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Abstract

The Bulgarian Solitaire rule induces a finite dynamical system on the set of integer
partitions of n. Brandt [3] characterized and counted all cycles in its recurrent set for
any given n, with orbits parametetrized by necklaces of black and white beads. How-
ever, the transient behavior within each orbit has been almost completely unknown.
The only known case is when n = (g) is a triangular number, in which case there is only
one orbit. Eriksson and Jonsson [6] gave an analysis for convergence of the structure
as k grows, and to what extent the limit applied to the finite case.

In this thesis, we generalize the convergent structure for any n and provide first
results about the size of any orbits, corresponding to various different types of neck-
laces, including those whose beads alternate BWBWBW --- = (BW)*  and also
BWWBWW .. = (BWW)¥ and BBWBBW --- = (BBW)*. For necklaces of the
form (BW)* the orbit size is the Chebyshev polynomial Tj(z) evaluated at z = 2.
Furthermore, we derive a generating function counting the transients in these orbits
according to their distance from the periodic cycle. A similar analysis shows that the
orbits corresponding to the necklace (BWW)* and (BBW )" have sizes 5F and 7-5F~1.
respectively.

We will also give some properties for the partitions in each orbit and conjecture
some general formulas for the sizes of Bulgarian Solitaire orbits.
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Part 1
Background and results

1 Preliminaries

1.1 Integer partitions

A partition of a positive integer n is a way to write it as a sum of integers. In partition theory,
order of the parts does not matter, e.g. 1+2+4,14+442 and 24441 are the same partition
of 7. We write p(n) to be the number of partitions of n and denote the set of partitions on
n by P(n). Integer partitions have interested mathematicians since the 18th century with
applications in computer science, statistical mechanics, algebra and other branches of math.
A lot of interesting classes of integer partitions and their properties have been discovered.
Moreover, although the number of partitions of a given number n was found as a limit of a
series (the Hardy-Ramanujan-Rademacher expansion [2]) or as coefficients of the generating

functions
o . [o@) 1

n=1

mathematicians are still interested in finding a simpler, explicit formula for it. One result is
a recurrence formula [2] involving the pentagonal numbers g, = k(3k — 1)/2:

pn) = (1) 'p(n — g).

k

Recently, Bruinier and Ono proved a formula for p(n) as a finite sum of algebraic numbers
lying in the usual discriminant —24n + 1 ring class field [4]. In this thesis, we work with a
dynamical system on P(n) and hope that our structure might give interesting properties of
integer partitions.

1.2 Young diagrams

The Young diagram is a visualization of an integer partition. For example, the partition
10 =5+ 3+ 2 is drawn as

with the rows being the parts in non-strict descending order. The k—staircase partition of

n= (kgl) is denoted by Ay = (k,k—1,...,1,0). For example of Ay is

2 Introduction to Bulgarian Solitaire

2.1 History

The game of Bulgarian Solitaire was introduced by Martin Gardner in 1983. The original
game starts with 45 cards divided into a number of piles. Now keep repeating the Bulgarian
Solitaire moves: in each turn, take one card from each pile and form a new pile. The game
ends when the sizes of the piles are not changed by performing the moves. Surprisingly, it
turns out that regardless of initial state of the game, it must end in a finite number of moves
at the state with one pile of one card, one pile of two cards, ..., and one pile of nine cards.
Then Gardner stated the problem for any triangular number n =1+2+ ...+ m = (m; 1).
But how about other arbitrary n?
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Figure 1: Bulgarian Solitaire on Young diagram 3((5,2,2)) = (4,3,1,1)

Now let n be the number of cards we start the game with and represent a configuration
of piles of cards by a partition of n, with the piles being the parts. Thus we have made
the Bulgarian Solitaire game into a dynamical system on P(n) with the operation: in each
step, take one from each part, form a new part and put the parts in weakly decreasing order.
In addition, the game can be described in terms of Young diagrams: in each turn, remove
the longest column and reinsert it as a new row into the diagram. An example is shown in

Figure [T}

2.2 Notation and terminology

We write a partition as A = (Aq,...,A,) where Ay > Ay > ... >\, > 0. We use I(\) as the
length of the partition A, e.g. in this case [(A) = n. The symbol [A\| =X\ + X o+ ...+ A, is
the number of which A is an integer partition.

Let 5 be the Bulgarian Solitaire operation on P(n), described in subsection . For
example, 5((5,3,2)) = (4,3,2,1). The game graph of Bulgarian Solitaire system is a directed
graph whose nodes are partitions of n with directed edges connecting A — 5(\).
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Figure 2: Bulgarian Solitaire game graph for n = 6.
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Figure 3: Bulgarian Solitaire game graph for n = 8.



Definition 2.2.1. Let @ = (o, ..., ;) be a finite sequence of letters { B, W}. Define the
cyclic rotation w by

w(a;) = A1) modn
A necklace N of black and white beads is an equivalence class of sequences of letters { B, W}
under cyclic rotation w. We call N a primitive necklace if it cannot be written as a concate-

nation N = P¥ = PP --- P of copies of another necklace P. We will reserve P for primitive
necklaces.

Example 2.2.2. The sequences BWWW = WBWW = WWBW = WWW B all represent
the same necklace P, which is primitive. The same is true for the sequences BBWW =
WBBW = WW BB = BWW B representing a different primitive necklace P’. However the
sequences BW BW = W BW B represent a non-primitive necklace N = (BW)? = (W B)2.
The three necklaces W, BW = W B and BWW =W BW = WW B are all primitive.

For a necklace N, we will denote by b(N) the number of black beads and by w(N) the
number of white beads in any sequence representing N. The number of beads in necklace
N is denoted |N| = b(N) + w(N).

Let BS be the set of orbits of Bulgarian Solitaire systems and N be the set of necklaces
with at least one white bead. We denote 1(\) to be the Bulgarian Solitaire orbit that
contains \, that is, A, i lie in the same BS orbit ¢(\) = ¥(u) if there exists integers a,b > 0
for which 3%()\) = 8°(u). By [3] we have a bijection

O:N — BS (1)

that maps a necklace to the orbit of Bulgarian Solitaire system which has the unique recurrent
cycle represented by the necklace. Specifically, for each necklace N = N1 N, ... N;, the map
is defined as Oy = O(N) = ¢¥((A_1,0)+0), where 0 = (01, ...,07) and foreach j = 1,... [,
o; =0if N; = W, otherwise 0; = 1. Figure 4] and Figure [5| are examples to illustrate the
map O. For convenience, we use Oy for the BS game graph restricted to the orbit Oy. The
map O satisfies that for any P* € A, where P is a primitive necklace, |P| is equal to the
size of the recurrent subset in Opr. That recurrent subset exists because for a given number
n, the set P(n) is finite. The following is a rephrasing of Brandt’s result [3], along with an
enumeration corollary from Drensky [5] using Polyd’s enumeration theorem, elaborated by
Akin and Davis [I]:

Theorem 2.2.3. Uniquely express n = (g‘) + 7 for some 0 <r <m—1 and let A € P(n).
Then the orbits of the Bulgarian Solitaire system on P(n) biject with necklaces N with
b(N) = r black beads and w(N) = m — r white beads. The partitions \ within the recurrent
cycle of orbit Oy consist of the triangular partition along with an extra square in each row
indexed by a black bead from a necklace in N.

Therefore the number of the components of the game graph associated with the partitions
of n is equal to the number of necklaces consisting of r black beads and m — r white beads

having this formula
1 m/d
=Y w@(M),

d|ged(r,m)

where o(d) is the Euler ¢ function, i.e., the number of positive integers < d and relatively
prime to d.

Let Cpr denote the unique cycle of partitions contained in the recurrent subset inside the
BS orbit indexed by the necklace P*, with P primitive. One can easily prove the proposition
below by using the bijection O described above:

Proposition 2.2.4. For any P* € N with P primitive and |P| = p, the orbit Opr has

partitions of size
n = (p:) + kb(P).

Conversely, given n = (g) + b, where 0 < b < k — 1, then BS orbits on P(n) correspond to
necklaces N of length k with b black beads, and thus

Pn)= || Ow. (2)
b(N)::kb

6
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Figure 4: The map O for primitive necklaces of length 3, which are WWW, BWW, BBW .
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Figure 5: The map O for non-primitive necklaces of length 4. The recurrent set in O(gy)2
has only 2 elements, shown above.

Remark 2.2.5. The Bulgarian Solitaire system on partitions of a triangular number n = (g)
has a unique orbit, corresponding to the necklace W*. On the other hand, we will occasionally
wish to think of it as also corresponding to the all-black necklace B*~!, which was deliberately

excluded from the domain of the map map O, to make it a bijection.

For any primitive necklace P € A and any A\ € Op, we denote by Dpr()) the minimum
number of moves to reach the recurrent cycle starting from A, that is, define Dpir : Opr — N
by

Dpr(\) = min{d € N: %(\) € Cpr}

Roughly speaking, the reversed Bulgarian Solitaire is done by reversing all arrows in the
directed game graph. For Young diagrams, the reversed rule is: in each turn, take out a row
no shorter than the number of rows minus 1 and insert it again as the leftmost column. For
a partition A, the operation is: in each turn, take a part A\; > I(\) — 1, then distribute it

into other parts, one for each. We use 75 to describe the move that takes out the row j. For
example (4,2,2) L (3,3,1,1) and (4,2,2) 2 (5,3). Figure @illustrates the reverse rule.

P2
1

Figure 6: Reverse BS on a Young diagram

We denote the reversed operation by R;(\), where X is the partition to perform the rule
on the part A;. We also use 0 as a result of an invalid move, that is, the removed row is too



short to be the leftmost - or the longest - column. Obviously, R;(\) is valid (or legal) if and
only if A; > [(A) — 1.

Example 2.2.6. For example,

R1((4,3,2,1)) = (4,3,2,1),
Ry((4,3,2,1)) = (5,3,2),
R4((4,3,2,1)) = 0.

A (reverse BS) playing sequence is a sequence of parts that are played legally. For
example, with (BW)? and n = 8, the playing sequence [211] starting from (4,2, 2) is

—
N NN DN

Figure 7: Reverse BS

where the parts A; which are playable are enclosed in angle brackets as (\;). Extend the
notation R for playing sequences o = [0y, ...,0,], that is, define

Ro(A) = Ry, (- (Roy (Roy (A) )

E.g. Rp111((4,2,2)) = (2,2,2,2). Now OF is used for the directed graph Oy with reversed
arrows - that is, the directed edges go f — R;(\) and such an edge is labelled R;. In other
words, OF is the directed graph of the orbit Oy under the reversed BS operation R.

We also need the difference reversed game graph for an orbit of partitions. If the partitions
A in the orbit have size |A| = n = (g) +r with 0 < r < k —1, then the difference game graph
is obtained from the game graph by subtracting the staircase A;_; out of each partitions in
the orbit. For example, the part of the difference game graph for the playing sequence in
Figure [7]is

1 (@ N
1 2 —1
o2 Lo &Y
(1) 1 1

1 2

Figure 8: Difference BS

2.3 Previously known results

The game graph when n is a triangle number, which turned out to be a tree, has been
studied by Igusa [9], Etienne [7], Griggs and Ho [§] and Eriksson and Jonsson [6]. Recall
that the Bulgarian solitaire system on P(n) for n = (k'gl) has only one orbit Oyr+1 = (Ag),
converging to a unique fixed point in at most k* — k moves. Eriksson and Jonsson prove [6]
that, in the limit as k grows, the sequence of level sizes (D; (1), D% (2), . ..) converges to
the subsequence of evenly-indexed Fibonacci numbers (Foq)52 ), with the generating function

(1-2)

Hy () = 1—3z+ 22

(3)

Eriksson and Jonsson also showed that for n = (kgl), the sizes of levels 0,1, ..., LgJ in the
reversed Bulgarian solitaire game tree coincide with those of an object that they called the
quasi-infinite game tree, but the next level,| 4] + 1, has fewer elements, 1 less for odd k and
1+ g less for even k.

Figure[9]display some initial difference BS game graphs up to some levels and Figure
is the quasi-infinite game tree. When we remove the left branch of the quasi-infinite game

tree, which turns out to be an entire copy of the tree (corresponding to the loop in the finite



graphs), we can see a containment relationship between the quasi-infinite tree and the finite
graphs up to some levels.

2
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Figure 9: Difference reversed BS game graph for n = (k;rl) with &k =1,2,3,4 up to level L%J +1.
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Figure 10: The quasi-infinite game tree for triangle numbers.

The rules for - in the quasi-infinite tree [0, §3] are described below:

1. Delete the bracketed ith number.

2. Increase all numbers above it by 1 and make them bracketed.

3. Bracket the new ith number (if there is one) if it differs at most 1 from the old one.

4. If a zero was played, add zeros at the end so that there are two, and make them
bracketed.



Note that the triangular number n = (m; 1) corresponds to necklaces W™. Let O« denote
the quasi-infinite tree for triangular numbers above without the left branch. Then Eriksson

and Jonsson [6] showed
O = lim O

m—00

We wish to generalize this idea for a quasi-infinite forest to find the limit of the level sizes
for arbitrary n. For each primitive necklace P, we have a finite number of elements in the
recurrent set Cpr for any k, so we can build trees in the quasi-infinite forest Fp rooting at
each of those elements. The modified rules will be discussed in Part [T

3 Data, new results and conjectures

Here we briefly present the main results and conjectures of this thesis, along with some of
the data that suggested them.

3.1 Orbit sizes and distance generating function

Since Bulgarian solitaire orbits on P(n) are parametrized by necklaces N, it is natural to
ask for their sizes. When n is a triangular number, there is only one component of size p(n).
However, other orbits’ sizes have remained unknown. Here is some data on the orbit sizes

corresponding to some small necklaces V. Recall from Proposition that if N = P* for
some primitive necklaces P, the size of the partition n is given by

n= (p;) 4 kb(P),

where b(P) is the number of black beads in P.

|On]| | N []|On]] | N [[On]] | N ]]On]]
w1 BW 2 BWW 5 BBW 7
w2l 3 (BW)*| 7 (BWW)% | 25 (BBW)? | 35
w3 11 (BW)3 | 26 (BWW)3 | 125 (BBW)3 | 175
Wt 42 (BW)*| 97 (BWW)* | 625 (BBW)* | 875

| N | |On] | | N HENE | N HENE
BWWW 15 BBWW 15 BBBW 30
(BWWW)? | 225 (BBWW)?2 | 150 (BBBW)?* | 450
(BWWW)3 | 3375 (BBWW)3 | 1500 (BBBW)3 | 6750
(BWWW)* | 50625 (BBWW)* | 15000 (BBBW)* | 101250

[ N T [N TJoW] [N [1os
BBWWW 45 BBBWW 67 WBWBW | 32
(BBWWW)? | 1215 (BBBWW)? | 1809 (WBWBW)? | 544
(BBWWW)? | 32805 (BBBWW)3 | 48843 (WBWBW)3 | 9248

N TJos] [N TIOM] [ N TIo]
BWBWB | 34 BWWWW | 56 BBBBW | 135
(BWBWDB)? | 578 (BWWWW)? | 2464 (BBBBW)? | 5940
(BWBWB)3 | 9826

The data in the table for (BW)* necklaces suggested our first main result, Theorem
below, involving the sequence of Chebyshev polynomials of the first kind {T}(z)}32,, with
initial conditions Ty(x) = 1, T1(x) = x and recurrence relation Ty(x) = 22T} (z) — Tip—o(2)
for k > 2. In particular, we will need their specialization at z = 2, satisfying:

Tp(2) = 1

T1(2)
Tk(2)

2 (4)
4Tk_1(2) - Tk_2(2) for k Z 2.

10



Theorem 3.1.1. For each k =1,2,3,..., one has
|Owy| = Ti(2).

Moreover, if we define the generating functions for distance to the recurrent cycle C gy

Dy(z) := Z PN = ZD(_EW)k(d) x4
AEON d=0

then this sequence of generating functions satisfies the following generalization of the recur-
rence ({4)):

Diwy(x) =1 by convention,
D(Bw)l(l') = 2, (5)
Dpwyr(2) = 23z + 1)Dpwye-1(z) — 2°Digyy—2(z) + (x — 1)’z +2)  for k > 2.

The data in the tables for the necklaces (BWW)* and (BBW )", suggested our next main
result.

Theorem 3.1.2. For each k =1,2,3,..., one has
|Owwwy| =5,
‘O(BBW)’V| =7- 5k71.
The data in the last two tables suggest the following conjecture.

Conjecture 3.1.3. For each k =2,3,4,..., one has
Opr| = (cp)*Op|
where )
15 for both P = BWWW, BBBW
10 for P =BBWW
cp = { 17 for both P = W BW BW, BW BW B
27 for both P = BBWWW , WW BBB
(44 for both P = BWWWW,WBBBDB

All of the preceding results and data then suggest a general conjecture.

Conjecture 3.1.4. For any primitive necklace P with |P| > 3, there is an integer cp such
that for k > 2,

Opr] = (cp)*Op|
for some constant cp that depends only on P. Moreover, if P and P’ are obtained from each

other by swapping black beads to white beads and vice versa, then cp = cpr.

Remark 3.1.5. If one could prove Conjecture |3.1.4] and provide explicit formulas for the
constants cp and |Op| appearing there, it would lead to an interesting formula for the
partition function p(n) = |P(n)|, as a sum of |Oy| over necklaces N, corresponding to the
BS orbit decomposition of P(n) in (2).

Remark 3.1.6. In contrast to Conjecture(3.1.4] for the two cases P = W and P = BW, one
doesn’t have exact geometric growth with some ratio cp. But they still grow approximately
geometrically. Specifically:

e For P =W, one has |Oyx| = p <@) with p(n) = |P(n)|. The Hardy-Ramanujan

1 12n
p(n) ~ 4n\/§ €Xp <7T ?) )
1

ot~ gt (V) ~ ((5))

whose geometric ratio is exp (i> ~ 6.1337...

V3

asymptotic says

yielding this asymptotic:

11



e For P = BW, Theorem says that ’O(Bw)k‘ = Tr(2), satisfying the recurrence
Ti1(2) = 4T%(2) — Tr—1(2), which leads to an explicit formula and asymptotic

O] =T = 5 (2 VB + 2+ VB)F) ~ 2+ VB)",

whose geometric ratio is 2 + V3~ 3.732...

Together with Theorem and Conjecture we expect that for primitive necklaces
of length greater than 1, the geometric ratio is increasing as the length increases.

Remark 3.1.7. More computations of larger primitive necklaces are needed to confirm
Conjecture [3.1.4] however, in this thesis, with current access to Sage, we are not able to
generate data for more necklaces P* for either P of length greater than 6 or P of length 5 or
6 and k > 3. That is because P(n) grows exponentially as in Remark Specifically, for
necklace (BWWWW)?* we need to work with the set of partitions of n = 194, which has
approximately 2.45 x 10'? elements.

3.2 Convergence of level sizes in Op:r as k grows

Jonsson raises the question in his thesis [10, 1.§2.4] as to how one might generalize their
convergence result and the generating function for BS orbits on P(n) when n is not a
triangular number. Here we examine such convergence results, as k grows, in the orbits Opx
for each primitive necklace P.

For the necklaces of the form N = (BW)*, here are some data on the level sizes in the
orbit Op:

| d\N || BW [ (BW)? | (BW)? | (BW)* | (BW)® [ (BW)® | (BW)" | (BW)® | (BW)? | (BW)™ |

0 2 2 2 2 2 2 2 2 2 2
1 0 1 1 1 1 1 1 1 1 1
2 0 2 3 3 3 3 3 3 3 3
3 0 2 6 7 7 7 7 7 7 7
4 0 0 8 14 15 15 15 15 15 15
) 0 0 6 24 32 33 33 33 33 33
6 0 0 0 28 60 70 71 71 71 71
7 0 0 0 18 92 142 154 155 155 155
8 0 0 0 0 96 248 320 334 335 335
9 0 0 0 0 o4 344 614 712 728 729
10 0 0 0 0 0 324 996 1432 1560 1578

Table 1: ’Dx,l(d)‘ Distribution by level sizes for necklaces N = (BW) of alternating black-white
beads.

The data in Table suggested that, as k grows, the sequence (\D(’;W)k(dﬂ)flio converges to

a sequence that starts (2,1,3,7,15,33,71,155,335,...). Our next main result proves this,
and identifies the limit of the level size sequence as having a rational generating function.

Theorem 3.2.1. There is a power series Hpy (x) in Z[[x]] such that
k—o0

Moreover, Hgw(x) is a rational function, given by
(x —1)*(3z +2)
H —
aw () 3 =32 —x+1
=2+ + 327 + 72° + 152" + 332° + 712° + 15527 + 3352% + ..

We also prove an analogous result for the primitive necklaces P = BBW, BWW with
|P| = 3.

12



Theorem 3.2.2. For P = BWW, BBW, as k — oo, the generating functions by level sizes
Dpr converge to the rational function

2 — 32% — 4z — 3
Hpww(z) = Hppw (z) = (1 — 2) 203 + 22 -1

=3+ x4+ 222 +32% + 52t + 72 + 1125 + 1727 + 2528 + 392° + 59210 + . ..

(6)

Remark 3.2.3. Although we do not include the proof here, we have also proven that for
all primitive necklaces P having |P| < 4, the BS orbits O(P*) have sequences of level sizes
which converge as k grows. The cases where |P| = 1,2,3 were taken care of by Eriksson
and Linusson’s result (3, and our Theorems [3.2.1] respectively. For |P| = 4, with a
similar technique discussed in Part [[I} the generating functions for the limiting level sizes
are as follows:

x® 4+ 82 — 32% — 822 — 62 — 4 (7)
624 + 43 + 22 — 1 ’
225 + 82* — 53 — 1022 — Tx — 4 (8)
6t + 423 + 22 — 1 ’
24?41
3xt + 203 + 22 -1

HBBBW(J;) = (1 — J,’)

HBwa(ZL') = (1 — l’)

Note that although the primitive necklaces P = BWW, BBW have identical generating
functions Hp(x), P = BBBW, BWWW do not, but their generating functions at least
share the same denominator.

These results suggested the following theorem, which we have recently proven, but whose
proof we omit in this thesis:

Theorem 3.2.4. For primitive necklaces P with |P| > 3, there is a power series Hp in
Z[[x]] such that the sequence of generating functions (Dpr)52, converges to Hp. Moreover,
Hp is a rational function having denominator polynomial of degree at most | P)|.

Conjecture 3.2.5. In the statement of Theorem the denominator of Hp(x) is of
degree ezxactly | P|.

3.3 Characterizing partitions within an orbit

It seems difficult to characterize exactly which partitions A lie in the BS orbit Oy for a fixed
necklace N. One approach is to consider the distribution by their length I(\), that is, their
number of parts. For example, here is the data for the orbits corresponding to the necklaces

N = (BW)F:

| N [1]2[3[4]5]6][7[8[9[10]11[12]13[14[15[16] 17 [ 18 [ 19 | 20 |

BW [[1]1
(BW)? T[2]2[1]1

(BW)3 1 55 3133

(BW)* 1[4][o[13[12[8 9 [10]11]11] 9

(BW)? 1|5 |1426|33]29 | 22|25 |28 | 34|38] 4l | 39 | 27

(BW)® 16 2045|728 [ 7260 |68 |79 | 95| 109 | 130 | 144 | 151

Table 2: Distribution of /() for partitions A in O gy .

Here are some properties that we observed and proved for the orbits O(gy)x.
Proposition 3.3.1. The partitions in the orbit O gy satisfy these conditions:
1. The largest part size is 4k — 2. Thus partitions in Ogwx have at most 4k — 2 parts.

2. The longest playing sequence is of length 2k. The number of longest playing sequences
is 2 - k2,

3. The number of partitions within the orbit having 4k — 2 parts is 3*72.
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We continued this analysis for the necklaces N = (BWW)* and proved these properties:
Proposition 3.3.2. The partitions in the orbit O gwwr satisfy these conditions:

1. The largest part size is 9k — 5. Thus partitions in O(gwwx have at most 9k — 5 parts.

2. The number of partitions within the orbit having 9k — 5 parts is 2872,

The previous results and data suggest the following conjectures.

Conjecture 3.3.3. Let P be a primitive necklace with |P| > 2. Then there exists an integer
vp, depending only on P, such that partitions X\ in the orbit Opr have

I\ < |P] -k + p.

Conjecture 3.3.4. Let P be a primitive necklace with |P| > 2. Then partitions X in the
orbit Opr have

I(\) > k.

Moreover, if P has consecutive black beads (that is, P = B5W" for some s,t), there is exactly
one such A having l(\) = k. Specifically, if |P| = p, X\ is of the form

(2p— 1)k +x
\ (2p — 1)k —p +x
(2p~ 1k~ (k= 1)p +a
where kp(p —3)
r = T—p—l—k—l—b(P).
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Part 11
Proofs

We will use some notations and rules discussed below in the proofs.
For a partition A, we will use A +m to denote the partition (A; +m, ..., \, +m). Moreover,

(2) means a partition with the top entries from partition A\ followed by partition u - in this

case, the last part of A is no less than the first part of . To denote a prefix of a partition,
we use A1 j] = (A1...,A)).

If a partition A has some playable parts of the same size, we will use the smallest index in
the playing sequence. For example, the playing sequence in Figure [7|is [211] even though
we can play [3] at the first move.

First of all, it is easy to see this property for partitions in Oy for general necklace N:

Claim 1. Let A be a partition in On. If a part \; is playable, then its immediate following
part \jy1 is playable in the next state if and only if their difference is at most 2.

Proof. Since playing other parts than A\; and A;;; does not affect the gap between them, we
only consider the moment when performing R;. The result is a partition A" with \; parts.
Thus, a part is playable from that moment if and only if its size is at least A\; — 1. Because
R; adds one to every other vertex, we obtain the claim. O

4 Analysis of O gy

4.1 On the reverse BS game graph for O gy

Proposition implies that n = |[A| = 2k* for any partitions A in the orbit O gy
Figure shows both the reversed game graphs O . and their difference labelings for

(BW)
k=12
(3 2y 0 2y
(i1’>> (2) <(1)> (0)
L 2 Ry
2V 2]
1/2 1/2 <5>
z o (2)
8; ) 2) o~ 2(1)5 } (1) i<3>§ -~ <_1i
! ! <144> <162> Yo
Lol m o
4 2 - -
Tob o
-1 -1

Figure 11: The reversed game graphs O(ng) . and their difference labelings for £ =1, 2.

The recurrent 2-cycle Cgyyr consists of two partitions (2k—1,2k—1,2k—3,2k—3,...,1,1)
and (2k,2k—2,2k—2, ..., 2,2) whose difference labels are ((01)¥)” and ((10)*)7, respectively.
Here the symbol (a)* means a vector of k a’s stacking on each other. These two elements
will be used as the roots of the trees in the quasi-infinite forest we analyze shortly. But first,
we prove an important property for the elements in those (BW )" orbits:

op

Proposition 4.1.1. Given a playing sequence o in O(BW)k'

1<j<]o| -1

Then oj11 < o; + 1 for any

Proof. Due to the bijection described in Section , any partition A in C g+ has pairs of
consecutive parts of the same size. Moreover, if \; = Aj11 then A\jion = Ajion1 = Aj — 2k,
whichever exist. The difference between the consecutive part sizes are preserved unless one
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of them is played. If Ri(\) = v, then 1y — ¥y > 2, since A1 — A\gr1 > 2. Equality holds
if A\, = A\py1.

If Ry, (A) = Ri(\) = v, only vertices up to ¢4 can be playable. But that ¢y is playable
means Agi1, Agt2, Akt+3 have not been played before R, 80 Yiio = Y. Therefore, we have
the proposition. O

4.2 Limiting level sizes of Oy as k grows

We consider the difference game graph as described in Figure [8| but we take only the parts
above the first negative part (or else take all the partition). We define the BW quasi-infinite
forest Fpw of reverse Bulgarian Solitaire according to the rules below. Here forest is used
instead of tree in Section because we build two trees, one of them rooted at each the
two elements in the recurrent cycle.

(1) (3) (3)
0 (0) gi
1) o
RN .
oo @ AN
w1 @@ @@
| 0 1 (1) (3) (3)
<1> 0 0 (0) (2)
(1) (1)
1 j | (0
...... <il[>

Figure 12: Quasi-infinite BW graph

Rules for s in the BW quasi-infinite forest:

1. Delete the bracketed entry in the i'" row. If the i*" bracket is (0) followed immediately
by a (1), playing either vertex i or vertex ¢ + 1 results the same, so we label the play

by i+l
2. Increase all entries in rows above it by 1 each, and bracket them.

3. Bracket the new " entry (if there is one) if it differs at most 1 from the old one. If

there are two consecutive entries (1) and 0 is bracketed, so is 1.

4. If the (1) or 2(1]; at the lowest position is played, add 2(1)5 at the end.

Let g(x) be the generating function for the level sizes of the BW quasi-infinite forest. There

are two trees rooted at the two elements in Cgyyx: Gy starts with v = g(l)i and the other
(1)

G starts with v, = (0). Let g1(z) and go(x) denote the generating functions by level sizes of

(1)
(0)

the two trees, G; and G respectively, so g(x) = g1(x) + g2(x). Starting from 1y we play Ry
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(the only playable part) and get back to the root of Go. Thus the level generating functions
of the two trees satisfy

g1(x) =1+ zga(x). (10)
(0)
(1)
same. Thus playing either of them results in the same element. To represent this move in a
playing sequence, we will use the vertex with (0) on it. Moreover, we use the notation R, for
playing sequences in the quasi-infinite game graph similarly to the normal BS game graph.

As a reminder, if we have in a partition A, adding a staircase makes their values the

(4)
(1)
c.g. R[222} (0) :E(l)i

Similarly to Jonsson and Erikson’s paper [6, Proposition 3.1, p. 4], we have the following
proposition:

(1)
Proposition 4.2.1. The BW quasi-infinite reversed BS graph rooted at (0) has the following

(1)

properties:

(0)

i. Once Ry is played, only Ry can be played (until () or a leaf is reached).

(o)

(1)

Proof. i. When we play Rj, if the second part differs from the first part by at least 2,
nothing is bracketed in the next state, thus we reach the leaf. Otherwise, according to

ii. For r > 2, the playing sequence [234...r1"] leads to

the rule 3, either we reach the root 2(1)2 if the second and third parts are (1) or the only
bracketed part in the next state is the first part.
ii. It is easy to see that
(r)
(r—1)
(1) :
Rpz.n | O ) =
1 (1)
(0)
(1)
and thus playing [1"] consecutively deletes the first r rows and reaches g; From
property 7, we see that this is the only way to get back to the roots.
O

4.3 Proof of Theorem [3.2.1

We begin by using Proposition to construct the growth function, or the generating
function of g, by its level sizes. Table (3| shows various playing sequences and their contri-
butions to the generating function go(z), explained below. We use [> t] to denote the set of
playing sequence with entries no less than ¢, including the empty sequence.

Sequence Contribution | Sequence Contribution
[1..] £y 2> 2]] g2
[212.. ] g [2[> 2]1] 229y
[2313.. ] g, [23[> 3]17] gy
[2341% .. ] gy [234[> 4]13] 2%g,

Table 3: Growth function for tree go.

By Proposition [4.2.1}ii., the sequences [23...71"] lead to the root of Gy, so each of
them contribute the whole G tree at level 2r — 1, that is, 2"~ !g;(z). This is also true for

playing sequence [1], since Ry | (0) | = }.{.

17



(2)

) _ @

(0) Y2
(1)

means we only play parts of indices greater or equal than 2, then we have a subtree that is

isomorphic to Go. The isomorphism is defined by excluding the top part. Thus sequences

[2[> 2]] contribute zgy. Similarly with [23...7[> 7]1"7!], each contributes 2% ~2gs, since

Next, if we play Ry, we reach . Thus if we leave the top part untouched, which

—~
—_
~

If we play [23...7r[> r]], the top 7 — 1 rows above (0) are always playable due to rule 2.
(1)
Thus the playing sequences [23...r[> r]1°] with any s < r — 1 are legal. For each r > 2, we
only count for [23...7[> r|17], since if s < r, [23...7[> r]1°] are counted as [23... s[> s]1°].
Hence, the type [23...7[> r]1"7!] contributes z2"2gs,.
Therefore, we obtain

gE)=1+@+2>+.. )g)+ (@ +2°+ 2" +..)g(z)
=1+ (@+2®+.. )+ (xz+227+ 22 +.. )g(2) (substituting for g;(z) using (10])

T 222
= (1 +t1o x2) + 2g2(x) + T x292(:1:)

Bring all occurrences of go(x) to the left side gives

=32 —zr+1 () —2+x+1
)= ———
1—22 92 1— 22
and therefore
— 24+ x+1
ga(x) =

-3 —x+1
From this one concludes, again using , that

9(x) = g1(x) + g2(x) = (1 + 292(2)) + g2(2) = 1 + (1 + ) g2()
—3°+z+2  (1-x2)(3z+2)
-3z —r+1 23-32—a+1

However, we desire the generating function for the level sizes of O(ng)k in the limit as
k — oo. As constructed, our quasi-infinite forest has an entire copy of itself after playing
Ry, giving rise to the left branch [1...], which we wish to disregard. Letting Hpw (x) denote
the height generating function for the rest of the quasi-infinite forest, that is, the two roots
and the elements in the branch [2...], one then has

g(x) = zg(x) + Hpw(x)

and therefore a )2(3 2
- x +
= (] — = .

Thus to complete the proof of Theorem [3.2.1] it only remains to show that the level sizes

of (’)E’ng)k actually converge to the coefficients given by Hpy (). This is a consequence of a

somewhat more precise theorem.

Theorem 4.3.1. The finite reverse Bulgarian solitaire gmph(’)(ogw)k coincides at least up to
level k with the BW quasi-infinite forest after removing its left branch [1...].
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Proof. For each k, to get to level k£ in the quasi-infinite forest, we add at most k& blocks 22;

Thus if we start with the root of k& blocks of (1) as below

(1)
(0)
(1)

0

we don’t need to add new parts until using up those k blocks. Moreover, the rule of bracketing
stays the same in the finite tree due to the observation at the beginning of the section. This
implies the coincidence of the quasi-infinite forest with the finite graph. n

4.4 Proof of Theorem [3.1.1]

Let us recall the statement of the theorem.

Theorem [3.1.1, Let {T}(z)}5° be Chebyshev polynomials of the first kind. For each k =
1,2,3,..., one has

Moreover, the generating functions for distance to the recurrent cycle C gy

Diguela) = 30 220 = 3" D, () o
AeOn d=0

satisfy the following generalization of the {T(2)}%2, recurrence ({4)):

Dwy(x) :=1 by convention,
D(BW)l (IL’) = 2,
Dwyt(z) = 23z + 1) Dy (x) — 2°Dgwyr—2() + (x — 1)*(Bz +2)  for k > 2.

Note that the assertion on the orbit sizes ‘(’)( Bw)kl follows once we have recurrence for for
D(pwr(x), since this gives the orbit sizes at x = 1, and its initial conditions coincide with
those for Tj(2).

Figures [13], [14] illustrate the recursive structural relationship that we will prove,
relating the graphs of O gyyx. We will use G = O?gw)k for short. In each G, a node is
labelled by the playing sequence leading to it. Also, the coloring used to group the nodes in
G, follow these rules:

(a) Black nodes come from an embedding of G;_; into Gy, by one of these two rules:

(al) Increment each entry in the playing sequences of G,_; by 1 and prepend a 1 to
the beginning.

(a2) Replace the first 1 in each playing sequence of Gy_; by 122.

(b) Red nodes are another copy of Gy in Gy, directly related to the black nodes from rule
(al) by append 1 to the playing sequences representing them.

(c¢) Blue nodes are from an embedding of Gy_5 into G, by either:

(c1) Replace the initial 1 from each of the playing sequences in G;_» by 1212, or

(c2) Increment each value of the playing sequence of Gy_o by 2, replace the first entry
of each playing sequence by [123] and append 1% at the end.

(d) nodes (if there are any) are from an embedding of G;_3 into Gy by replacing the
first 1 by 1214,
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(e) Hollow diamonds ({) are actually not vertices of G;. They are vacated after modifying
their playing sequences as follows: replace the initial 122 with 123, and erase a 2 in
the fourth position, then append a final 1. One then moves this modified node to the
position of the solid diamond node (¢).

(f) This rule only applies to Gy where k > 4. The playing sequences in this group are of
the form [1233[> 3]12?]. They are in bijection with the playing sequences of the form
[1213...] in G_; by replacing the initial 121% with 1233, incrementing each of the other
entry by 2 and appending 12 at the end.

0 (1]
o«

G- 0, [1]

Figure 13: G, = 0%, |G1| = 2.

[11] [1] } 20 G : [1],[12] rule (al)
A ' G - [11], [121] rule (b)

[121] [122] Gy : [127], [12%1] rule (a2)

[1212] I I [1221] } Gi Go : [1217] rule (cl)

Figure 14: G :OJOBPWBW' The playing sequences are split into four groups that give |Ga| =

3|G1| + |Gol = 4|G1| — |Gol.

[1212]
I [1221]

[12121] @[12721] @ [12222] [12312] [12322] [12322]
| i l [12321] i l i
[1214] §122212] & [122221][12313] [123221] [12321]
— (123212
Ga
(Qg : [1], [12], [123], [1232], [12322], [1232], [12322] rule (al)
Gy : everything above and ends with 1 rule (b)
Gs : [12%], [1221], [12%2], [12%22], rule (a2)
[12222 ] [12221] [12221 2]
G : [1212], [121%1] rule (c1)
g : [1231 } [12331 ] rule (c2)
Go : [1214] rule (d)
| Extra: [123121] rule (e)

Figure 15: G3 = OR gyypw- The hollow diamond was modified and moved as in rule (e) to
the position of the solid diamond. The playing sequence groups give |Gs| = 3|Ga| + 2|G1| + |Go| =
4|Ga| = G-

Proof. First of all, note that starting from ([01]%)7, the playing sequences () and [11] are the
same. Let

Gi(z) = (Dwpr(z) —2)z+1+2=1— 2+ 2Dy (). (11)
so that

Gi(z) -1+ Gr(x)—1—x

We stretch out the cycle of the orbits, which means the element with the difference notation
((01)")T is of level 0 and the one with the difference notation ((10)*)7 is of level 1. This

(12)
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2k + 2 (2k + 3) (2k + 2)
2k + 2 2k +1 X (2k + 2)
: E— : E— : —
4 5 6
4 5 6
14 24 34
. 1 (2k+ 6)
iy (D 2k +5) / (2k +2)
ot (2k +2) (2k +3) (2k +2)
_ 2k+2) o (2k+L 2%
Gryo = : — ) — 2k+1) —— . —
| 2 3 4
. 2 3 3 142
(2k+6) (2k +5) (2k +4) (2k + 3)
(2k + 4) 2k + 3 (2k + 2) (2k + 3)
(2k + 2) 2% +1 2k + 2 2% +1
(2k)  — : # : # :
: 5 6 7

Figure 16: Diagram for Gy o

modification turns the graph G; into a tree with root 73 corresponding to the element at
level 0. More specifically, [(7,) = 2k and

(2k — 1)
(2k — 1)
2k —3
Tk = . .
1
1
Consider Gyo, starting with 2k + 4 parts in the Figure [16] From the diagram, we see
that any new parts (the bold entries) which are added at the bottom are not playable at any
time due to Claim [I] Thus we can also investigate the quasi-infinite forest, where we have

k + 2 times to add the block 2(1)5 when performing the rule 3 (Subsection . We split the

set of valid playing sequences in G into the following groups:

Group 1: [1],[12],[123[> 2]]: rule (al)

We easily see that by playing R;, we get to a partition which, if we ignore the first
part and decrease each of the other parts by 1, turns out to be 7,_;. Specifically:

(2k +4)

Ry (Tt2) = Toar + 1

Since new added parts do not have any impact, for each playing sequence ¢ in this
group, if we erase o; = 1 and decrease other indices by 1, we get a valid playing
sequence in Gi,;. That is because we have played only the lower part 74,1 + 1 of
Ry (7i42) if we keep playing parts of order at least 2. This map is clearly a bijection,
and also induces a graph isomorphism between the elements that the playing sequences
represent. Hence this group contribute 2Gyi1(x) to Grya(x).

Group 2: [11],[121],[123[> 2]1]: rule (b)

Here [11] = (). These playing sequences are the results of playing R; at the end of the
playing sequences in group 1, and are valid due to rule 2 in the quasi-infinite forest
section. Each of them is exactly one level lower than the element in group 1 from
which R; is played. However, level 0 (originally corresponding to (}) is now at level 2
(corresponding to [11] in this group). Thus this group contributes z2Gjy11(x) — 22 + 1
to Gk+2(x).
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Group 3:

Group 4:

Group 5:

[1212], [12121], [121212. . .]: rule (c1)
It is easy to see from Figure [16] that

Tn +4
Rpg12) = 3

where 3 has no playable parts. Thus this group contributes xGy(z).

[1214], [121411], [121412. . .]: rule (d)

Similarly to group 3, the playing sequence [121%] leads to 7,1 +6 and some non-playable
parts below, thus this group contributes z°Gy_ ().

A similar phenomenon happens for playing sequences starting with [121%/] for j < k+1,
and each contributes ¥ 2G}_; 1 (z).

Therefore, this branch of playing sequences [121?...] contributes

k+1

k
E : 2j+2 _ 2 2j+4
x Gk—j—H = i Gk_j.
Jj=1 Jj=0

[12%...] and [123[> 4]13.. ]: rule (a2) together with rule (e)

As we can see in the diagram above, the top part of Rjj92)(7k42) is 4 more than the
second entry, so if we play R; any time after, any parts below are not playable anymore
(Claim . On the other hand, this branch still performs like 75,1 by mapping

(2k +2)
(2k)
A -4 (2k)
A = Rpy2)(Tht2) — N2 kLD -2 Ry(Ti41) (13)
2
2

except for the missing playing sequences of the form [(12%)2[> 3]1%p], where [12[> 3]12p)
is a valid playing sequence in Gy1;. We replace them by [(123)[> 4]13p]. Specifically,
the map is as below

— First, replace the initial (12?) by (123).
— Second, erase the fourth 2, increase the entries by 1 until 12 is reached.

— Third, add one more play 1, so 12 becomes 13. The rest of the playing sequence
is kept.

The missing [(122)2[> 3]12...] are bijectively the playing sequences [12[> 3]1%...] in
Grt1 if we map Ryj02)(Tp42) as in and apply rule (a2). They represent the partitions
in bijection with the ones that are represented by the sequences [(123)[> 4]1%...]. That
can be seen from the diagram, where

(2k + 6)
Rp123)(Tht2) = (2K +4) (14)
Ry (Tk) + 2

That is, if we ignore the top two parts and play R, where indices of o are at least 4,
we play only on Ry (7k41). Since

(2% + 3)

Ry (Tk41) = Ru(ry) + 2 (15)

From and , we get the correspondence. In addition, the corresponding pairs
of playing sequences represent partitions of the same level.

Hence, this group contributes z2(Gj41(x) — 1 4+ x?), because we start with the level 1
(as shows) so the level 0 of Gy is now at level 2 instead.
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Group 6: [12312],[123312], [1234[> 3]12]: rule (a2)

Those have [1%] at the end, and are valid by Proposition [4.2.1] From the diagram,

we have
(2k + 6)

Rpog)(Tiy2) = (2k+4)
R, (Tn) + 2

and
(2k 4+ 7)

Ryi232) (Tht2) = (2k 4+ 5).
Tk + 2

Since Ryia3)(Tr42) corresponds to the level 1 of Gy, for which the next move is [2]. We
introduce a bijection between playing sequences of G, and those of group 6:

— First, replace the initial 1 by 123.

— Second, increase each of the following indices by 2

— Third, append 12 to the end.
More specifically, the playing sequences [1], [11], [12[> 1]] of G, are mapped to [12312], [123312], [1234].
3]12].
Hence group 6 of playing sequences represent a part that is almost the same as G,
except that the level 0 (0 in Gy) is moved to level 2 ([11] is mapped to [123312]). This
group’s contribution is z4(Gy(z) — 1 + 2?).

Group 7: [123%[> 3]12]: rule (f)

They represent a part that is isomorphic to the part that is reached from playing [121°]
in G and at the same level, since

(2% + 8)
(2k + 6)
<22€ Z>2> (2k + 8)
2
Buagy(mee) =0 = Rfi’Zi >6>+ s
6 12
6
12

This part is similar to group 3 and 4, except that in each portion that is isomorphic to
G;, the level 0 (sequence @) is moved to level 2 (sequence [11]). In that way, we don’t
count [121%%*1] leading to Gy. Hence, this group 7 contributes

n—2
l’ﬁ <Z I2j<Gn_1_j -1+ 172)) .
j=0

Below is a summary of those groups of playing sequences in Gy o:

Grer = (1, [12], [123[> 2]]
Grr = [11], [121], [123[> 2])1]
Gre1 : [127.. ],£1222[> 3)1.. ]

Mlssmg part (*)

G : [1217],[12171], [121%12.. . .]
Gr : [1231%], [123317], [1234]> 3]17] (16)
Gy : [121%],[121%1], [121*12. . ]
G, = [121%"], [121*"1]
Go = [1213 1)
Extra : ([125[> 4117 ..., ([123°[> 3]13)

TV
Replacing for part (*)
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Together we have the recurrence below:

Gryo =2Gre1 + (22Grar — 22+ 1) + 2%(Ghpr — 1+ 23 + 24 (G — 1 + %)+

k k—2
+ Y e HG(2) + o (Z 2 (Gro1mj — 1+ $2))

§=0 §=0
=122 + 2% + (2 4+ 22 Gppy + ' Gt

k k=2
+ Z l’2j+4Gk_j((E) + 1’6 (Z {L‘Qj(Gk_l_j -1+ ZL‘Q))
j=0

J=0

This last formula implies:

k-1
Gryo(®) — 2Gry(z) = 227 Z 29 Gr_j(z) + 1 — 227 + 2212
=0

k1
together with  Gji1(z) — 2Gp(z) = 227 Z 272Gy (z) + 1 — 227 + 2272
=1
we get  Gryo(n) — (z + 22)Grpr (2) + 2°G(2) = 202Gy (2) + 1 — 322 + 22*
Therefore  Gpio(z) = (32% + 2)Gppr (v) — 23Gr(z) + 1 — 322 + 2%

Making the substitution from for Gx() in terms of Dy () yields the recurrence
in Theorem B.1.1 [

4.5 More properties of partitions in O gy and proof of Proposi-

tion 3.3.1

Proposition contained three assertions, which we prove as three propositions (and a
corollary) below.

Proposition 4.5.1. The largest part size of a partition in Ogyyk is 4k — 2.

Proof. Starting with the root of G, which has largest part 2k — 1, if we play any parts not
1, the top entry gets 1 added into it. Since any new parts created by performing reverse BS
are not playable at any time, as observed in the diagram Figure above, the number of
operations R; we can play are at most the number of parts in 7. One of the longest playing
sequences is then [12%*721]. Thus, the largest part we can get is right before we play the last
Ry, which is

2k — 1+ 2k —1 =4k — 2. O

Corollary 4.5.2. Partitions in O gy have at most 4k — 2 parts.

Proof. Easily deduced by performing one reverse BS operation on elements with the largest
part size. O

Proposition 4.5.3. The longest playing sequence in O gy is of length 2k. The number of
longest playing sequences is 2 - 3572 for k > 2.

Proof. By the same argument as in Proposition [4.5.1] the number of operations R; we
can play is at most the number of parts in 7, which is 2k. The maximum is achieved by
playing [1226-11].

We prove the second statement by induction. The base case k = 2 is obvious and is shown
in Figure

From the groups of playing sequences of Gy as in[16], those longest playing sequences include

e twice the number of longest playing sequences in Gy_; given by group 2 and group 5,

e the sum of all numbers of longest playing sequences from G, to Gy_o given by groups
3 and 4,

e the sum of all numbers of longest playing sequences from G; to G;_5 given by group 7.
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However, the portion involving G, in the sequences [12...1%], s > 1 has no [2] branch coming
out of it, so we don’t count it in the longest sequences. Hence, the total number of longest
playing sequences is

2.3573) 4 22332 +1-1) 223J2+1

—4 . 3k~ 3+2(3’“ 3—1)+2
—9. 3k—2
m
Proposition 4.5.4. The number of partitions in O gy with 4k —2 parts is 32 for k > 2.

Proof. This number is equal to the number of partitions with largest part 4k — 2. We prove
the asserted formula by induction. First, the base case k = 2 is shown in Figure (14|

Since we only have 2k plays, the largest part size 4k — 2 is obtained if and only if we
play only R; with j > 2 after the compulsory initial ;. Thus, from the recurrence structure
(16]), we see that those partitions only come from either the sequences leading to partitions
with 4(k — 1) — 2 parts in G;_; obtained by playing [122...] (group 5), or the longest playing
sequences in Gy_; obtained by playing group 1 - that is [1], [12], [123[> 2]]. Hence the total
number of partitions of length 4k — 2 is

3k—3 + 2 . 3k:—3 — 3k‘—2'

This concludes the proof of all parts of Proposition [3.3.1]

5 Analysis of Opr for P = BWW and BBW

5.1 On the reverse BS game graph for (BWW)k

Proposition 4|implies that n = [\| = ( ) + k= 2=k for any partitions \ in the orbit
O Bww)k Slmllarly to the last section, we show some 1n1t1al observations about OE’]’;WW
and thelr difference labelings in Figure

(0)
(5) 0
4 1
(1)
4 0 .,
e
! 3 (0) 0
5
(2) (0) 3 .l 0 2l
S < 2 0 o O
B ) " ~ ()
225 1/2 lz (1) 2, ) 2 1
2 N\, 2/3
w0 S S\
1 g (5) 0 (3)
14 ! 3 (3) 1 (1)
= v ! U
1 3 -1 _
2 0 1
SN
6 ) (9) e :
4 (4) (6) / l\
2 2 (2 VI ()
L J 0o (0 @
ron -1 -1 (=

Figure 17: The reversed game graphs O?
level 3.

(BWW)k and their difference labellings for £k = 1,2 up to
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The recurrent 3-cycle C gy consists of three partitions (3k,3k —2,3k—3,...,3,1), (3k —
1,3k—1,3k—3,...,2,2) and (3k—1,3k—2,3k—2,...,2,1,1) whose difference labelings are
((100)%)T, ((010)*)T and ((001)%)T, respectively. We will use these elements as roots of the
trees in the BWW quasi-infinite forest. First, we prove an important property for (BWW)k
orbits:

Proposition 5.1.1. Given a playing sequence o from some recurrent partition A € C(gyw )
i an orbit O(OZWW)'” then 0j41 < o +1 for any element of o. Moreover, there exists an
mdex t such that

01 <0< ... <o >001> ... (17)

Proof. The only element in Cgywyr that is a root of a tree outside of the cycle is

(3k)
(3k — 2)
3k—3
A=
3
3
1

We will prove the Proposition for playing sequences starting with A, since any playing
sequence starting from an arbitrary element in the orbit is contained in a playing sequence
starting at A\. Let o[: j] = (01,...,0;) be the indices of ¢ up to index j. We will prove both
the assertions by induction on j, that is, o[: j| has the properties in the proposition for any

Ve

e Base case: j = 1. If o7 = 1, then R;()\) gets back to the cycle, so g = 1. If 09 = 2,
then
(3K + 1)
(3k — 2)
(3% — 2)
3k—4
Ro(N) =

W

SOO'2§320'1+]_.

e Inductive step: Assume o[: j] has the form as in and opy1 < o, for any h < j. If
o; = maxo[: j| = m, that means any parts below o; have not been played so far. Let
¥ = Rop.(j—1))(A). Note that ¢ for any s > m are parts of . Hence, there are 3 cases

Ym
for zmﬂ, which are
m—+2
Q;Z)m—i—?)
t+1 t t
t—1 t t—1
t—2 t—2 t—1
t— 2 t—3 t—3
for some t.

Hence, 041 < m+ 1 due to Claim [T, that is, the next playable part must differ from
U, by at most 2.

Moreover in this case, of: (j + 1)] trivially has the form in (I7). Another point is
that 0,41 = m + 1 happens only in the second case above. In that case, if we let
w = R+ (A) then wp, — wygr = 3.

Now if o, is not the maximum in of: j] then there is s < j such that o3 < ... <
0s > ... > o0j and o5 > o0;. The above argument shows that whenever we strictly
increase oy, there is a gap of 3 between the parts of indices o, — 1 and o5, which
cannot be decreased by playing a part of index larger or equal than ;. Thus R, has
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a difference of at least 3 between consecutive parts up to os. Recalling Claim [1| and
let 1 = Ro[(h—1)) for some h > s, we see that any R,, (¢); with ¢ > o}, are not playable
any time in the future because ¢,,_1 — ¢,, > 3. Thus 041 < 0;.

The proposition is proved.

O

5.2 The limit for O gy by level sizes and proof of Theorem [3.2.2]
Similarly to the BW case, we consider the BWW quasi-infinite forest as in Figurd18|

c c @
(0) (0) (0)

0 (1) 0

1 1/2l 1
1] (1) RN

=)

(

)
(1)

+— =
—
— = O O
~

Figure 18: BWW quasi-infinite game graph.

Rule for L in the BWW quasi-infinite forest:

1. Delete i*" bracket. If the it bracket is (0) followed immediately by a (1), playing either
vertex ¢ or vertex ¢ + 1 has the same result, so we label the play by Z/Z—+1>

2. Increase all entries in rows above it by 1 each, and bracket them.

3. Bracket the new i number (if there is one) if it differs at most 1 from the old one. If

there are two consecutive entries ? and 0 is bracketed, so is 1.

4. If §0> are the lowest parts that are bracketed, and if part (0) among those two is played,

1)
(0)
append 0 at the end.
1

The forest Fpyw consists of three trees G, Gy and G5 rooted at the three elements in

C(BWW)kZ < >
1

N = <8>,’Yz = 2?; and y3 =

1

)

—~
— O O
=

respectively. Let g; be the generating function by level sizes of G; for i = 1,2,3 and let
g = g1 + g2 + g3 be the generating function for the BWW quasi-infinite forest by level sizes.
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Proposition 5.2.1. In the tree G; of the BWW quasi-infinite forest, for any playing sequence
that starts with 2, the top part is always playable. Moreover, the playing sequences [2[> 2]1]
lead to the leaves.

Proof. By rule 2, the top part is always bracketed unless it is played. However, the first move
(2)

Ry(71) = (0) separates the top part from the second part by 2, and the difference between
(1)

them is not decreasing due to rule 2 unless we play R;. Now if we play R;, the second and

any lower parts cannot be bracketed due to rule 3, thus we reach a leaf. O

Similarly to the BW case, when we play R; from any roots, we get an entire copy of the
tree rooted from the next node. In addition, in G, the playing sequences [2[> 2]] form a
subtree that is isomorphic to Gy by neglecting the top part. By the Proposition [5.2.1]
playing R; after those playing sequences is always valid and leads to the leaves. Hence we
have the table of contribution of the playing sequences in the tree GGy as below:

Sequence ‘ Contribution

1...] xgs
2[> 2]] £g>
2[= 2]1] 2%

Table 4: Growth function for tree G7.

Therefore, we get

g3(x) =1+ zga(x)

g2(x) = 1+ g1 (x)

g1(z) = 1+ g3(2) + (2 + 2°)g2(2)
Putting them all together gives

gi(x) =1+ (z +2°) (1 + zgi(2)) + (1 + 2 + 2%gi ()
=1+ 22 + 22% + (22° + 2%) g1 ()
Thus one has
222 4+ 2x + 1
9t = e
Therefore,
23— 3x% —4x — 3
203 422 — 1
Now, we desire the generating function for the level sizes of OZ’ZWW),C in the limit as
k — oo. Let the generating function for heights of the elements of the BWW quasi-infinite
forest to be Hgyw. As constructed, our quasi-infinite forest has an entire copy of itself after
playing R; from each root. Moreover, Hpyw is the generating function by level sizes for
the remaining part after disregarding that copy, including the whole trees Go, GG3 from level
1 and the left branch of GG;. Hence

g() =2+a+ (L +z+a*)g(z) =

9(r) = zg(v) + Hpww (x)
That leads to

Hywiw(r) = (1~ 2)gfa) = L0230 2102 9)

=3+ + 227+ 32° + 52 + 72® + 112° + 1727 + 252° + 392° + 5920 + .. ..
In this case, we also have the same result as in Theorem that is the infinite forest
coincides with the finite game graph for (BWW)* at least up to level k. Thus we conclude

Hpww (z) as the limit of the generating functions of (BWW)* game graphs by level sizes.
Next, the limit by level sizes of O?g » can be computed easily by the same technique.

BW)
The set of playing sequences in the BBW quasi-infinite forest turns out to be exactly the

same as in the BWW case. That is because the Proposition holds true for the BBW
quasi-infinite forest. Figure shows the analogous BBW quasi-infinite forest. Therefore,
the limit Hppw (z) for generating functions of 0?53 Bk DY level sizes is the same as Hpyw (2)
shown above, completing the proof of Theorem
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Gy @ %

(1) () (1)
0 (1) 0
1 1/2l 1
) (1) RNy

—~
— = O
=

—

— = O
=

Figure 19: BBW quasi-infinite forest.

5.3 Proof of Theorem [3.1.2]
5.3.1 Notation

Throughout this section, we will use the same symbol for the tree and its size. The top
parts +n means that there are n playable parts at the top but by playing them, we disable
any parts below them (including itself) from being playable, according to the second rule in
Section [5.2] Those extra parts will occur during the recurrences and can be neglected so
that we can recognize the isomorphism between a part of a tree and another tree. We don’t
count playing those top extras in the cardinality of the trees. As before, the playable parts
will be put in brackets (.).

For a sequence o, we use o[j ] = (0}, 0,41, . .).

5.3.2 Three types of trees

Those three types of trees will occur in the orbit O(gyy k. Recall the staircase is of the
form Ay = (k,k—1,...,1,0). When describing the trees, we will use the disrupted staircase
partition, defined as

Tr=m+30+k),m+3(G+k)—-1,....m+3k+1m+3k—-1,...,m)

which is the staircase starting with m, having 3(j + k) entries and there is a separation of
1 in between. More specifically, using the notation A + m = (A\; + m,..., A\, + m) for a
partition A of length n and allowing the last part A\, being 0, we can define the disrupted
staircase as

Agjo1+ Bk+1)+m

Asp_1+m

ok =
That is, the lowest part of the higher partition is 2 more than the highest part of the

lower partition. This disrupted staircase will be used as a base to add the "blocks” on. In
particular, Ag;_y = A, .

0 0

Type 1: T} has j blocks [ 1 | followed by a separation and k blocks | 0 |. If & = 0, the base is
0 1

A9, and T3 is exactly one of the elements in the recurrent set of O?gww)j. Otherwise
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the basg is A} 4+ and has one extra playable part on top. We also denote the root of

T? by 7). For example:

+1
a S
(8) (10) (9) J
(8) (10) 8 (37— 1) :
6 8 8 8j—1) 3k + 4
5 7 6 ;3-8 3k +4
3 5 5 9 3k
2 3 3 9 :
2
2
‘ 0
Type 2: Aj has two extra playable parts on top, j blocks [ 1 | followed by a separation and k
0
0
blocks | 0 |. If k =0, the base is A?, ;. Otherwise the base is A%, ;. The root here is

1

denoted ozi. For example:

B(j+k)+2)

+2 +2 +2

(1) (1) (10) +2 (B0 +k)+2)

(11) (11) 9 (3j+2) :

9 9 9 <3.7'3Jf2> 3k+5

] .

df= g el= g =i oed= U o= 53

6 6 6 5 3k +1

5 4 4 5 :

5 3 3 3 1

3 3 3 3

3

The purpose of this tree type is to disable any added parts (at the bottom) from being
playable in the future.

0
Type 3: By has two extra playable parts on top, j blocks | 1 | followed by a separation and k
0
0
blocks | 0 | and one extra playable part at the bottom. If £k = 0, the base is (A§+0, 2).
1

Otherwise the base is (A%, ,,2). The root for B} is denoted f3!. For example:

+2
+2 +2 +2 (307 + :) +3)
(12) (12) (11) +2 (37 + k) +3)
(12) (12) 10 (37 +3) :
10 10 10 (37 +3) 3k +6
9 9 8 3+l _ 3k +6
Bo=9: fBi=9; B=7; pBi= = ; pBi=  3k+4
7 7 7 6 3k + 2
6 5 5 6 :
6 4 4 4 5
4 4 4 9 A
2 2 2 A
2
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5.3.3 Recurrent Relationship between the tree types

Some examples are given in the figures below. The rules for coloring are:

e Blue nodes are new nodes that appear in the current tree.

e Black nodes are from an embedding of another tree, specified in the figures, into
the current tree.

e Red nodes are directly obtained from the blue nodes by playing R; on them.
° nodes are the effects of the extra playable part at the bottom of Bi.
° ° °
| |
Figure 20: Tree A

e ]

A(lJ 1 2

1 1 1

e o

ot

Figure 25: Tree BY
1
_/ .
o AO

Figure 23: Tree A}

H.H.\.

0

Figure 21: Tree A} 1T

do
[ J
[ J
®

1

1" 1 2 % 2 l/ 2
¢ i . 0 _ A0
) ) L . Figure 26: Tree T, = A,
A [ ]
i :

oo
N
—
[\
N
o

Al

Figure 22: Tree A{ Figure 24: Tree A2

Figure 27: Tree T}

79 + 31

Figure 28: Tree Bl1

Here are the intertwined recurrence relations between the three types of trees defined
in the previous subsection. The proofs are also given.
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(a) For the trees Aj:

1 ifj=k=0
Al ={1+340 if j=0,k>0 (18)
3434771 if j>0,k>0
From the recurrences above, we get
) 3j+k+1 -3 )
Al = — + 3
3k+1 -1 ) 3j+1 -3 )

Proof. We examine the trees in three cases:

e If j = k =0, we have no blocks, so A) = BZ =1.

o If j =0,k > 0, we start with 3k + 2 parts and play

+2
+2
+2 42 (3k +2) <3k37; 1)
Bk+1)  (3k+1) (3k) o
3k (3k 4+ 1) 3k—1
3k 1 3k—-1 1 3k—-1 1 :
AV = . = . — . — 7 —
4 5 6 g
3 4 b) 2
3 4 5
1 1
2/\ 1
+3
(3k)
(3k)
3k —2
e
7
6
6
2
Figure 29

The bold parts are never playable according to rule 3 in Section because
the first bold part differs from its immediate part above by 4, so we can

0
neglect them. By playing Rj;s), we get a partition with & —1 blocks of | 0
1
Let R .= {R,(a?) : 0 =[13...]}. Specifically,
0‘2—1 +3
2
R[IS} - 1
1

We define the map ¢ : R — A? | to be

©(R,(a})) = Roag(a)_,)

where R,(a?) € R. We easily see that ¢ is a graph isomorphism with the op-
eration R because: (1) the bijection is recognized by corresponding a playing
sequence o’ in A)_; with o = [1°0’] in R, and (2) ¢(Rps) = aj_;.

Similarly, playing [1%] and [1?2[> 2]] we have a part that is isomorphic to
A?Y | (by neglecting the top part), since

(3k +2)
R[12] = 052_1 +2 and R[lzg] =
1
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Each of them, except the root, has an extra playable top part, which means
playing sequences [1?2[> 2]1] give another AY . Thus we have:

AV =34+ A0  +2(A) , —1)=1+34

That leads to

1 1 1 Jhtt
<Ak—|—2> 3<Ak_1+2> .=3 (AO—|—2) 5

3kt —1
—
e When j > 0, we start with 3(j + k) + 2 parts and play

Hence
0 _
A =

+2
BH+k)+2)
B+Ek)+2)

+2
+2 +2 B +k)+2)
B(j+k)+2) B+ k)+3) 3G+k)+1

BG+k)+2  BEH+E)+1) : 3(J .+k)
3+ k : : :
: 5 .
4 4 5 g
1 2
2| 5
+3

(B +k)+1)
B+k)+1)
3(j+k)—1

[CRFSENSONC PP

Figure 30

The bold parts are never playable, so we can neglect them, and we proceed
as in the previous case. By playing [1?] we get the root of Ai_l. Similarly,
the playing sequences [12[> 2|] form a subtree that is isomorphic to A{;_l (by
neglecting one top entry). Each of them has an extra playable at the top.
Thus we have:

A) =34+ A) | +24Y | =3+340 |

That leads to

[]

We also prove a lemma for the trees A‘,i that will be useful in the analysis of the
trees Bj.

Definition 5.3.1. An ending branch is obtained by playing sequence [1%12%% ... k“ (k—

1)...1] where [k] is played as many times as possible.

Example 5.3.2. Figure [21), [23, 23, show that
o A} has 2 ending branches: [1> and [121].
o AY has 1 ending branch [13].
o Al has 2 ending branches: [1°] and [121].
A2 has 4 ending branches: [15],[1121], [12*1] and [122321].
T! has 4 ending branches: [1°],[15231], [12°1] and [123321].
[119], [19241], [12°1] and [1283%21].

Bl has 4 ending branches:
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Lemma 5.3.3. The tree Ai has 29151 equal-length ending branches of length
3(j + k) +2. Moreover, each ending branch lead to a partition with the largest
number of parts in Aj,.

Proof. From the argument for the recurrence of Ai;, we see that AZ; has twice
as many ending branches as Ai_l if 7 > 0, and twice as many ending branches as
Aifl if 7 = 0. Since A} has only one ending branch, the first part of the lemma
follows. Moreover, if j > 0, although it requires one fewer play to get to the
second subtree that is isomorphic to Af:l than it does to reach the first subtree
([12] in comparison to [13]), we can always play exactly one more R; for each
ending branches in the second subtree. Thus, the two branches have the same
height. A similar argument applies for j = 0.

In the tree Ai, the added new parts are not playable at any time, so each ending
branch actually plays all and only the 3(j + k) + 2 original parts. This gives the
length 3(j + k) + 2 for each of them.

To see the last statement regarding the largest number of parts in partitions in
Al we refer to the recurrence ([18)) again, with the trivial base case of A} and AY.
If 7 > 0, the first branch of AJ resulted from playing [1°...] leads to the leaves of
AI~' while the second branch resulted from playing [12[> 2]] leads to the leaves
of AJ~" and one extra play of [1] at each leaf. While [1°] adds 3 new parts at the
end, [12] only adds 1 new part, as we see from the Figure above. However,
playing [2] add 1 to the top part, so it is 3(j + k) + 4) and is 2 more than the
original top (3(7 + k) + 2). This part will only be played at the very end of the
ending branch and make up the shortage of 2 parts in comparison with the other
branch. Playing [13] does not change the value of top part. Hence, the ending
branches of the form [12...1] lead to partitions of the same number of parts as
the leaves of Ai_l. A similar argument applies to j = 0. O

(b) For the trees T):

A9 if7=0
T =<3+ T) ) +2B]" if j>0,k>0 (19)
94277 +4B)~° if k=0

From the recurrences above, we get

0_3k+1_1

T° =
b 2
T3 =9+6(j—2)+2T), +4) B>
t=0
-2
=6j+3 —44+4) B
t=0

Proof. e When j = 0, any added parts (bold in the figure) at the bottom will
never be playable:

+1
+1 +1 (3k +2)
(3k +2) 3k +1) (3k)
3k 3k +1) 3k —1
3k 1 3k-1 1 3k-1
3 4 )
2 3 4
2 3 4
1
Figure 31

So T} is exactly the tree AY.

34



e When 5 > 0,k > 0, we start with 3(j + k) + 1 parts:

+1
BG40 1) v “
3j+k)+1 3(j+k)+1
3(j+k) -1 5 +1 < (‘é(;ﬁg k) )
: J+k)+2) 307 + k) (B(j+k)+1)
’ (3(4 +k)) ) :
o Skd oy : 1 : 1 '
)= 3k+4 — : — 5 — 6 >
3k 42 4 4 5
3k g 4 2
3 1 ‘f 2
2 20 1 2
2 +2
(37 + k)
(3(7 + k)
3(Gj+k) —2
5
4
4
2

Figure 32: Caption

The italicized parts are playable in the future because the first italicized part

differs from its neighborly immediately above by only 2. By playing [1%], we
0

add one block | 0+ A9, | at the bottom, and also use all of the top block
1

(0)

0
(1), so we reach a part that is isomorphic to T,ﬁ;ll . By playing [12], we use
0

0
up the top block (1) and the playing sequences [12[> 2]] form a part that is
0

isomorphic to Bi_l (by neglecting one top part). Each of them has one extra
playable part at the top. Hence

T) =3+ 1), +2B]".

e When j > 0,k = 0, we start with 35 4 2 parts:
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N

(3i+2)  (3j+3) ?:?
(Bi+2)  @Bi+1
. . j+1
3 3 35— 1
31 3j
it = 35-1 L gj—2 L
35— 3 4
: 3 ,
2 3 .
2 1 ;
24;1 1 +1 +1
Gy B2 @D (3
- (37) 3j (35 +1)
B+l 407y 3j 3j 1
3 -1 . 2 ) 2 .
. = : = : — e
‘ 5 4 5
i 5 2 3
) 3 1 2
1 1 2
34
+2
3j
3j
3j 2
D —
6
6
4
2
Figure 33

Playing [1°] gets we back to the root. Playing [12%] gets to the tree T/~ because
0

we used up 2 top blocks | 1 |, plus one extra playable top part. Playing [123] gets
0

to the tree Bg_l and two extra playables at top. If we play the second to top part,

we can only play [1] next (by definition of extra top playables) and terminate, so

each node in this part (which is in the tree Bj "), we count as 4. Hence:

Tt =921 4B

O
(c) For the trees By:
1+ A} if j=0 (20)
= , , , 4 20
34 (T ) + 31y 4 2(B] ™ + 37+k-1) if >0

From the recurrences above, we get

3k+1 -1

)3 if 5 =0
J
R D N iy
3j + 3+ 10, +2507 ) Bl if j>0
so for 7 >0
j—1
2B] =6j+2- 34 3 144 Bl
t=0
j—1
=6j+5-3"+4> Bl
t=0
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Proof. e When j = 0, we start with 3k + 3 parts:

+2

+2
<3k32 2 skt
(3k + 1)
sk 3k—1
Bl= : — . =Ak
g )
4
)
4 3
2
Figure 34
From the diagram, we have
B) =1+ Af.

e When j > 0, we start with 3(j + k) + 3 parts:

+2
8(j +k)+3)
(3(j + k) +3) 2 *2
3(j+ k) + 1 +2 BU+k)+3)  @BU+k)+3)

BG+k)+4)  3(+k)+2 (B +k) +3)
: B +k)+2) 3+k)+2
3k +6 AL

; 3k +6 : 1 8
By = 3k 4 4 = = 6 it 7 >
3k + 2 5 6 7
, 5 4 5
: 3 2 3
i 21 1 2
b " 1 2
2 (B +k)+2)
B +k)+2)
3(7+ k)
: >
7
6
6
4
2

Figure 35: Caption

Playing [1%] we get to a subtree that is nearly isomorphic to the tree Tg;ll
except that there are two additional plays at the end of each ending branch
of the part above the bold part, caused by the bold parts. Specifically, from
Figure |35| above, we see that

745 o)t 4

Rpys)(B}) = (21)

(ORI NCRYJURN S
I
(ORI

Let  denotes the bold last part of . from the beginning. Let R := {R,(B]) :
o = [1%], x is not played}. We define a map ¢ : R — T,g;} by

1 AL—2 ,
(A= 2: = <>\2> if AT 0

2
A A2 otherwise

Since the difference between two consecutive parts is preserved unless one of
them is played, we have that the last part of ! is exactly 4 greater than the
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first part of A? unless it is played. Together with @(R[ls}(ﬂi)) = T,g:ll, pisa
graph isomorphism.

Now we consider the set § = Bi — R, which contains partitions resulting
from playing the bold part. The bold part can only be played after one of the
two parts immediately above it is played, i.e. before the ending branches of
the subtree formed by playing the parts above the bold part decrease. That
subtree is easily recognized as Ai_l from (21)).

In particular, if the ending branch is obtained by playing [19122 ... 5% (s —
1)...1] then we can play the bold part at either vertex s (if the immediate part
above it was played in the previous turn) or vertex s+1 (if the part two above
it was played). The corresponding playing sequences are [121292 ., g* 1 (s —
1)...1]and [1*12°2 ... 5% (s41)s...1]. Similar pattern happens when playing
[12]. We get to the tree Bi_l plus one extra playable at top, except there are
two additional "maximal” plays at each ending branch of Aifl.

If the ending branch is [1#12%2 ... s% (s —1)...1] and we have one extra play
R, before the sequence declines, then there are 2°7! elements added to the
tree. This is because there are 257! strictly decreasing sequences o that can be
made from s — 1,5 —2,..., 1, with which [1%12°2 .. s%%1g] is a legal playing
sequence in BJ. From the argument for the recurrence of Al we see
that the total number of extra elements for Ai is 3 times the number of extra
elements for AZ;_I if 7 > 0, and 3 times the number of extra elements for Ai_l
if 7 = 0. Since A{ has only one ending branch (by playing [13]) - thus 3 = 3!
extra elements by playing [14] or [122] and [1?21], we conclude that the total
number of extra elements for Ai is 37k,

So the total number of additional elements after A{;l in the tree Biil is
3/tF=1. Therefore, we obtain the recurrence

B =8+ (T + 997 4 2B 347 =8 4 T 4 2B 9
[

5.3.4 The computation

We want to compute B first:

n—1
2B =6n+5-3"F — 144> Bp
t=0

n—2 n—2—t
=6n+5-3"F—142)" (6(n —1—t)+ 5.3 o Y Bg;fgj*) +4BY
t=0 s=0

n—2 n—2
=6n+5-3"F—142)" (6(n —1—t)+5-3"1 1 +4ZB;;+§S> +4BY,
t=0

- [6n+6'2-<g)}+ {(5~3"+’f—1)+(5.3"+’f1—1)-2.(”11)%

n—
t

s=t

n—1

3
+4[B,2+n_1+2-( ) )B2+n_2}+4-2 (t+1) By
=0

n—1 n—1 n—1
n n—1 n—1
=6- 2t ot (5.3"E=t _ 1) +4 2t . BY
() () VAT )2 Bl

t=0

We will show for any 0 < m < n — 1 that

2B} =6 (tﬁ1)2t+z (nt )Qt' SR A (nt )Zt'B'(‘?*"_l_t+
t= t= t=0

n—2—m
t+m e
LD S (M e
t=0

(22)
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Base case: The first and the fourth equation showed the base cases for m = 1.

Induction: Assume that is true for m, we want to show it for m + 1:

n—2—m
t+m n—l—-m—
(Y
t=0

n—2—m n—2—m
_ t+m 1 . n+k—1-m __ n—2—m-—s
= ( " )(6(n l—m—1t)+5-3 1+4 Y By
t=0 s=t
n—2 ¢ n—2 +
=6 —1—t)+ (5.3"Fktmm
> ()0 2 (o)
n—3—m t s+m
+4- B0+k2m2( >+2 2 (Z( )) By 2t
t= s

We use some familiar identities:

to get

n—2—m
t+m n—l-m—t _ n n+k—1—m n—1
2 ) < > B, 6<m+2)+(5-3 D, 1)*
t=0
n—1

R I |
n—1—(m+1)—t
+2-2 ) ( I ) . By

Hence

m+1 m+1 m+1
2B§:6-Z(tfl>2t+2( ) (5-3mHht - +4Z( )Zt-B2+n_1_t+
t=0

2—(m+1) femt 1 1)
2m+2. 9 By
¥ > (omh)

We have proved . Let m =n — 1 we have

n—1 n—1 n—1
n_ n t n—1\, ntk—t n—1\,: o
2Bk_6-t:0 (t+1>2 +Z( . )2-(5-3 —1)+4Z( . )2 Branoie

t=0
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That gives

n

n—1 n—1
n n—1 n—1
2BTL — . 2t . 15 - k A 2t can—1—-t _ 2t
kaz(tH) 3+532(t)3 (t)+
+=0 t=0 t=0
2 n—1
+ 2 (Z ( . )2t . (3k+n—t o 1 + 2 . 3k+n—1—t))

t=0
:3_3n_3+5.3k+1‘5n—1_3n—1+2.3k+1‘5n—1_2_3n—1+4_3k.5n—1
=2.3"4 3. 5" 3.

Plugging in the recurrence formula for 7j]', we get:

n—2
Ty =6n+3"—4+2) (2-3"" 43 .57 - 3)
t=0
n—1
=6n+3"—442-(3""'=1)—6(n—1)+2) 3.5 —2.3""
t=0
:3n+5n_3n
= 5"

The tree T is the one we want with n blocks WBW or BWW.

5.4 More properties of partitions in O gy and proof of Propo-
sition [3.3.2
Proposition 5.4.1. The largest part size of a partition in Ogwwyr is 9k — 5.

Proof. Start with the root of 7§, and let A\ = R;(7¥) so A\g = 3k. By playing [2], we play

(0)
the last part in the first (1) block and create a separation of 3 between the top part and

0
the rest, as in the proof of Proposition [5.1.1, Now if we play any parts not of index 1,
0
the top part gets 1 added to it. Moreover, playing [2%] creates a playable block | 0 | at the
1
0
bottom as shown in Figure (33 However, after playing all the original £ blocks of | 1
0
0
and reaching the first added playable block | 0 |, no new parts are added during the two
1

plays of the last 0 in the former block and the first 0 in the latter block. Thus new parts
added after this moment are not playable at any time, because the first added part differs
from the part immediately above it by at least 3. Hence, the longest playing sequence must
be [123#1], which takes care of k — 1 original blocks and k — 1 added blocks while playing R,
consecutively. That means we can play at most 3-2(k — 1) consecutive moves Ry. Therefore,
the largest part we can get is

3k+1+3-2(k—1)=9k—5. ]
Corollary 5.4.2. Partitions in Ogww): have at most 9k — 5 parts.

Proof. Easily deduced by performing one reverse BS operation on elements with the largest
part size. ]

Proposition 5.4.3. The number of partitions with 9k — 5 parts in Oy is 2k=2,

Proof. This is the same as the number of partitions with largest part 9k — 5. Those result
from the playing sequences [12!73*~1)] that lead to the tree T} ,, having 22 equal-length
ending branches. Each one of the ending branches contributes one partition with largest
part 9k — 5, as proven in Lemma [5.3.3] O
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Part 111
A few final remarks

6 Which recurrent partitions are roots of nontrivial
trees?

Looking at the BS game graph for n that is not a triangular number, e.g. n = 8 in Figure 3]
one sees that there are partitions in the recurrent sets of the orbits that are not roots of any
trees outside of the cycle. In other words, those elements do not have more than one image
under R - the reversed Bulgarian Solitaire operation. This proposition below will count and
characterize such partitiond}

Proposition 6.0.1. Let N be a necklace with |N| = m beads of which r are black. Then
in the recurrent set Cy for the reverse Bulgarian Solitaire orbit O, there will be exactly

2(7;’:12) recurrent elements with no images outside of the cycle Cy.

Proof. First, recall that for a partition A in the reverse BS system, \; is playable if and only
if A\; > [(A\)—1. In particular, if ); is playable, then so are all of Aj, Ag, ..., A;. The recurrent
partitions A in Cy therefore must all have A\; playable, and have no images outside of the
cycle Cy if and only if A\ is not playable.

Elements in cycles in the BS system of P(n) with size n = + r are of the form
A=Ap1+0c=((m—-1)+0m_1,...,1+01,00) where o is a binary sequence with sum r.
Now X has exactly one image R;()) if and only if one of the two cases below happen:

m(m—1)
2

(i) fog =0, thenl(A\) =m—1,s0 \; = m—1+0,_1 > m—2and \y = m—2+40,, 2 < m—3
, that is
Om—1 > —1 and 0,,_9 < —1 which cannot happen .

(ii) If o9 = 1 then [(A\) =m,so \y =m—1+40,,_1 >m—1land \y =m—2+0,, o < m—2,
that is
Om-1 > 0 and o,,_2 <0.

Hence, the only possibility for elements in a cycle that have exactly one image R is when

0 = (Um—la 07 Om—3,0m—4,...,02,01, ]-)

m—2

r—l)’ since we can freely choose 0,,_1,0,,_3,...,01in {0,1}. O

The number of such ¢’s is (

7 Relation between finite orbit recurrence and limit
generating function

Note that Theorem gives a suggestive alternate proof of the form of the limiting level
size generating function Hpy (2) in Theorem [3.2.1], as follows. Since Theorem asserts
that for £ > 2 one has

and since Hpw (7) = limg_o D(pw)x (), one must have
Hpw(x) = (32 + 2)Hpw (2) — 2°Hpw () + (x — 1)*(3z + 2).

Solving thi for Hpw () gives Theorem [3.2.1]
We similarly expect a recurrence for the level size generating functions of O((BWW)¥)
of the form

D(wa)k(x) = p(x)D(BWW)k—l(x) +q(z)

for some polynomials p(z), g(z) satisfying

IThis proposition is irrelevant for our earlier results, but crucial to the proof of Theorem omitted
in this thesis.
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has

e p(1) =5,q(1) = 0 to agree with ‘O(wa)kl = 5* from Theorem m, and

o Hpww(z) = limy_ oo Dpwwr(7) = %

However, the rational function expression given in @

23— 322 —4x—3

203 + 22 — 1

denominator which when evaluated at x = 1 gives 2 rather than +4 as we would have

expected from 1 — p(x). This suggests that ¢(z) and 1 — p(z) share a common factor whose
evaluation at x =1 is £2.

References

1]

2]

[5]

E. Akin and M. Davis. Bulgarian solitaire. The American Mathematical Monthly,
92(4):237-250, 1985.

G. E. Andrews. The theory of partitions. Number 2 in Encyclopedia of Mathematics
and its Applications. Cambridge university press, 1998.

J. Brandt. Cycles of partitions. Proceedings of the American Mathematical Society,
pages 483-486, 1982.

J. H. Bruinier and K. Ono. Algebraic formulas for the coefficients of half-integral weight
harmonic weak maass forms. Advances in Mathematics, 246:198-219, 2013.

V. Drensky. The bulgarian solitaire and the mathematics around it. arXwv preprint
arXiv:1505.00885, 2015.

H. Eriksson and M. Jonsson. Level sizes of the bulgarian solitaire game tree. The
Fibonacci quarterly, 55(3):243-251, 2017.

G. Etienne. Tableaux de young et solitaire bulgare. Journal of Combinatorial Theory,
Series A, 58(2):181-197, 1991.

J. R. Griggs and C.-C. Ho. The cycling of partitions and compositions under repeated
shifts. Advances in Applied Mathematics, 21(2):205-227, 1998.

K. Igusa. Solution of the bulgarian solitaire conjecture. Mathematics magazine,
58(5):259-271, 1985.

M. Jonsson. Processes on Integer Partitions and Their Limit Shapes. PhD thesis,
Malardalen University, 2017.

42



	Acknowledgement
	I Background and results
	Preliminaries
	Integer partitions
	Young diagrams

	Introduction to Bulgarian Solitaire
	History
	Notation and terminology
	Previously known results

	Data, new results and conjectures
	Orbit sizes and distance generating function
	Convergence of level sizes in orbit as k grows
	Characterizing partitions within an orbit


	II Proofs
	Analysis of orbit
	On the reverse BS game graph for orbit
	Limiting level sizes of orb as k grows
	Proof of Theorem 3.2.1
	Proof of Theorem 3.1.1
	More properties of partitions in orbit and proof of Proposition 3.3.1

	Analysis of orbit for nl
	On the reverse BS game graph for orbit
	The limit for orbit by level sizes and proof of Theorem 3.2.2
	Proof of Theorem 3.1.2
	Notation
	Three types of trees 
	Recurrent Relationship between the tree types
	The computation

	More properties of partitions in orbit and proof of Proposition 3.3.2


	III A few final remarks
	Which recurrent partitions are roots of nontrivial trees?
	Relation between finite orbit recurrence and limit generating function


