T ′ such that T ′′ = (T − {e}) ∪ f is a spanning tree.

Now, if we let K(P) be the complete graph on vertices in P with edges
between p, q ∈ P weighted by |p − q|. Then define a Eucidean minimum
spanning tree (EMST) of P to be a minimum spanning tree of K(P). Then
we have the following corollary of Lemma 4.4
Corollary 4.7. The Euclidean minimum spanning tree of P with longest
edge length R satisfies R ≤ 2OPT + 1.

Proof. If T is a minimum spanning tree of K(P) with longest edge length R,
then T is a subgraph of G(P, R). If R > 2OPT +1, then G(P, 2OPT +1) is
a connected subgraph of G(P, R) by Lemma 4.4. Because G(P, 2OPT + 1)
is connected, it has a spanning tree T ′ with longest edge length at most
2OPT + 1. By Proposition 4.6, any edges longer than 2OPT + 1 in T could
then be replaced with edges in T ′ to form another spanning tree T ′′. Since

9

edges in T ′ were shorter than the edges they replaced in T , it must be that
the sum of edge lengths in T ′′ is less than those of T . This contradicts the
minimality of T . Thus R ≤ 2OPT + 1.

After stating a few more facts about trees, we can discuss the linear
approximation factor of Algorithm 1. Let the center(s) C of T be the
unique vertex or pair of vertices such that the length of the longest path in
T from C to another vertex of T is minimized. That such a vertex or pair
of vertices exist can be proved via induction on the number of vertices in a
tree, and is done for example by Knuth in [Knu97] We define the depth of
T to be the number of edges in longest path from C in T .

The diameter of T is the number of edges in the longest path in T . We
define the depth as the length of the longest path in T with C as an endpoint.
It’s a simple exercise to show that C always lies on the longest path in T ,
and the diameter of T is at most twice the depth. A proof of this fact can be
given by induction on the number of vertices in T by checking it for the case
of 3 or fewer vertices. Then for the induction step, delete all of the degree 1
vertices (leaves) to reduce to a smaller case which will have the same center.
For more details, see e.g. the solution of Grinberg to an assignment in his
graph theory course [Gri17, Exercise 1].

Now note that any tree T on n vertices has n− 1 edges because if it had
more, then there would be a cycle, and if there were fewer, then T could
not be connected. Thus, the depth of T is at most n/2. That corresponds
to the center of any tree which is just a single path through all n vertices.

Given all that, consider translating each point P along paths in an EMST,
T , of P toward the center. Anari et al. found the worst case approximation
factor of Algorithm 1 to be less than or equal to 2(n−1) where n = |P|. They
essentially did this by bounding the movement in Algorithm 1 using the
triangle inequality to moving all the points roughly along T . The primary
quantity of interest was the “Excess” contributed by each edge e, Ee < OPT ,
as points moved travelled along e in T . In the worst case, p ∈ P moved at
most 2Ee < 2OPT for each edge in the path between p and c in T .

In Algorithm 1, suppose we pick the homothety center c ∈ P for hc,λ to
be C, the center of T . Then each point moves along at most n/2 edges, and
thus the total Excess is less than 2OPT ·n/2 = n ·OPT . Despite improving
the worst case bound by a factor of 2, this was never actually pointed out
in [AFGS16]. This is likely because both worst case bounds are linear in n,
so it doesn’t affect the O(n) factor mentioned in Theorem 4.3.

10

5 The MST Connectivity Algorithm

It may seem roundabout to analyze the movement of the homothety using
an EMST. If one wanted to analyze the algorithm with an EMST, why not
just write an algorithm that uses an EMST? In Algorithm 2, we present
an algorithm that does exactly that. The general idea of Algorithm 2 is to
compute the center of the EMST of P, then iteratively “shrink” some edges
toward the center of the tree.

The protocol for our algorithm begins with computing TP , the EMST P.
Once completed, we can find the center of TP , either c or {c1, c2} depending
on the parity of the tree diameter (length of the longest path in TP). After
computing the center, it is possible there are two center vertices c1, c2 which
are further apart than the connectivity radius r. In this case, remove the
edge e1,2 between c1, c2 to split TP into two connected components T1, T2
containing c1, c2 respectively. Let m be the midpoint of e1,2 and (m − ci)
be the vector between ci and m. Then move every point in Ti along the
vector m−ci

|m−ci|(|m − ci| − 1/2). After this process, e1,2 will have length 1, so
our center vertices are connected to one another.

Let S be the set of points guaranteed to have G(S, 1) be connected. Once
a point x is in S, the algorithm will never move x again. At this point, S
contains only the center of TP . Now, for each edge esi incident to S with
endpoints xs ∈ S, xi /∈ S incident to xs, TP is split along esi into Ts and Ti
containing xs, xi respectively. if esi was longer than 1, then every node in
Ti is then moved according to the vector from xi to xs, but rescaled so that
after movement xi is a distance 1 away from xs. After the movement, xi is
added to S. Iteratively repeating the above process eventually leads to S
containing every point and thus all of the points being connected. We should
note, that it would be silly to actually move all points exactly according to
the above algorithm. Instead we just use it to compute the final locations of
the points, then move each point directly to its final location. Nevertheless
in our analysis, we treat each point as moving exactly as the algorithm
prescribes.

The exact body of the algorithm is presented in Algorithm 2 and Algo-
rithm 3 and a diagram is given in Figure 2. Let G be a graph on vertex set
P with S ⊆ P. We will use the notation G|S read G restricted to S to mean
the induced subgraph of G using only nodes in S.

11

Algorithm 2 MST-Connect

Input: P: a set of points where G(P, 1) is not connected
Output: Pf : a final set of points where G(Pf , 1) is connected
1: TP ← MST of K(P)
2: C ← the center of TP
3: if C = {c1, c2} and |c1 − c2| > 1 then
4: Apply homothety h(c1+c2)/2, 1/2|c1−c2| to {c1, c2}.

(This moves both c1 and c2 toward c1c2’s midpoint until |c1 − c2| = 1.)
5: Move other points accordingly as in Contract-To-Center
6: P ′ ← the new configuration after these movements
7: else
8: P ′ ← P
9: S ← C

10: while S 6= P do
11: P ′ ← Contract-To-Center(TP ,P ′, S, r)
12: S ← S ∪ {p′ ∈ P ′ moved from p ∈ P − S adjacent to TP |S ’s leaves

in step 11}
13: Pf ← P ′
14: return Pf

Algorithm 3 Contract-To-Center (a helper for MST-Connect)

Input: T : A tree with vertex set P, P: locations, S ⊆ P: set of stationary
central nodes attracting outside neighbors

Output: P ′: points after contractions are performed
1: for all leaves q in T |S do
2: for all points p ∈ P − S adjacent to q in T do
3: if |p− q| > 1 then
4: Comp(p)← the connected component of T |P−S containing p
5: ~d← q − p
6: ~d← ~d

|~d|
· (|~d| − 1)

7: for all points x in Comp(p) do
8: x′ ← x+ ~d

9: return P ′ = ({x′}x∈P−S) ∪ S)

12

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Figure 2: Here we see how the EMST (blue edges) of P (red points) is
transformed into a (not necessarily minimal) spanning tree of Pf by MST-
Connect. The green points are in S. The orange segments are the vectors
along which connected components of T |P ′−S are translated.
Top-Left- iteration 1, Top-Right- iteration 2,Mid-Left- iteration 3, Mid-
Right- iteration 4, Bottom-Left- iteration 5, Bottom-Right- iteration 6 (fi-
nal).

13

5.1 MST Algorithm Worst-Case Analysis

Let D denote the depth of an EMST of P and let the maximum movement
of a solution produced by Algorithm 2 be denoted SOL.
Lemma 5.1. Then we have SOL ≤ 2D ·OPT

Proof. Let R be the length of the longest edge in TP . All nodes move along
paths toward the center in TP during Algorithm 2. The path distance to the
center is at most D. Since an edge is only contracted if it is longer than 1
and the final length is equal to 1, the very most a node can travel during the
contraction of any given edge is R− 1. Thus D · (R− 1) is an upper bound
on SOL. Applying Lemma 4.4, SOL ≤ D · (2OPT + 1− 1) = 2D ·OPT

Theorem 5.2. There is an O(D)-factor approximation algorithm for the
Euclidean Connectivity Problem using Algorithm 2, where D is the depth of
an EMST of P.

A few remarks: In the worst case, the EMST is a path, so the worst case
bound is exactly the same as the worst case of Algorithm 1 when the ho-
mothety center is optimal over points in P. However, Algorithm 1 performs
a homothety which uniformly scales the tree toward a center, even edges
which need not be scaled to form a connected disk graph. Algorithm 2 only
rescales edges which are long enough that the result would be disconnected
connected otherwise. Moreover, instead of scaling each edge based on the
longest edge, Algorithm 2 rescales each edge the minimal amount necessary
to leave endpoints connected in a unit disk graph. The result is that Algo-
rithm 2 results in a final point configurations where points are spread further
apart than after Algorithm 1. Due to this, one might expect the maximum
movement of Algorithm 2 to be less than that of Algorithm 1. In the later
discussion of average case performances, we shall see that this is typically
the case, and is seen for example in Figure 3.

5.2 Heuristic improvements

One may also object that the center of the EMST need not be anywhere
near the middle of the point configuration. In fact, it can even be in a
corner of the smallest box that bounds the points. In such a situation, we
can at least halve the maximum movement to the final point configuration
of Algorithms 1 and 2 with a simple translation. This would roughly happen

14

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Figure 3: Here we see the movements (maroon) produced by MST-
Connect (Left) and Homothety-Connect (Right)

if one of the two algorithms sends a point p ∈ P initially in one corner of
the bounding box to the opposite corner.

We could for example translate a final point set Pf to the center of the
smallest enclosing circle of P, denoted Center(P). Doing so would cause p to
only travel to Center(P). Instead of travelling potentially across the entire
diameter of the smallest enclosing circle, now p is sent, at most, across the
radius. This can as much as halve the movement. More typically, points
don’t have to travel all the way to opposite corners since they aren’t usually
on the edge of the box in the first place. Then this heuristic is even more of
an improvement than halving the maximum movement.

For the example given in Figures 2 and 3, this improvement makes a
minimal difference since the center of the tree is roughly in the middle of
the environment anyway. A motivating example to keep in mind for why
mean or median might be bad choices over Center(P) is when P consists of
a large cluster of points far apart from a single outlier. Then the maximum
movement is proportional to the separation of the two clusters (and is the
distance the outlier point is translated). The mean and medians both tend
to be within the cluster, so translating the final point set to those would not
fix the situation. The smallest enclosing circle of the points will move both
points from the cluster and the outlier toward the midpoint of some line
between them. This is another case where the distance is roughly halved.
From here on, we will assume this heuristic is applied.

15

Even with such improvements, the worst case of both algorithms is still
a linear factor away from OPT . To see this, consider the set of 2n points
along two parallel lines in R2 given by P = {(1, 2i)}ni=1 ∪ {(3, 2i + 1)}ni=1.
For any n, these points can be connected with maximum movement 1 by
setting the y coordinate to 2 for each point. However, even after the heuristic
improvement above, both Algorithms 1 and 2 are linear in the number of
points. To see this, note that the minimum spanning tree with the least
depth has depth about n/4. All but one of the edges in the longest paths are
colinear with length 2, and one edge is a translation and possible reflection
over the y axis of the vector (1, 2)> which has length

√
5.

The actual movement performed by MST-Connect and essentially per-
formed by Homothety-Connect is the hypotenuse of the triangle formed
by [half the concatenation of all the colinear edges of some path to the center
+ 1] and [vertical edge of length 1/2]. That is, the maximum movement of
is
√

(n/4 + 1)2 + 1/4 ≈ n/4. Since OPT = 1, We have an approximation
factor of n/4 which is linear. Algorithm 1 has (only slightly) larger maxi-
mum movement, since instead of scaling each of the colinear edges by 1/2,
all edges are scaled by 1/

√
5. See Figure 5.

It’s perhaps now intuitive that in order to have better than a linear
approximation factor, we cannot just rescale the initial configuration. It
must be broken up some how. Moreover, we want an algorithm that will
prevent a distant outlier from being pulled all the way to a cluster as in
the example previously mentioned. In Section 6 we will discuss a greedy
algorithm that does exactly that.

6 A Greedy Connectivity Algorithm

Here we propose a greedy algorithm for P ⊆ R2 that computes the smallest
enclosing circle (SEC) of P, then moves the closest point to that circle’s
midpoint Center(P). That point is then considered part of the connected
set. After this initial movement, the closest pair of points with one in the
connected set and one outside of the connected set are computed. The
point outside the connected set is moved toward the connected set until it
is a distance 1 away, and then is considered part of the connected set. This
process is repeated until all robots are connected. Algorithm 4 contains the
details.

16

0 2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

4
MST-Connect Movement

0 2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

4
Homothety-Connect Movement

0 2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

4
Optimal Movement

Figure 4: Here we see a point configuration (red) which results in very poor
performance of both Algorithm 1 (cyan final configuration) and Algorithm 2
(green final configuration). Both have maximum movement ∼ (n/4) ·OPT .
The optimal solution is shown in black.

17

0 50 100 150 200 250 300 350 400
0

1

2

3

4

Figure 5: The parallel line configuration with final configurations of Algo-
rithm 1 (cyan), Algorithm 2 (green), Algorithm 4 (pink), and AOPT , the
optimal algorithm (black).

0 20 40 60 80 100 120 140 160 180 200

N: number of points in P

0

10

20

30

40

50

60

M
ax

m
im

um
 m

ov
em

en
t

Max movement for pts along parallel lines distance 2 apart, connect radius 1

Homothety-Connect Max Movement
Greedy-Connect Max Movement
MST-Connect Max Movement

Figure 6: The performance on the parallel line configuration of Algorithm 1
(cyan), Algorithm 2 (green), and Algorithm 4 (red)

18

Algorithm 4 Greedy-Connect

Input: P: a set of points where G(P, 1) is not connected
Output: Pf : a set of points where G(Pf , 1) is connected
1: Center(P)← The midpoint of the SEC of the nodes.
2: pc ← The closest robot in P to Center(P)
3: p′c ← c
4: S ← {p′c}
5: while |S| < |P| do
6: (p′, q)←The closest pair of point with p′ ∈ S and q ∈ P − S
7: ~d← p′−q

|p′−q| ·max{0, |p′ − q| − 1}
8: q′ ← q + ~d
9: S ← S ∪ {q′}

10: return S

(a) P and Center(P) (b) Pf and movements

Figure 7: The blue and red dots represent P, and Pf respectively. The red
cross in (a) is Center(P). Algorithm 4 moves points along the black arrows
to form the network in (b).

19

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Figure 8: For the same P (in black) as in Figure 3, on the left we show the
Greedy Pf (gold triangles) and greedy movement (left image in maroon).
On the right we have a comparison between Greedy Pf (green triangles),
MST-Connect (Pf red squares) and Homothety-Connect (Pf blue di-
amonds).

6.1 Greedy Algorithm Worst-Case Analysis

To bound the maximum movement of Algorithm 4, SOLG, we note that the
maximum possible movement would be if a node moved from somewhere on
the convex hull of the robots to the midpoint Center(P). If we let dc be
the distance from the furthest point on the convex hull P to Center(P), it
must be the case that SOL ≤ dc. In general, this forced movement can be
arbitrarily bad. However, we can bound some of the cases where it performs
worst and even prove constant factor approximations.

Suppose that we have n points, and the furthest two points are a distance
ρ apart. Drager et al. proved in [DLM07] that 2dc, the diameter of the SEC
cannot be greater than 2ρ/

√
3. That is, SOLG ≤ ρ/

√
3. If ρ > n+ 1, then

the least distance the two points most distance points can need to travel
would occur in the case where all other points were colinear with the two
points, and each were a distance 1 apart so they were connected, centered on
the midpoint of the line between the two most distant points. This yields
a lower bound on OPT of 1

2(ρ − n − 1). Since SOLG is bounded above
and OPT is bounded below, we have an upper bound on the approximation
factor αG.

20

Theorem 6.1. Let ρ be the distance between the furthest pair of points in
P. If ρ > |P|+1, then the approximation factor for Algorithm 4 is less than

2ρ√
3(ρ−n−1)

To be sure, as ρ→ n+1 the approximation factor can become arbitrarily
bad. This makes sense given the forced movement to the center in the
algorithm. On the other hand, if there are points in between the furthest
two points, then the maximum movement of Algorithm 4 will tend to be far
less than Theorem 6.1 suggests. Essentially the bound is a constraint on the
density of points in the domain (the SEC of P). In Rd where d > 2, we use
the smallest enclosing sphere and must remove the 1√

3
factor in the bound,

but have the same result. There is still some constant between 1 and 2, that
could replace

√
3 but we are unsure of its exact value.

If the points are very dense (ρ very small compared to n), then minimal
movement is needed to connect them and the forced movement to Center(P)
can be very bad. If the environment is very sparse ρ� n+ 1, then moving
a point to the middle might not be so bad, at least compared to the optimal
movement which will also be large. Given some target approximation factor,
and either n or ρ we can solve for constraints on the free variable to guarantee
performance at least as good as the target approximation factor. So for
sparse enough environments, we can guarantee an O(1) approximation factor
solution. For the parallel lines configuration with 2n points, ρ is 2

√
1 + n2

which is just barely less than 2n+1, so we cannot bound the approximation
factor for this case. That said, since we know OPT is 1, we can numerically
compute the approximation factor of Algorithm 4 and it appears to grow
slightly quicker than, but ln(n) though remain smaller than ln(n) until n >
300.

As mentioned before, the worst cases for Algorithm 4 are when a point
is moved all the way to the center, but minimal movement is needed to
actually connect the configuration. One example of such a configuration is
when P consists of n points equally spaced on the smallest enclosing circle
with radius dc and midpoint Center(P). Here, we can give better constraints
on the approximation factor than Theorem 6.1. In this case, a homothety
centered at Center(P) is actually optimal, while SOLG = dc and comes
from the first movement forcing a point to the center of the configuration.
With geometric arguments, one can see that the distance between any two
adjacent points on the circle will be 2dc sin(2π/2n). Then the scale factor
of the homothety performing the optimal movement will scale this to 1. So
hCenter(P), 1

2dc sin(π/n)
will be the optimal movement.

21

If sin(π/n) > 1
2dc

we can apply Corollary 4.2 and the maximum movement

of this homothety is OPT =
(

1− 1
2dc sin(π/n)

)
dc. If the sin(π/n) ≤ 1

2dc
, then

P already been connected, so OPT is 0 and we would not move anything.
Since the maximum movement of Algorithm 4 is dc for this configuration.
Theorem 6.2. When The points P all lie spaced equally on a circle and
sin(π/n) > 1

2dc
, the worst-case approximation factor of Algorithm 4 is

dc/OPT =
1

1− 1
2dc sin(π/n)

Since 1
2dc sin(π/n)

ranges between 0+ and 1, the approximation factor can
be arbitrarily bad between 1 and +∞ in general. The situation is not as
dire as it may seem though. The converse of also holds and states that
given any constant target approximation factor and some fixed n = |P|,
we have bounds on how small dc is allowed to be (i.e. we can bound the
size of the environment P can live in if we want to guarantee good perfor-
mance.). We also have bounds on the allowed size of P given some fixed
target approximation factor and environment size.
Theorem 6.3. Let SOLG denote the maximum movement of Algorithm 4.
If P is the set of n equally spaced points around a circle of radius dc, Then
given a target constant approximation factor α > 1, if dc >

α
(α−1)2 sin(π/n) ,

we have that
SOLG ≤ dc < α ·OPT

.

Proof. Fix |P| = n, and target approximation factor bound α > 1 Then we

22

have from Theorem 6.2 that

α >
1

1− 1
2dc sin(π/n)

(10)

α >
1

2dc sin(π/n)−1
2dc sin(π/n)

(Common denominator) (11)

α >
2dc sin(π/n)

2dc sin(π/n)− 1
(12)

(2dc sin(π/n)− 1)α > 2dc sin(π/n) (13)

2dc sin(π/n)α− α > 2dc sin(π/n) (14)

dc(2 sin(π/n)(α− 1)− α > 0 (15)

dc(2 sin(π/n)(α− 1) > α (16)

dc >
α

(α− 1)2 sin(π/n)
(17)

A similar proof gives a bound on the number of points allowed.
Theorem 6.4. Let SOLG denote the maximum movement of Algorithm 4.
Given some radius dc and target constant approximation factor α > 1, if
P is the set of equally spaced points on a circle of radius dc, and |P| <

π

arcsin
(

α
2dc(α−1)

) , then SOLG ≤ dc < α ·OPT

The optimal configuration of equally spaced points on higher dimensional
spheres is unknown. Even solving this on just the 2 sphere in R3 is the
seventh of Steve Smale’s famous open problems [Sma98]. Due to this, we
do not have a similar worst case bound for Rd with d > 2.

Still, in general for R2 we can give constraints on P to force very good ap-
proximation factors. However, if we have no constraints on P, then we have
a much looser bound. Recall that G(P, R) is the disk graph with connec-
tivity radius R. In order to compare ρ to OPT , we let Rc be the minimum
radius such that G(P, Rc) is connected. Since Rc is the longest edge length
in G(P, Rc) by construction, ρ ≤ DG ·Rc, where DG := diameter(G(P, Rc))
is the maximum path length ranging over all the shortest paths between
pairs of vertices in G(P, Rc). This follows from repeated applications of
the triangle inequality to path segments of the graph’s diameter. Now, an
approximation factor for Algorithm 4 can be given using our bound on Rc
in terms of OPT from Corollary 4.5.

23

To do so, we will find λ such that 1 ≤ λOPT yields a bound on the
worst case approximation factor. Let λ ∈ R be such that 1 = λRc−12 . Then
λ = 2

Rc−1 . Note that by Corollary 4.5, we have 1 ≤ λOPT . This yields the
following bound.

DG ·Rc ≤ DG(2 + λ)OPT (18)

= D(2 +
2

Rc − 1
)OPT (19)

=
2Rc
Rc − 1

DG ·OPT. (20)

Because Rc grows with the size of the environment, one can loosely think of
Rc
Rc−1 as a measure of how large the ambient space is in the following sense.
When Rc − 1 is small, the fraction blows up which is indicative of how the
forced movement to the center may be a very poor choice if the configuration
is already nearly connected.
Theorem 6.5. Using Algorithm 4, Let Rc be the smallest radius such that
G(P, Rc) is connected and let DG be the diameter of G(P, Rc). Then SOLG ≤
2Rc
Rc−1

DG√
3
·OPT

Proof. SOLG cannot be larger than dc. Note that dc ≤ ρ√
3
≤ DG · Rc/

√
3,

thus we have the result.

For an arbitrary configuration, DG can be as large as n when it’s a
path, but then our earlier result gives us a constant factor approximation
if the points are not initially connected. Computing the actual bound on
the approximation factor requires knowing the actual point configuration.
Let’s compute this bound to the parallel line configuration: Rc =

√
5, and

DG = n+1. Unfortunately this bound is not only linear, but it’s eight times
worse than the bound on Algorithms 1 and 2. We can see in Figure 6, that
this is very loose bound. A big reason for that is that Algorithm 4 never
actually has to move its most distant point to the center of the configuration
unless all points are on the circle, but in that case we showed how to calculate
the approximation factor exactly.

More often than not, points will move only a short distance to the center,
and in a very dense environment (where we have only the loose bound from
Theorem 6.5), there is likely to be a point on or near the center already,
points nearby everywhere between the center and the furthest point. It just
so happens that OPT can be arbitrarily small in these cases. However in

24

these dense environments, since P is nearly connected anyway, even a large
approximation factor is meaningless in applications as it takes minimal time
no matter which of the algorithm is used.

It may be theoretically useful to run some sort of hybrid algorithm that
given P with |P| = n, computes bounds on the approximation factor and
runs another algorithm if they’re too high, but otherwise runs Algorithm 4
This guarantees a worst case approximation factor of n and gives a poten-
tially even constant approximation factor if it’s lower. Figure 9 demonstrates
that in practice, this is not always necessary.

7 Average case Analyses for R2

With applications in mind, a set of robots that we might wish to connect may
not be in some special configuration such as spaced on a circle or parallel
lines. More often they will be distributed somewhat randomly before we
work to connect them. This might motivate us to study the average case
performance of connectivity algorithms with some distribution applied to
our point set. Here we will focus on uniformly distributed points as that
often models real life situations.

To analyze the average case for uniform random deployment, we assume
that points in P are uniformly distributed in an [0, L]× [0, L] where a unit
length is once again the connectivity radius. Then, we may use properties
of Random Geometric Graphs (RGGs) modeling the uniformly distributed
robot locations in order to bound Rc and eventually the expected value of
a solution’s maximum movement E[SOL] for various algorithms. A RGG
G(n,R,L) is the R-disk graph of n points uniformly distributed in [0, L]2

We are restricting ourselves to the R2 case because very little relevant ex-
plorations random geometric graphs have been carried out for the case of
d > 2. Since most of our analyses hinge upon these results, we have little to
say until more is known about RGG in higher dimensions.

We define Rmin to be the minimum radius above which G(n,Rmin, L) is
asymptotically almost surely connected as L grows large. Muthukrishnan
and Pandurangan proved that such a threshold exists and gave the exact

value Rmin ≤ L
√

2 lnL
n with equality as L goes to infinity [MP10]. To do so,

they used a bin-covering argument where they bounded the largest number
of boxes needed to cover space such that overlapping bins allowed for con-

25

nected points. Similar bounds (though with completely different arguments
from bin covering) were given previously by Penrose in [Pen97] and by Gupta
and Kumar in [GK99] as n goes to infinity. The sharp threshold for connec-
tivity and other sharp thresholds for other properties of RGGs were given
by Goel, Rai, and Krishnamachari in [GRK05]. A sharp threshold xcrit for
property Prop(x) depending on x satisfies for all ε > 0 Prop(xcrit + ε) is
almost surely true, and if Prop(xcrit − ε) is almost surely false. Bounds on
Rmin were later generalized to various other non-uniformly distributed sets
of points by Bettstetter in [Bet04].

It follows that E[Rc], the expected length of the longest edge of G(P, Rc),
must be less than Rmin. If this were not the case, then we could expect an
edge shorter than Rc being the longest edge necessary to have a connected
RGG.

7.1 Homothety-Connect and MST-Connect Average Cases

The bound on the approximation factor for these algorithms both depend
on the depth of the minimum spanning tree of the set of points. Recall
Theorem 5.2 which gave the approximation factor of MST-Connect as
O(D) where D is the depth of the minimum spanning tree of K(P). For
various distributions of points, one may be able to bound the expected depth
of the minimum spanning tree far below the worst case bound of n/2.

Unfortunately, it seems that the literature has not yet found better
bounds for D than D ∈ ω(

√
n) and D ∈ o(n) which mean respectively

that

lim
n→∞

D√
n

= +∞

and

lim
n→∞

D

n
= 0.

Although, simulations seem to suggest that the expected value of D is about
n2/3 asymptotically for uniformly distributed points in a square environ-
ment. This would suggest an average case bound of 2n2/3OPT which is
strictly better than the worst case for n > 10.

In [SSE87] it was proven that the ratio of leaves, and more generally
vertices of any fixed degree, to nodes in a random euclidean minimal span-
ning tree converges to a constant. While the constant seems unable to be
solved for analytically, Monte Carlo simulations suggest that for n > 100

26

(the maximum value simulated was n = 216) the ratio of leaves to nodes is
0.221. For n < 100 the ratio of leaves was always larger on average, and in
particular when n was small, the ratio grew larger. Since only two leaves can
be contained in the longest path, we can bound the average case D above
also by the ratio of non-leaves to nodes. This allows for us to bound the
expected value of D above by

D ≤ 1

2

(
779

1000
n+ 2

)
.

Together this gives the average case upper bound E[SOL] ≤ (0.779n +
2)OPT . For large n, E[SOL] appears to be approximately O(n2/3)OPT ,
but there’s no proof at this point.

7.2 Greedy-Connect Average Case

Given Theorem 6.5, we know that SOLG is at most DGRc√
3

, and the av-

erage value of Rc is less than L
√

2 lnL
n . Therefore, E[SOLG] is at most√

2
3
DGL

√
lnL√
n

if P is uniformly distributed in [0, L]2.

While this is a more accurate bound, it does not illuminate how the
solution might approximate the optimal. We shall bound the expected ap-
proximation factor for algorithm 4 by bounding ρ in terms of L directly.

First we note that ρ cannot be larger than L
√

2, so dc ≤ ρ/
√

3 ≤
√

2/3L.

Multiplying this expression by 1 =

√
ln(L)
n

√
n

ln(L) yields
√

2/3L

√
ln(L)
n

√
n

ln(L)

Substituting our bounds for Rc yields 1√
3

√
n

ln(L)
2Rc
Rc−1OPT. With another Rc

substitution, we have that SOLG ≤
√

8
3

L
Rc−1OPT.

To substitute for the Rc in the denominator, we utilize a lower bound on
Rmin which is also proved by Muthukrishnan and Pandurangan in [MP10].
In particular, it is shown that as L→∞ then asymptotically almost surely

we have G(P, R) disconnected if R < L

√
c0 ln(L)

n for 0 < c0 ≤ 1
2 with c0

decreasing to zero as L grows large. While this result is asymptotic in L,
testing over 1000000 trials with c0 = 1/5, when L as small as 100, the
configuration was disconnected 99.2837 percent of the time. Given these

results, we can expect Rc to be larger than L

√
ln(L)
5n .

27

0 50 100 150 200 250 300

N: number of points in P

0

2

4

6

8

10

12

14

M
ax

m
im

um
 m

ov
em

en
t

Max movement for points uniformly disributed in [0,20]x[0,20] with connect radius 1, and 5 trials per N

Homothety-Connect Max Movement (min, mean, and max)
Greedy-Connect Max Movement (min, mean, and max)
MST-Connect Max Movement (min, mean,and max)

Figure 9: Some empirical trials comparing the performance of Algo-
rithms 1, 2, and 4 on uniformly distributed points in [0, 20]2.

By substituting the lower bound for Rc into the denominator and nor-
malizing terms we arrive at the following bound.

Theorem 7.1. If n < L2 lnL, then E[SOLG] ≤ 2
√

10
3

L
√
n

L
√
lnL−

√
n
OPT

We can see in Theorem 7.1 that if L� n the solution is expected to be
an O(

√
n/ lnL) factor off of the optimal solution.

If n� L2 lnL it would seem that we get a negative approximation factor.
In such a situation, the configuration is expected to already be connected
so no algorithm would run in the first place based on the asymptotic Rmin
bounds. The heuristic picture to keep in mind be that P = {lattice points
of [0, L]2} is already connected, and we have at least ln(L) > 1 copies of
those points distributed uniformly in the box.

8 Run-time Analyses

Because the motivation for these problems is to minimize the time robots
spend connecting to one another so that they can maximize their battery
lives, it is important to consider the computational efficiency of these algo-

28

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Figure 10: Another example showing P in red, Algorithms 1’s Pf in
cyan, Algorithm 2’s Pf in green, and Algorithm 4’s Pf in pink on 60
uniformly distributed points in [0, 20]2. The maximum movements were
Homothety-Connect: 9.2060, MST-Connect: 7.5985, and Greedy-
Connect: 5.8779

29

rithms’ run-times.

8.1 Run-time Analysis of Homothety-Connect

Let |P| = n. Then for the heuristically optimized Homothety-Connect
where Pf is given by hCenterP, 1

Rc

(P), the run-time has primary contribu-

tions coming from computing the scale factor of the homothety as well as
computing the smallest enclosing circle of P and P ′. Megiddo proved in
[Meg82] that the smallest enclosing circle can be computed in O(n) time.
The method can be generalized to compute the smallest enclosing sphere in
higher dimensions still in linear time. Finding the scale factor for the homo-
thety is equivalent to finding the length of the longest edge Rc of the EMST
of P. This can be done with Kruskal’s algorithm for computing minimum

spanning trees in O(

(
n
2

)
log n) [Kru56] time after computing the

(
n
2

)
pairwise distances of points in P which are the graph’s edge weights. From
here we can compute a run-time bound on Homothety-Connect.
Proposition 8.1. Homothety-Connect has O(n2 log n) run-time.

8.2 Run-time Analysis of MST-Connect

Let |P| = n. Consider the heuristically optimized MST-Connect where Pf
is given by MST-Connect translated such that Center(Pf) = Center(P).
The run-time has primary contributions coming from computing the EMST
TP of P, computing the center of TP , then performing the movements of the
connected components of TP |P−S , and finally computing the smallest enclos-
ing circles of P and Pf . Computing the tree takes O(n2 log n) time and the
smallest enclosing circle takes O(n) time as we saw previously. Computing
the center of the tree can be done in O(n) time by iteratively removing all
leaves until only the center or centers are left. At each stage of movement,
we have n − |S| points moving, and this D times where D is the depth of
TP . Since D ≤ n/2, all of the movements are done in O(n2) time. From
here we can compute a run-time bound on MST-Connect.
Proposition 8.2. MST-Connect has O(n2 log n) run-time.

30

8.3 Run-time Analysis of Greedy-Connect

Let |P| = n. Consider Greedy-Connect. The run-time has primary
contributions coming from computing the smallest enclosing circle, as well
as n iterations of computing the closest pair of points between two sets of
points. Computing the smallest enclosing circle takes O(n) time as we saw
previously. The time to compute the nearest pair of points from two sets
of size k and n − k with brute force takes requires k(n − k) comparisons.
The total runtime of doing this for each k ∈ {1, 2, . . . , n} is

∑n−1
k=1 k(n − k)

which is O(n3) comparisons. From here we can compute a run-time bound
on Greedy-Connect.
Proposition 8.3. Greedy-Connect has O(n3) run-time.

At least in robotic applications, these algorithms are rarely used for large
enough n such that n3 is slow enough to be a constraint. Since this is the
worst run-time of all three algorithms, and n is typically not so large, the
run-time is a non-issue in real applications. In fact, one can usually even
run all three algorithms quickly and just choose the best solution. This
prevents pathological Greedy-Connect cases using the worst case linear
bound from MST-Connect.

9 Conclusion

In this thesis, we have provided two new algorithms for the maximum move-
ment minimization problem for Euclidean connectivity. We have given
bounds on Rd case for both algorithms, as well as better bounds in R2

for both worst case for the greedy algorithm and average cases for both al-
gorithms. Our algorithms empirically outperform the state-of-the-art, but
there is room for improvement. The gap between our approximation factor
bounds and the theoretically possible constant factor approximation algo-
rithms is large. We hope to find better constraints on P or algorithms
guaranteeing constant factor approximations in the future. The trickiest
aspect of this project has been bounding seemingly good solutions. There
are so many algorithms with multiple variants and heuristics for each one.
Comparing even the best of them to an optimal solution has in practice
been extremely difficult. Not all the algorithms we explored made it into
this work for that very reason. Hopefully future work on this problem will
allow us to find better bounds.

31

References

[AAY07] Ameer Ahmed Abbasi, Kemal Akkaya, and Mohamed You-
nis. A distributed connectivity restoration algorithm in wireless
sensor and actor networks. In Local computer networks, 2007.
LCN 2007. 32nd IEEE conference on, pages 496–503. IEEE,
2007.

[AFGS16] Nima Anari, Mohammad Amin Fazli, Mohammad Ghodsi, and
Mohammad Ali Safari. Euclidean movement minimization. J.
Comb. Optim., 32(2):354–367, 2016.

[BDZ11] Piotr Berman, Erik Demaine, and Morteza Zadimoghaddam.
O (1)-approximations for maximum movement problems. Ap-
proximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 62–74, 2011.

[Bet04] Christian Bettstetter. On the connectivity of ad hoc networks.
The computer journal, 47(4):432–447, 2004.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag, Berlin, Heidelberg, 2006.

[DHM+09a] Erik D Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini,
Amin S Sayedi-Roshkhar, Shayan Oveisgharan, and Morteza
Zadimoghaddam. Minimizing movement. ACM Transactions
on Algorithms (TALG), 5(3):30, 2009.

[DHM09b] Erik D Demaine, MohammadTaghi Hajiaghayi, and Dániel
Marx. Minimizing movement: Fixed-parameter tractability.
In ESA, pages 718–729. Springer, 2009.

[DLM07] Lance D. Drager, Jeffrey M. Lee, and Clyde F. Martin. On the
geometry of the smallest circle enclosing a finite set of points.
Journal of the Franklin Institute, 344(7):929 – 940, 2007.

[DMM13] R. Dai, J. Maximoff, and M. Mesbahi. Optimal trajec-
tory generation for establishing connectivity in proximity net-
works. IEEE Transactions on Aerospace and Electronic Sys-
tems, 49(3):1968–1981, July 2013.

32

[GK99] Piyush Gupta and P. R. Kumar. Critical Power for Asymptotic
Connectivity in Wireless Networks, pages 547–566. Birkhäuser
Boston, Boston, MA, 1999.

[Gri17] Darij Grinberg. Math 5707 homework 3 solutions. on-
line, March 2017. http://www-users.math.umn.edu/∼
dgrinber/5707s17/hw3s.pdf.

[GRK05] Ashish Goel, Sanatan Rai, and Bhaskar Krishnamachari.
Monotone properties of random geometric graphs have sharp
thresholds. Ann. Appl. Probab., 15(4):2535–2552, 11 2005.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Vol-
ume 1 (3rd Ed.): Fundamental Algorithms. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

[Kru56] Joseph B. Kruskal. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the Amer-
ican Mathematical Society, 7(1):48–50, 1956.

[LWZ+15] Z. Liao, J. Wang, S. Zhang, J. Cao, and G. Min. Minimiz-
ing movement for target coverage and network connectivity in
mobile sensor networks. IEEE Transactions on Parallel and
Distributed Systems, 26(7):1971–1983, July 2015.

[Meg82] N. Megiddo. Linear-time algorithms for linear programming
in r3 and related problems. In 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982), pages 329–338,
Nov 1982.

[MP10] S Muthukrishnan and Gopal Pandurangan. Thresholding ran-
dom geometric graph properties motivated by ad hoc sen-
sor networks. Journal of Computer and System Sciences,
76(7):686–696, 2010.

[Pen97] Mathew D. Penrose. The longest edge of the random minimal
spanning tree. Ann. Appl. Probab., 7(2):340–361, 05 1997.

[Sha14] Badrinath Sharma. Minimizing maximum movement to at-
tain connectivity. Master’s thesis, Indian Statistical Institute,
Kolkata, 2014.

[SJK08] Ethan Stump, Ali Jadbabaie, and Vijay Kumar. Connectiv-
ity management in mobile robot teams. In Robotics and Au-

33

tomation, 2008. ICRA 2008. IEEE International Conference
on, pages 1525–1530. IEEE, 2008.

[Sma98] Steve Smale. Mathematical problems for the next century. The
Mathematical Intelligencer, 20(2):7–15, Mar 1998.

[SSE87] J Michael Steele, Lawrence A Shepp, and William F Eddy.
On the number of leaves of a euclidean minimal spanning tree.
Journal of Applied Probability, 24(4):809–826, 1987.

[ZEP11] Michael M Zavlanos, Magnus B Egerstedt, and George J Pap-
pas. Graph-theoretic connectivity control of mobile robot net-
works. Proceedings of the IEEE, 99(9):1525–1540, 2011.

[ZP08] Michael M Zavlanos and George J Pappas. Distributed con-
nectivity control of mobile networks. IEEE Transactions on
Robotics, 24(6):1416–1428, 2008.

[ZTJP09] Michael M Zavlanos, Herbert G Tanner, Ali Jadbabaie, and
George J Pappas. Hybrid control for connectivity preserv-
ing flocking. IEEE Transactions on Automatic Control,
54(12):2869–2875, 2009.

34

