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CONJECTURES

VICTOR REINER AND VOLKMAR WELKER

Abstract. For a graded naturally labelled poset P , it is shown
that the P -Eulerian polynomial

W (P, t) :=
∑

w∈L(P )

tdes(w)

counting linear extensions of P by their number of descents has
symmetric and unimodal coefficient sequence, verifying the moti-
vating consequence of the Neggers-Stanley conjecture on real zeroes
for W (P, t) in these cases. The result is deduced from McMullen’s
g-Theorem, by exhibiting a simplicial polytopal sphere whose h-
polynomial is W (P, t).

Whenever this simplicial sphere turns out to be flag, that is, its
minimal non-faces all have cardinality two, it is shown that the
Neggers-Stanley Conjecture would imply the Charney-Davis Con-
jecture for this sphere. In particular, it is shown that the sphere
is flag whenever the poset P has width at most 2. In this case,
the sphere is shown to have a stronger geometric property (locally
convexity), which then implies the Charney-Davis Conjecture in
this case via a result from [27].

It is speculated that the proper context in which to view both of
these conjectures may be the theory of Koszul algebras, and some
evidence is presented.

1. Introduction

This paper has several goals. The first is to show that, in the context
of the Neggers-Stanley Conjecture 1.2, for every graded poset P there
is lurking in the background a polytopal simplicial sphere, which we
will denote ∆eq(P ). This sphere is relevant for two purposes:

1991 Mathematics Subject Classification. 06A07, 13F55, 16S37,
Key words and phrases. Charney-Davis conjecture, Neggers-Stanley conjecture,

Koszul algebra, partially ordered set, linear extension, order polytope, real roots,
Polya frequency sequence.

First author supported by NSF grant DMS-9877047. Second author supported
by DFG.

1



2 VICTOR REINER AND VOLKMAR WELKER

. The P -Eulerian polynomial (defined below) coincides with the
h-polynomial of ∆eq(P ). As a consequence, its coefficients sat-
isfy McMullen’s conditions for the h-vector of a simplicial poly-
tope, and are in particular symmetric and unimodal. Thereby
we verify the motivating consequence of the Neggers-Stanley
Conjecture for naturally labeled graded posets (see discussion
after the statement of Conjecture 1.2).

. Whenever the simplicial sphere ∆eq(P ) is flag, the Neggers-
Stanley Conjecture 1.2 for P implies the Charney-Davis Con-
jecture for the sphere ∆eq(P ). Furthermore, when P has width
at most 2, it is shown in Theorem 3.23 that ∆eq(P ) satisfies a
stronger geometric condition than flag-ness known as local con-
vexity, which implies the Charney-Davis Conjecture in this case
by a result from [27].

The latter portion of the paper (Section 4 onward) is aimed toward
the thesis that both the Charney-Davis and Neggers-Stanley Conjec-
tures, along with some other combinatorial conjectures and results,
should be considered in the context of the following question.

Question 1.1. For which Koszul algebras is the Hilbert function a
Polya frequency sequence?

To give a more precise discussion, we start by recalling the Neggers-
Stanley Conjecture. For any partial order P on [n] := {1, 2, . . . , n},
let L(P ) denote its set of linear extensions, that is the set of w =
(w1, . . . , wn) ∈ Sn for which i <P j implies w−1(i) < w−1(j). The
P -Eulerian polynomial

W (P, t) :=
∑

w∈L(P )

tdes(w)

is the generating function for the linear extensions L(P ) counted ac-
cording to cardinality of their descent sets:

Des(w) := {i ∈ [n − 1] : wi > wi+1}

des(w) := # Des(w)

Conjecture 1.2 (Neggers-Stanley). For any labelled poset P on [n]
the polynomial W (P, t) has only real (non-positive) zeroes.

We are mainly interested in the case where P is naturally labelled,
that is i <P j implies i < j.

Some history and context for the conjecture follows. For naturally
labelled posets Conjecture 1.2 was made originally by Neggers [29],
and generalized to the above statement by Stanley in 1986. When P is
an antichain of n elements, W (P, t) is the Eulerian polynomial whose
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real-rootedness was shown by Harper [22] and served as an initial mo-
tivation for the conjecture. For the case when P is a naturally labelled
disjoint union of chains the result is due to Simion [34]. This result
was extended to arbitrary labellings by Brenti [5], who also verified
the conjecture for Ferrers posets and Gaussian posets [5]. An impor-
tant combinatorial implication of the real-rootedness of a polynomial
with non-negative coefficients is the unimodality of the coefficients (i.e.
for the sequence of coefficients a0, . . . , ar there is an index j such that
a0 ≤ · · · ≤ aj ≥ · · · ≥ ar). Gasharov [17] verified the unimodality
consequence of the conjecture for naturally labelled graded posets with
at most 3 ranks. Corollary 3.15 verifies this (and something stronger)
more generally for all naturally labelled graded posets.

Next, we recall the Charney-Davis Conjecture. Given an abstract
simplicial complex ∆ triangulating a (d − 1)-dimensional (homology)
sphere, one can collate the face numbers fi, which count the number
of i-dimensional faces, into its f -vector and f -polynomial

f(∆) := (f−1, f0, f1, . . . , fd−1)

f(∆, t) :=

d∑

i=0

fi−1t
i.

The h-polynomial and h-vector are easily seen to encode the same in-
formation:

(1.1)

h(∆) := (h0, h1, . . . , hd) where

h(∆, t) =

d∑

i=0

hit
i satisfies

tdh(∆, t−1) =
[
tdf(∆, t−1)

]
t7→t−1

.

The h-polynomial turns out to be a more convenient and natural
encoding in several ways, closely related to commutative algebra, toric
geometry, and shellability. For example, the fact that homology spheres
are Cohen-Macaulay implies non-negativity of the hi, and the Dehn-
Sommerville equations for simplicial spheres assert that hi = hd−i for
0 ≤ i ≤ d (see [43, §II.6]). Note that the latter implies that the h-
polynomial is symmetric, h(∆, t) = tdh(∆, t−1), and that h(∆,−1) = 0
whenever d is odd.

The Charney-Davis Conjecture [9, Conjecture D] concerns the quan-
tity h(∆,−1) in the case where d is even and ∆ is a simplicial homology
(d−1)-sphere which happens to be a flag complex, that is the minimal
subsets of vertices which do not span a simplex all have cardinality
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two. For polytopal simplicial spheres ∆, this quantity is known [27] to
coincide with the signature or index of the associated toric variety X∆.

Conjecture 1.3 (Charney-Davis, Conjecture D [9]). When ∆ is a flag
simplicial homology (d − 1)-sphere and d is even, then

(−1)
d
2 h(∆,−1) ≥ 0.

The first hint of a relation between these two conjectures comes from
the following simple observation (cf. [9, Lemma 7.5]).

Proposition 1.4. Let h(t) = hdt
d+· · ·+h1t+h0 ∈ R[t] be a polynomial

in t of even degree d with non-negative coefficients. If h(t) is symmetric
and has only real zeroes, then

(−1)
d
2 h(−1) ≥ 0.

Proof. Since h(t) has degree d we have hd 6= 0 and by symmetry h0 6= 0.
Thus h(t) has d zeroes which must then all be strictly negative since

hi ≥ 0 for 0 ≤ i ≤ d. Factor h(t) = hd

∏d
i=1(t − ri) according to its

(real) zeroes ri. Symmetry of h(t) implies that r is a zero if and only if
1
r

is a zero. If r 6= −1, exactly one of r, 1
r

is less than −1. Thus for a zero
r, either r = −1 is a zero, in which case h(−1) = 0 and we are done, or

else exactly half of the factors in the product h(−1) = hd

∏d

i=1(−1−ri)

are negative, implying that the product has sign (−1)
d
2 . �

The paper is structured as follows.
Section 2 reviews some theory of P -partitions, order polytopes, and

their canonical triangulations.
In Section 3.1 we show that when P is a graded poset, that is every

maximal chain in P has the same number of elements r, there exists a
simplicial sphere ∆eq(P ) of dimension #P − r − 1 such that

h(∆eq(P ), t) = W (P, t).

Thus the Neggers-Stanley Conjecture for P implies the Charney-Davis
Conjecture for ∆eq(P ) (whenever it is flag) via Proposition 1.4. Combi-
natorial interpretations for the (non-negative) Charney-Davis quantity

(−1)
#P−r

2 W (P,−1), for some cases of posets where the Neggers-Stanley
Conjecture is known, are explored in [33].

In Section 3.2 it is shown that the sphere ∆eq(P ) is the boundary
complex of a simplicial convex polytope. Therefore by McMullen’s g-
Theorem characterizing the number of faces of such polytopes [37], the
coefficients (h0, h1, . . . , h#P−r) are symmetric and unimodal.

Convexity has further relevance. In [27] it was shown via the Hirze-
bruch signature formula that the Charney-Davis Conjecture holds for
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a simplicial polytope under a certain geometric hypothesis (local con-
vexity) stronger than being flag. We show in Section 3.2 that this
hypothesis holds for ∆eq(P ) whenever P has width (i.e. size of the
largest antichain) at most 2, thereby providing more evidence for the
Neggers-Stanley Conjecture.

In Sections 4 and 5 we gather evidence for the thesis that both of
these conjectures can be fruitfully viewed within the context of Koszul
algebras. In particular, we point out ways in which Hilbert series of
Koszul algebras interact well with the theory of Polya frequency series
and polynomials with real zeroes.

2. Review: P -Partitions and Order Polytopes

In this section we review some of the theory of P -partitions, distribu-
tive lattices and order polytopes; see [23, 25, 24, 36, 38] for proofs and
more details. Also see [16, §1.2] for definitions and basic facts about
polyhedral cones and fans.

Given a naturally labelled poset P on [n] ordered by ≤P , the vector
space of functions f = (f(1), . . . , f(n)) : P → R will be identified with
Rn. One says that f is a P -partition if f(i) ≥ 0 for all i and f(i) ≥ f(j)
for all i <P j. Denote by A(P ) the cone of all P -partitions in Rn. The
convex polytope

O(P ) = A(P ) ∩ [0, 1]n

is called the order polytope of P . An order ideal I in P is a subset of P
such that i ∈ I and j <P i implies j ∈ I. It is known that O(P ) is the
convex hull of the characteristic vectors χI ∈ {0, 1}n as I runs through
all order ideals I in P .

A useful alternative way to view O(P ) is provided by the fact that
it is isometric to the hyperplane slice at x0 = 1 of the cone A(P 0) ⊂
Rn+1, where P 0 is the naturally labelled poset on [0, n] := {0, 1, . . . , n}
obtained from P by adjoining a new minimum element 0. We call the
cone A(P 0) the homogenization of the cone A(P ).

We recall a few basic definitions some of which were already men-
tioned in the introduction. The set of permutations w = (w1, . . . , wn) ∈
Sn which extend P to a linear order is called its Jordan-Hölder set

L(P ) :=
{
w = (w1, . . . , wn) ∈ Sn : i <P j implies w−1(i) < w−1(j)

}
.

The descent set and descent number of w are defined by

Des(w) := {i ∈ [n − 1] : wi > wi+1}

des(w) := # Des(w).
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Define a cone for each w ∈ Sn

A(w) := {f ∈ Rn :

f(wi) ≥ f(wi+1) for i ∈ [n − 1],

f(wi) > f(wi+1) if i ∈ Des(w)}

It is not hard to see that the closure of A(w) (defined by removing the
strict inequalities above), is a unimodular (simplicial) cone, that is its
extreme rays are spanned by a set of vectors forming a lattice basis for
Zn. Similarly, the closure of A(w) ∩ [0, 1]n is a unimodular simplex.
Now we are in position to formulate the basic fact from the theory of
P -partitions which will be crucial for subsequent arguments.

Proposition 2.1.

(i) The cone of P -partitions decomposes into a disjoint union as
follows:

A(P ) = tw∈L(P )A(w)

The closures of the cones A(w) for w ∈ L(P ) give a unimodular
triangulation of A(P ).

(ii) The unimodular triangulation of A(P ) described in (i) restricts
to a unimodular triangulation of the order polytope

O(P ) = tw∈L(P )A(w) ∩ [0, 1]n.

We call the triangulations of A(P ) (into simplicial cones) and O(P )
(into simplices) from Proposition 2.1 their canonical triangulations.
Note that via homogenization the canonical triangulation of O(P ) is
easily seen to be the restriction of the canonical triangulation of the
homogenized cone A(P 0) to the hyperplane x0 = 1. This makes sense
since there is an obvious bijection between the linear extensions L(P 0)
and L(P ).

The combinatorics of these triangulations is closely related to the
distributive lattice J(P ) of all order ideals I in P ordered by inclusion.
The order complex ∆J(P ) is the abstract simplicial complex having a
vertex for each ideal I in P and a simplex for each chain I1 ⊂ . . . ⊂ It

of nested ideals. Given a set of vectors V ⊂ Rn, define their positive
span to be the (relatively open) cone

pos(V ) :=

{
∑

v∈V

cv · v : cv ∈ R, cv > 0

}
.

Proposition 2.2.
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(i) Every non-zero P -partition f ∈ AP can be uniquely expressed
in the form

f =

t∑

i=1

ciχIi

where the ci are positive reals, and I1 ⊂ · · · ⊂ It is a chain of
ideals in P . In other words,

A(P ) =
⊔

ideals I1⊂···⊂It⊂P

pos
(
{χIt

}t
i=1

)
.

(ii) The canonical triangulation of the order polytope O(P ) is iso-
morphic (as an abstract simplicial complex) to ∆J(P ), via an
isomorphism sending an ideal I to its characteristic vector χI .

(iii) The lexicographic order of permutations in L(P ) gives rise to a
shelling order on ∆J(P ).

(iv) In this shelling, for each w in L(P ), the minimal face of its cor-
responding simplex in ∆J(P ) which is not contained in a lexico-
graphically earlier simplex is spanned by the ideals {w1, w2, . . . ,
wi} where i ∈ Des(w).

Using basic facts about shellings (see [3]), part (iv) of the preceding
proposition implies that one can re-interpret the polynomial W (P, t):

(2.1) W (P, t) :=
∑

w∈L(P )

tdes(w) = h(∆J(P ), t)

This connection with J(P ) also allows one to re-interpret these re-
sults in terms of Ehrhart polynomials. Recall that for a convex poly-
tope Q in Rn having vertices in Zn, the number of lattice points con-
tained in an integer dilation dQ grows as a polynomial in the dilation
factor d ∈ N. This polynomial in d is called the Ehrhart polynomial:

Ehrhart(O(Q), d) := #
(
dO(P ) ∩ Nn

)
.

Whenever Q has a unimodular triangulation abstractly isomorphic to
a simplicial complex ∆, there is the following relationship:

(2.2)
∑

d≥0

Ehrhart(O(Q), d) td =
h(∆, t)

(1 − t)n
.

3. The Equatorial Sphere for a Graded Poset

3.1. Definition and main properties. In this section we exhibit
for every graded naturally labelled poset P on [n] having r ranks an
alternative triangulation of the order polytope O(P ), which we call
the equatorial triangulation. This triangulation has several pleasant
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properties, proven in this and the next subsection, which may be sum-
marized as follows:

. It is a unimodular triangulation.
(See Proposition 3.6)

. It is isomorphic, as an abstract simplicial complex, to the join
of an r-simplex with a simplicial (#P −r−1)-sphere, which we
will denote ∆eq(P ), and call the equatorial sphere.
(See Corollary 3.8)

. h(∆eq(P ), t) = h(∆J(P ), t) = W (P, t).
(See Corollary 3.8)

. The equatorial sphere ∆eq(P ) is polytopal, and hence shellable
and a PL-sphere.
(See Theorem 3.14)

. When P has width at most 2, the equatorial sphere ∆eq(P )
is realized by a locally convex simplicial fan. Hence is a flag
subcomplex of ∆J(P ), and a flag sphere for which the Charney-
Davis Conjecture holds.
(See Theorem 3.23)

Example 3.1. Let P be the graded naturally labelled poset on [4]
with r = 2 ranks shown in Figure 1(a). Let J(P ) be its associated
(distributive) lattice of order ideals (see Figure 1(b)).

The 4-dimensional order polytope O(P ), and its canonical triangula-
tion by ∆J(P ), may be “visualized” as follows. Start with the convex
pentagon π which is the convex hull of

{χ1, χ2, χ12, χ13, χ123, χ124},

and triangulate π as shown in Figure 1(c). The canonical triangulation
is obtained by taking the simplicial join of this triangulation of π with
the edge {χ∅, χ1234}.

The equatorial triangulation (see Proposition 3.6) is obtained start-
ing from the alternate triangulation of π depicted in Figure 1(d) and
taking the simplicial join with the edge {χ∅, χ1234}. Equivalently, it is
obtained from the equatorial 1-sphere ∆eq(P ) depicted in Figure 1(e)
and taking the simplicial join with the triangle {χ∅, χ12, χ1234}.

Fix a naturally labelled poset P on [n], and assume that it is graded,
with r rank sets P1, . . . , Pr. The following are the key definitions.

Definition 3.2. A P -partition f will be called rank-constant if it is
constant along ranks, i.e. f(p) = f(q) whenever p, q ∈ Pj for some j.

A P -partition f will be called equatorial if minp∈P f(p) = 0 and for
every j ∈ [2, r] there exists a covering relation between ranks j − 1, j
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J(P)  =P =

124 2

123

13

1

124

12

2

123

1234

1

13

21

3 4

(b)

(e)

(a)

12

13

1

124 2

123

13

123

12

124

1

2

(c) (d)

Figure 1. (a) A graded poset P . (b) The distributive
lattice of order ideals J(P ). (c) Part of the canonical
triangulation ∆J(P ) of its order polytope O(P ). (d)
The analogous part of the equatorial triangulation. (e)
The equatorial 1-sphere ∆eq(P ).

in P along which f is constant, i.e. there exist pj−1 <P pj with

pj−1 ∈ Pj−1, pj ∈ Pj and f(pj−1) = f(pj).

An order ideal I in P will be called rank-constant (resp. equatorial)
if its characteristic vector χI is rank-constant (resp. equatorial). More
generally, a collection of ideals {I1, . . . , It} forming a chain I1 ⊂ . . . ⊂ It

will be called rank-constant (resp. equatorial) if the sum χI1 + . . .+χIt

(or equivalently, any vector in the cone pos({χIj
}t

j=1) is rank-constant
(resp. equatorial).

Note that the only rank-constant ideals are the ones in the chain

∅ = Irc
0 ⊂ Irc

1 ⊂ · · · ⊂ Irc
r = P
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where Irc
j := ti≤jPi. Also note that the only P -partition which is both

rank-constant and equatorial is the zero P -partition f(p) = 0. Thus
the only rank-constant and equatorial order ideal is I rc

0 = ∅.

Proposition 3.3. Every non-zero P -partition f can be uniquely ex-
pressed as

f = f rc + f eq,

where f rc, f eq are rank-constant and equatorial P -partitions, respec-
tively.

Proof. To show existence, for j ∈ [r − 1] define non-negative constants

cj := min {f(pj−1) − f(pj) : pj−1 ∈ Pj−1, pj ∈ Pj, pj−1 <P pj}

cr := min{f(pr) : pr ∈ Pr},

and set

f rc :=
r∑

j=1

cjχIrc
j

f eq := f − f rc.

Obviously f rc is a rank-constant P -partition. It is a straightforward
verification, left to the reader, that f eq is a P -partition, and that it is
equatorial by construction.

For uniqueness, assume f = grc + geq is an additive decomposi-
tion of f into a rank-constant and an equatorial P -partition. It is
again straightforward to show that the equatoriality of geq and rank-
constancy of grc forces grc =

∑r

j=1 cjχIrc
j

, where cj is defined as above
in terms of f . �

We wish to deduce our equatorial triangulation of A(P ) from Propo-
sition 3.3, and for this we need to understand both rank-constant and
equatorial chains of ideals better. Equatoriality and rank-constancy of
a chain of ideals I1 ⊂ . . . ⊂ It are intimately related with properties of
its jumps

Ji := Ii − Ii−1 for i = 1, . . . , t + 1

(where by convention I0 := ∅, It+1 = P ).
It is easy to see that the rank-constant P -partitions form an r-

dimensional simplicial subcone within the n-dimensional cone A(P ),
and that this subcone is the non-negative span of the vectors {χIrc

j
}r

j=1.

Proposition 3.4. The rank-constant subcone of A(P ) is interior, that
is, it does not lie in the boundary subcomplex of the cone A(P ).

Proof. In a triangulation of a polyhedral cone, a subcone lies on the
boundary if and only if it is contained in a codimension one subcone
that lies on the boundary. For codimension one subcones, lying in the
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boundary is equivalent to being contained in a unique top dimensional
subcone. Specializing to the case of the canonical triangulation of the
cone A(P ) from Proposition 2.1, one sees that this means a chain of
ideals I1 ⊂ · · · ⊂ It corresponds to a subcone on the boundary if and
only if one of at least one of its jumps Ji contains a pair of elements
which are comparable in P . But for Irc

1 ⊂ · · · ⊂ Irc
r , since the jumps

Ji = Irc
i − Irc

i−1 = Pi are antichains, this property fails to hold. �

Proposition 3.5. A chain of non-empty ideals I1 ⊂ . . . ⊂ It, is equa-
torial if and only if its jumps Ji have the following property: For every
j ∈ [2, r], there exist pj−1 <P pj with pj−1 ∈ Pj−1, pj ∈ Pj and a value
i ∈ [t + 1], such that pj−1, pj ∈ Ji.

The chain I1 ⊂ . . . ⊂ It is maximal with respect to the equatorial
property if and only if its jumps Ji for i ∈ [t + 1] satisfy the following
two conditions:

(i) The Ji are all maximal (saturated) chains in P , possibly single-
tons.

(ii) The non-singleton Ji can be re-ordered Ji1 , Ji2, . . . , Jis so that
minJi1

has rank 1, maxJis
has rank r, and max Jik , min Jik+1

have the same rank in P for k ∈ [s − 1].

Consequently, t = n−r for any maximal equatorial chain of non-empty
ideals.

Proof. Since the jumps Ji are the domains on which the associated P -
partition χI1 + . . . + χIt

is constant, the first assertion is direct from
Definition 3.2.

It is then easy to see that a chain of non-empty ideals having proper-
ties (i), (ii) will be equatorial, and maximal with respect to refinement.
Conversely, suppose one is given a maximal equatorial chain of non-
empty ideals. If there exists an incomparable pair p, p′ in one of its
jumps Ji, it is straightforward to check that one can refine the chain
further while preserving the equatorial property, e.g. by adding in the
ideal Ii−1 ∪ {q ∈ Ji : q ≤ p}. Thus each jump Ji must be a maximal
chain, proving (i). Furthermore, the pairs of adjacent ranks {j − 1, j}
spanned by two different jumps Ji, Ji′ must be disjoint, else one could
refine the chain equatorially by “breaking” Ji between two such ranks
{j − 1, j} which they share. The jumps Ji must then disjointly cover
all possible adjacent rank pairs {j − 1, j}r

j=2, so they can be re-ordered
as in (ii). �

Proposition 3.6. The collection of all cones

pos
(
{χI : I ∈ R ∪ E}

)
,
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where R (resp. E) is a chain of non-empty rank-constant (resp. equa-
torial) ideals in P , gives a unimodular triangulation of the cone of
P -partitions A(P ).

Proof. First we check that these polytopal cones indeed decompose
A(P ). Given f ∈ A, write f = f rc + f eq as in Proposition 3.3. Then
use these easy facts:

. f rc lies in the cone of rank-constant P -partitions, which is the
simplicial cone positively spanned by the (non-empty) rank-
constant ideals {Irc

j }r
j=1,

. When f eq is expressed in the unique way as a positive combina-
tion of characteristic vectors of a chain of ideals, as in Propo-
sition 2.2 part (i), this chain of ideals must be equatorial since
f eq is.

It remains to check that all such cones are unimodular. Thus it
suffices to show that whenever R∪E is maximal under inclusion, then
#R ∪ E = n and the Z-span of the set {χI : I ∈ R ∪ E} additively
generates inside Rn is the full integer lattice Zn. To see #R ∪ E =
n, first note that when R ∪ E is maximal, one has R = {I rc

j }r
j=1,

and then #E = n − r follows from Proposition 3.5. To show they
additively generate Zn, we show by induction on the rank r of P that
the subgroup they generate contains each standard basis vector ep for
p ∈ P . The base case r = 1 has P an antichain, hence all ideals I ( P
are equatorial, so the cones in question coincide with the cones in the
canonical triangulation, which are unimodular by Proposition 2.1. In
the inductive step, note that this subgroup generated by {χI : I ∈
R ∪ E} has the alternate description as the subgroup generated by
the characteristic vectors χPj

of all of the ranks of P along with the
characteristic vectors χJi

of all of the jumps between the equatorial
ideals in E . Proposition 3.5 shows that there will be exactly one element
q of the top rank r in P which does not occur in a singleton jump Ji.
Namely, q = max Jis after the re-labelling as in Proposition 3.6. Hence
for every p ∈ Pr − {q}, one has ep in the subgroup, but then one also
has eq in the subgroup, since the subgroup contains χPr

. Now apply
induction to the graded poset P −Pr of rank r−1, replacing the ideals
in R ∪ E by their intersections with P − Pr and removing multiple
copies of the same ideal created by the intersection process. �

The triangulation of A(P ) given in Proposition 3.6 induces a uni-
modular triangulation of O(P ), which we will call the equatorial trian-
gulation of O(P ).
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Definition 3.7. The equatorial complex ∆eq(P ) is defined to be the
subcomplex of the order complex ∆J(P ) whose faces are indexed by
the equatorial chains of non-empty ideals.

For the formulation of the next corollary we need the concept of
simplicial join. For two simplicial complexes ∆1, ∆2 which are defined
over disjoint vertex sets, the simplicial join ∆1 ∗ ∆2 is the simplicial
complex {σ1 ∪σ2 : σi ∈ ∆i, i = 1, 2}. Note that we always assume that
the empty face ∅ is a face of a simplicial complex.

Corollary 3.8. The equatorial triangulation of the order polytope O(P )
is abstractly isomorphic to the simplicial join σr ∗ ∆eq(P ), where σr

is the interior r-simplex spanned by the chain of rank-constant ideals
{Irc

j }r
j=0. As a consequence of its unimodularity, one has

h(∆eq(P ), t) = h(∆J(P ), t) = W (P, t).

Proof. The first assertion follows directly from Proposition 3.6, noting
that σr is interior due to Proposition 3.4. For the second, note that
both σr ∗ ∆eq(P ) and ∆J(P ) index unimodular triangulations of the
order polytope, so (2.2) implies

h(σr ∗ ∆eq(P ), t) = h(∆J(P ), t).

On the other hand, the defining equation (1.1) of the h-polynomial
shows that

f(∆1 ∗ ∆2, t) = f(∆1, t) ∗ f(∆2, t)

h(∆1 ∗ ∆2, t) = h(∆1, t) ∗ h(∆2, t)

h(σr, t) = 1,

and hence h(σr ∗ ∆, t) = h(∆, t). �

Remark 3.9.

Corollary 3.8 has the following consequence: for a graded poset P ,
the set of linear extensions L(P ) is equinumerous with the set Leq(P )
of all maximal equatorial chains of ideals in P , as both coincide with
[W (P, t)]t=1.

This begs for a bijection φ : L(P ) → Leq(P ). The authors thank
Dennis White [50] for supplying one which is elegant, using the idea
of jeu-de-taquin on linear extensions of P , thought of as P -shaped
tableaux that use each entry 1, 2, . . . , n exactly once. Given such a
linear extension w, replace the highest label n (at top rank r) by a
jeu-de-taquin hole, and slide it past other entries down to rank 1, du-
plicating the last entry that it slid past in the hole’s resting position
at rank 1. Then repeat this with the entry n − 1, sliding it down to
rank 2, and similarly with the entries n − 2, n − 3, ..., n − r + 1. The
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result is a P -shaped tableaux that can be interpreted as an equato-
rial P -partition, compatible with a unique maximal equatorial chain
of ideals φ(w). It is not hard to check that this map w 7→ φ(w) is a
bijection.

3.2. Geometric and Convexity Properties of ∆eq(P ). In this sec-
tion, we use convexity and the concrete geometric realization of ∆eq(P )
to learn more about it.

Definition 3.10. The rank-constant subspace V rc ⊂ Rn is the R-linear
span of the set {χIrc

j
}r

j=1.

Let Q be a convex polytope, and V a linear subspace, both inside
Rn. Then there is a well defined quotient polytope

Q/V := {q + V : q ∈ Q} ⊂ Rn/V.

If π : Rn → Rn−dimV is any linear surjection with kernel V (such
as an orthogonal projection onto V ⊥), then the polytope Q/V can
be identified with the image π(Q). Also note that if V is a rational
subspace of Rn with respect to the integer lattice Zn ⊂ Rn, the quotient
lattice Zn/(V ∩Zn) is well-defined, and a full rank sublattice in Rn/V .

Proposition 3.11. The collection of quotient cones
{
CE = pos

(
{χI : I ∈ E}

)
+ V rc

}
,

as E runs through all equatorial chains of non-empty ideals in P , forms
a complete simplicial fan in Rn/V rc.

(i) This simplicial fan is unimodular with respect to the quotient
lattice Zn/(V rc ∩ Zn).

(ii) The simplices (CE ∩O(P )) + V rc form a unimodular triangula-
tion of the quotient polytope Oeq(P ) := O(P )/V rc.

(iii) This triangulation of O(P )/V rc is isomorphic, as an abstract
simplicial complex, to the cone 0∗∆eq(P ) with base ∆eq(P ) and
apex at the interior point 0 = V rc.

Consequently, ∆eq(P ) triangulates the (n−r−1)-dimensional bound-
ary sphere ∂Oeq(P ).

Proof. Apply the following general statement, Proposition 3.12, about
polytopes (and the analogous statement about fans) with

Q = O(P ),

∆ = the equatorial triangulation,

∆′ = ∆eq(P ),

V = V rc.
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�

Proposition 3.12. Let Q be an n-dimensional convex polytope in Rn.
Assume Q has a triangulation abstractly isomorphic to a simplicial
complex ∆ of the form ∆ ∼= σr ∗ ∆′, where σr is an r-simplex not
lying on the boundary of Q. Let V be the r-dimensional linear subspace
parallel to the affine span of the vertices of σr.

Then the quotient (n − r)-dimensional polytope Q/V ⊂ Rn/V in-
herits a triangulation abstractly isomorphic to σ0 ∗ ∆′, where σ0 is an
interior point of Q/V ⊂ Rn/V .

Furthermore, when V is rational with respect to Zn ⊂ Rn and if the
triangulation of Q is unimodular with respect to Zn, then the triangu-
lation of Q/V rc is unimodular with respect to Zn/(V rc ∩ Zn).

The proof of Proposition 3.12 is straightforward. We leave it as an
exercise.

Proposition 3.11, shows that ∆eq(P ) corresponds to a complete uni-
modular fan. This fact suffices to infer both that it is spherical, and
that it corresponds to a smooth, complete toric variety X∆eq(P ) (see
[16, §2.1]). Our next goal will be to show that ∆eq(P ) corresponds to
a polytopal fan, as this has multiple consequences; see Corollary 3.15
below.

We prove polytopality of ∆eq(P ) by choosing for each equatorial
ideal I of P a point on its ray pos(χI + V rc) so that the convex hull of
all such points is a simplicial polytope having ∆eq(P ) as its boundary
complex. Here we employ the following strategy. We start with the
(usually) non-simplicial polytope Oeq(P ) and pull each of its vertices in
a certain order to produce a simplicial polytope with boundary complex
∆eq(P ).

Recall [28, §2.5] that if Q is a convex polytope, one pulls the vertex
v in Q to produce a new polytope pullv(Q) by taking the convex hull
after moving v slightly outward past the supporting hyperplanes of all
facets that contain v, but past no other facet-supporting hyperplanes of
Q. Assuming that Q contains the origin in its interior, this can clearly
be achieved by replacing v with (1 + ε)v where ε > 0 is sufficiently
small.

We will require the following proposition describing the 1-skeleton
resulting from pulling all the vertices of a polytope:

Proposition 3.13. Let Q̂ be the polytope resulting from pulling all of
the vertices of a polytope Q in some order v1, v2, . . ., and let v̂i denote

the corresponding vertices in Q̂.
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Then two vertices v̂j, v̂k will not form a boundary edge of Q̂ if and
only if the unique smallest face F of Q containing vj, vk is either Q
itself, or contains a vertex vi with i < j, k.

Proof. The basic fact about pulling [28, Theorem 2.5.23] is that the
faces of pullv(Q) correspond either to faces of Q that do not contain
v, or faces which are cones of the form v̂ ∗ F where F is a face not
containing v inside a facet of Q that does contain v.

This implies the following two facts.

(a) If vj, vk do not lie on some common boundary face, the edge
{vj, vk} will never be introduced by pulling.

(b) When one pulls Q at a sequence of vertices that do not lie on a
face F of Q, then the face F will remain unsubdivided.

Thus if F is the unique smallest face of Q containing vj and vk, it will
remain unsubdivided until one pulls the first vertex vi in the sequence
that lies on F . By replacing Q with pullvi−1

(· · ·pullv1
(Q) · · · ), one may

assume without loss of generality that i = 1. We may also assume that
F is a boundary face of Q.

If 1 6∈ {j, k}, then we claim that vj, vk no longer lie in any common
boundary facet of pullv1

(Q) (and hence will never form an edge after
any subsequent pullings). To see this, assume there was such a facet
G. If G does not contain v1, then by fact (b) above, G is a face of

Q̂. But since it contains both vj, vk, it would also contain v1 because
v1 ∈ F ⊂ G, a contradiction. If G contains v1, then G = v1 ∗ G′ for
some face G′ of Q not containing v1. But then G′ must contain both
vj and vk, since G does, Hence the same reasoning as for G applies to
G′ and then G′ must contain v1, again a contradiction.

If 1 ∈ {j, k}, say vj = v1, then when one pulls vj one creates the
edge {vj, vk}, as vk lies on any facet of Q containing F . Then this edge
will persist during all subsequent pullings. Thus in this case {v̂j, v̂k}

will be an edge of Q̂. �

Theorem 3.14. The equatorial complex ∆eq(P ) can be realized as the
boundary complex of a polytope.

Proof. We construct a polytope Q such that ∆eq(P ) is its boundary
complex by pulling the vertices

{vI := χI + V rc, I an equatorial ideal in P},

of Oeq(P ) in any linear order which is compatible with the cardinality
of the equatorial ideals I, that is, in any order where smaller ideals
come earlier.



CHARNEY-DAVIS AND NEGGERS-STANLEY CONJECTURES 17

We will show that whenever {vI1, . . . vIk
} spans a face of of Q, then

{I1, . . . Ik} is an equatorial chain of ideals. This would suffice since
it would imply that the simplicial sphere ∆ which is the boundary
of the pulled polytope Q is a subcomplex of ∆eq(P ). However, both
triangulate an (n − r − 1)-sphere, and hence one cannot be properly
contained in the other. Thus they must coincide.

We prove the contrapositive: given equatorial ideals I1, . . . Ik such
that the set {I1, . . . Ik} is not equatorial, we will show that {vI1 , . . . vIk

}
does not span a face of Q. Denote by F the unique smallest face F of
Oeq(P ) containing {vI1 , . . . vIk

}. Pick a linear functional f : Rn → R

which supports the face F of Oeq(P ). This means

. f is a linear functional on Rn that descends to a linear func-
tional on the quotient Rn/V rc. In other words, f restricts to 0
or equivalently, f(χPj

) = 0 for any rank Pj of P .
. f assumes its maximum value M among all equatorial ideals at

the vertices in F , i.e.

M := f(vI1) = · · · = f(vIk
) ≥ f(vI) for all ideals I

Note that M > 0 whenever F is a proper face of Oeq(P ), since we
know from Proposition 3.11(iii) that the origin 0 = V rc in Rn/V rc is
actually an interior point of Oeq(P ).

There are then two cases for the non-equatorial set {I1, . . . Ik}.

Case 1. {I1, . . . Ik} is not totally ordered by inclusion. In this case,
there is some pair of ideals J, K among them which are not nested,
and one has

(3.1) f(vJ) + f(vK) = f(vJ∩K) + f(vJ∪K).

Note that J ∩K and J ∪K are both ideals in P , and whether they are
equatorial or not, they satisfy f(vJ∩K), f(vJ∪K) ≤ M . Since f(vJ) =
f(vK) = M , the equation (3.1) forces f(vJ∩K) = f(vJ∪K) = M . This
means that both J ∩ K, J ∪ K lie on the face F . Thus we can choose
I := J ∩K in this case, and #I < #J, #K. Hence vI would have been
pulled before vJ , vK. By Proposition 3.13 this shows vJ , vK do not span
a face of Q, and hence neither does its superset {vI1, . . . vIk

}.

Case 2. I1 ⊂ · · · ⊂ Ik are nested, but still do not form an equatorial
chain. In this case we will show that F is the entire polytope Oeq(P ).

Because {I1, . . . Ik} is not equatorial there exists a value j ∈ [1, r−1]
such that no covering pair between ranks j, j + 1 lies entirely in any of
its jumps Ji := Ii − Ii−1. For each ` = 1, 2, . . . , k − 1 define new sets

I ′
` := (I`+1 − Irc

j ) ∪ I`.
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We first claim that each I ′
` is an order ideal of P . If not, then

without loss of generality there exists some covering relation p′ l p in
with p ∈ I ′

` but p′ 6∈ I ′
`. Because I` is an ideal, we may assume p 6∈ I`.

Then p ∈ I`+1 − Irc
j , which forces p′ ∈ I`+1 because the latter is an

ideal. Hence p′ ∈ Irc
j , which means that p′ l p is a covering relation

between ranks j, j + 1, and thus {p′, p} 6⊂ J`+1 = I`+1 − I`. From this
one has that p′ ∈ I` ⊂ I ′

`, a contradiction.
We next prove that

(3.2) f(vI1) + · · ·+ f(vIk
) = f(vIrc

j
) + f(vI′1

) + · · ·+ f(vI′
k−1

).

by checking that the coefficient of the standard basis vector ep for any
p ∈ P is the same on both sides. We check this in two cases, depending
upon whether r(p) ≤ j. In either case, define

i0 := min{i : p ∈ Ii}.

In the case r(p) ≥ j + 1, note that p 6∈ I1 else the jump J1 would
contain some covering relation between ranks j, j + 1 by following a
chain downward from p. Thus i0 ≥ 2, and hence ep appears once each in
vIi0

, vIi0+1
, . . . , vIk

on the left side, and once each in vI′i0−1
, vIi0

, . . . , vIk−1

on the right.
In the case r(p) ≤ j, note that p ∈ Ik else the jump Jk+1 := P − Ik

would contain some covering relation between ranks j, j+1 by following
a chain upward from p. Thus i0 ≤ k, and hence ep appears once each in
vIi0

, vIi0+1
, . . . , vIk

on the left side, and once each in vI′i0
, vI′i0+1

, . . . , vI′
k−1

plus once in vIrc
j

on the right.

We now use (3.2). Since Irc
j is rank-constant, f(vIrc

j
) = 0. Since each

I ′
j is an ideal, one has f(I ′

j) ≤ M . Thus equation (3.2) leads to the
inequality k ·M ≤ 0+(k−1) ·M , which forces M ≤ 0. In other words,
F is not a proper face; rather F = Oeq(P ), and so {vI1, . . . vIk

} will not
span a face of Q. �

Corollary 3.15. Let P be a naturally labelled graded poset with r ranks.

(i) The equatorial sphere ∆eq(P ) is shellable.
(ii) The associated smooth toric variety X∆eq(P ) is projective.
(iii) The P -Eulerian polynomial W (P, t) has symmetric unimodal

coefficient sequence (h0, h1, . . . , h#P−r), and their differences

(h0, h1 − h0, h2 − h1, . . . , hb#P−r

2
c − hb#P−r

2
c−1)

form an M-vector, that is they satisfy the inequalities charac-
terizing the Hilbert function of a standard graded commutative
algebra.

Proof. For (i), see [3]. For (ii), see [16]. For (iii), see [37]. �
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Remark 3.16. We should point out a recent related partial unimodal-
ity result of Björner and Farley [2]: the f -vector of the order complex
of a distributive lattice is unimodal in its first half and last quarter.
This is relevant since equations (1.1) and (2.1) show that for a natu-
rally labelled poset P and its distributive lattice J(P ) of order ideals,
the real-rootedness of W (P, t) is equivalent to the real-rootedness of
the f-polynomial of the order complex of J(P ).

Remark 3.17. In [24] Hibi shows that for any poset P , the face fan
of the order polytope O(P ) (after translating so that the origin is any-
where in its interior), is a polytopal fan. The part of the proof of
Theorem 3.14 up through Case 1 gives an alternate proof of this result.
In fact, it shows that the polytope involved may be obtained by pulling
the vertices of O(P ) in any order that refines the order by cardinality
of the ideals indexing the vertices.

Remark 3.18. Theorem 3.14 shows that ∆eq(P ) is a shellable sphere,
but does not quite give an explicit shelling order on its facets, raising
the following question.

Question 3.19. Is there a natural order on the set Leq(P ) of maximal
equatorial chains which induces a shelling order on ∆eq(P )? If so, what
is the statistic on Leq(P ), analogous to the descent statistic des(w) on
L(P ), whose generating function gives the h-polynomial W (P, t)?

One might hope that the bijection L(P ) → Leq(P ) from Remark 3.9
could be used to transfer known orderings on L(P ) (such as lexico-
graphic order) that induce shellings of ∆J(P ) to orderings on Leq(P )
that shell ∆eq(P ). However, this seems to fail, even in small examples.

As mentioned earlier, Theorem 3.14 is important for the geometry
of the toric variety X∆eq(P ), but this geometry also has relevance for
the Charney-Davis Conjecture. In [27, Theorem 1.1] it was shown that
when ∆ is a simplicial sphere arising from a simplicial, rational, poly-
topal fan, the quantity h(∆,−1) coincides with the signature σ(X∆)
of the associated toric variety. This opens the possibility for ideas
from geometry to be applied. In particular, in [27] a property of the
fan ∆ was identified, called local convexity, which implies that ∆ is
flag, and furthermore via the Hirzebruch signature formula implies the
Charney-Davis Conjecture for ∆.

Definition 3.20. For a 1-dimensional ray pos(v) in a complete sim-
plicial fan ∆, we denote by starv(∆) its star, that is the set of cones
which together with this ray span a cone in the fan. Say that a com-
plete simplicial fan ∆ is locally convex if for every 1-dimensional ray
pos(v) one has that starv(∆) forms a convex cone.
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1 32

4 5 6

Figure 2. Zig-Zag Poset

Theorem 3.21. [27, Theorem 1.2(i), Proposition 5.3] The simplicial
sphere ∆ associated to any locally convex complete simplicial fan is flag.
If furthermore the fan is rational and polytopal, then the Charney-Davis
Conjecture holds for ∆.

It is therefore interesting to know whether the fan in Rn/V rc asso-
ciated with ∆eq(P ) is locally convex. Unfortunately, it does not even
possess the weaker property of being flag in in general1, as shown by
the following example.

Example 3.22. Let P be the “zig-zag” graded poset on [6] with r = 2
ranks P1 = {1, 2, 3}, P2 = {4, 5, 6} and covering relations given in
Figure 2.

To show that ∆eq(P ) is not flag in this case, consider the chain of
ideals

I1 ⊂ I2 ⊂ I3

{1} ⊂ {1, 2, 4} ⊂ {1, 2, 3, 4, 5}.

Note that each Ij is equatorial, as is each pair {Ij, Ik}, but the whole
triple {I1, I2, I3} is not.

To illustrate more explicitly how the relevant fan fails to be locally
convex, consider the maximal equatorial chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ I4

{1} ⊂ {1, 4} ⊂ {1, 2, 4, 5} ⊂ {1, 2, 3, 4, 5}.

and the equatorial pair I1 = {1} ⊂ {1, 2, 4} =: I. We wish to show
that in the simplicial fan corresponding to ∆eq(P ) in R6/V rc, which
we identify for the moment with ∆eq(P ), the star of the ray pos(vI1)
is not convex. Specifically, the 2-dimensional cone pos({vI1, vI}) ⊆
starvI1

(∆eq(P )) has points in its interior that lie on the supporting

hyperplane for the cone that is spanned (in the quotient space R6/V rc)

1Contrary to a mistaken assertion with incorrect proof in an earlier version of
this manuscript. The authors thank Xun Dong for catching this error.
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by {vI2, vI3 , vI4}:

χI1 + χI = χ{1} + χ{1,2,4}

= χ{1,2} + χ{1,4}

= χ{1,2,3} − (χ{1,2,3,4,5} − χ{1,2,4,5}) + χ{1,4}

= χIrc
1
− (χI4 − χI3) + χI2 .

Here Irc
1 denotes the rank-constant ideal P1 = {1, 2, 3} as usual.

However, we do have the following result. For a poset P , the width
is the size of the largest antichain (=totally unordered subset) in P .

Theorem 3.23. The fan in Rn/V rc associated with ∆eq(P ) is locally
convex if width(P ) ≤ 2. Consequently, ∆eq(P ) is flag in this case, and
the Charney-Davis Conjecture holds for ∆eq(P ), that is

(−1)
n−r

2 h(∆eq(P ),−1) ≥ 0

(= (−1)
n−r

2 W (P,−1))

Although flag-ness follows from local convexity, when width(P ) ≤ 2 it
is easy enough to show flag-ness directly; we omit this direct proof.

Proof. Without loss of generality, we may assume not only that P has
width 2, but also that every rank Pj has cardinality 2; when a rank
of P has only one element, this element is comparable to all of P and
its removal is easily seen not to affect ∆eq(P ) or its associated fan in
Rn/V rc up to linear isomorphism.

Local convexity here amounts to checking the following. Consider a
maximal equatorial chain of ideals I1 ⊂ · · · ⊂ In−r. Let I be another
ideal that forms an equatorial pair {I, Ik} with one of the ideals Ik in
the chain. We must show that the unique linear functional f defined
on Rn by the conditions

(3.3)

f(V rc) = 0

f(χIj
) = 0 for i ∈ [n − r] − {k}

f(χIk
) = 1

has f(χI) ≥ 0. This suffices because the zero set of the functional f
defines a typical supporting hyperplane for the star of the ray pos(vIk

),
and one needs to check that every other ray vI in this star lies on the
same side of this hyperplane as vIk

.
From the defining equation of f (3.3) and its additivity we infer the

following list of values of f on the characteristic vectors of the jumps
Ji := Ii − Ii−1, which we will use without further reference:
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f(χJk+1
) = −1

f(χJk
) = +1

f(χJi
) = 0 for i 6= k, k + 1

Another fact that will be used frequently without mention is that by
(3.3) for every rank Pj = {p, p′} one has f(ep) + f(ep′) = f(χPj

) = 0.
By Proposition 3.5 the two sets of ranks occupied by the chains Jk+1

and Jk can overlap in at most one rank. When they do overlap, say in
the rank Pj = {p, p′} with p ∈ Jk and p′ ∈ Jk+1, one can check that f
satisfies

f(ep) = +1

f(ep′) = −1

f(eq) = 0 for q 6= p, p′.

.

As p′ 6∈ Ik, this means that f(eq) ≥ 0 for q ∈ Ik. Thus any ideal I that
forms an equatorial chain of the form I ⊂ Ik will have f(χI) ≥ 0 as
desired. If the equatorial chain looks like Ik ⊂ I, then p ∈ Ik ⊂ I will
force f(χI) ≥ 0 again.

When the sets of ranks occupied by Jk+1 and Jk do not overlap, we
consider two cases.

Case 1. Jk occupies strictly higher ranks than Jk+1.
Then by Proposition 3.5 it is possible to index a subset of the jumps

Ji as

Jk+1 := Ji1 , Ji2, . . . , Jis−1, Jis := Jk

in such a way that Ji2, Ji3 , . . . , Jis−1 are non-singleton jumps Ji`, with
max(Ji`), min(Ji`+1

) occupying the same rank for each ` ∈ [s − 1].
In fact, one can check that the definition of the jumps along with the

fact that P is graded (so that every element in P is comparable to at
least one out of the two elements in each rank Pj) forces s to be even.
Moreover, one can verify the following total orderings of the chains Ji`:

Ji2 <P Ji4 <P · · · <P Jis ⊂ Ik

Ji1 <P Ji3 <P · · · <P Jis−1 6⊂ Ik.

(here J <P J ′ means that the two chains satisfy max J <P min J ′).
This then implies that f(ep) = 0 for most p ∈ P , with the exception
of values +1,−1 alternating along the following two linearly ordered
subsets:
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(3.4)
max Ji1 < min Ji3 < max Ji3 < · · · < min Jis−1 < max Jis−1

−1 +1 −1 +1 −1

min Ji2 < max Ji2 < · · · < min Jis−2 < max Jis−2 < min Jis

+1 −1 +1 −1 +1.

Let I be an ideal in P such that {I, Ik} is equatorial.

I ⊂ Ik: We have f(χI) ≥ 0 because the only q ∈ Ik with eq 6= 0 that
can lie in I will form an initial segment of the second chain in
(3.4).

Ik ⊂ I: It follows that f(χI) ≥ 0, because the q ∈ I − Ik such that
f(eq) 6= 0 form an initial segment of the first chain in (3.4), so
their sum is at least −1, while f(χIk

) = +1.

Case 2. Jk occupies strictly lower ranks than does Jk+1.
In this case, the definition of the jumps, along with the graded-ness

of P forces the following situation. There exists a pair of adjacent ranks
Pj, Pj+1 and two elements pj, pj+1 such that

(3.5)

Pj+1 = {min Jk+1, pj+1}

Pj = {max Jk, pj}

pj < pj+1 ( in fact, Jk−1 = {pj, pj+1})

max Jk+1 6< pj+1.

One can check that this implies the following values for f :

(3.6)

f(maxJk) = f(pj+1) = +1

f(min Jk+1) = f(pj) = −1

f(p) = 0 for all other p ∈ P.

Again, let I be an ideal in P such that {I, Ik} is equatorial.

Ik ⊂ I: From (3.5) and (3.6), there is only one possible q in I − Ik such
that f(eq) < 0, namely q = min Jk+1 has f(q) = −1. But then
f(χIk

) = +1, so

f(χI) = f(χIk
+ χI−Ik

) ≥ −1 + 1 = 0.

I ⊂ Ik: From (3.5) and (3.6), the only way one could have f(χI) <
0 would be if pj ∈ I but both max Jk and pj+1 are not in
I. However this would contradict the equatoriality of the pair
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{I, Ik}: since max Jk+1 6< pj+1, there would be no covering pair
from ranks j, j+1 contained in any of the jumps I, Ik−I, P−Ik.

�

The Neggers-Stanley Conjecture is trivial when width(P ) = 1, but
unknown even when width(P ) = 2, although claims for its proof in
this case have been made, and then retracted, more than once [49]. In
light of Proposition 1.4, we regard Theorem 3.23 as non-trivial further
evidence for both the Charney-Davis and the Neggers-Stanley Conjec-
tures.

4. Which Koszul Algebras have PF Hilbert Functions?

In this and the next section, we give some results aimed toward the
thesis that the right context in which to view both the Charney-Davis
and Neggers-Stanley Conjectures (along with some other combinato-
rial conjectures and questions) may be the interaction between Koszul
algebras and PF-sequences.

4.1. Koszul Algebras and PF-Sequences. We begin with a quick
review both of Koszul algebras and of PF-sequences. The reader is
referred to [15] for more information on Koszul algebras, and to [5, 26]
for more on PF-sequences.

Let R =
⊕

i≥0 Ri be a finitely generated, standard graded, con-
nected, associative (but not necessarily commutative) algebra over a
field k, that is a quotient R = k〈x1, . . . , xn〉/J for some two-sided ideal
J which is homogeneous with respect to the grading deg(xi) = 1. By
eliminating redundant generators xi, we may assume without loss of
generality that J only contains elements of degree 2 and higher.

Definition 4.1. (see [15]) R is called Koszul if the field k, endowed
with the trivial R-module structure as the quotient k = R/〈x1, . . . , xn〉,
has a graded linear R-free resolution, that is an exact sequence of the
form

· · · →
∑

j

R(−i)βi → · · · →
∑

j

R(−1)β1 → R → k → 0.

Equivalently, R is Koszul if the graded k-vector space TorR
i (k, k) is

concentrated in degree i for each i, or equivalently, if the Poincaré
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series P (R, t) and Hilbert series H(R, t) defined by

P (R, t) : =
∑

i≥0

dimk TorR
i (k, k)ti

H(R, t) : =
∑

i≥0

dimk Rit
i,

where Ri is the k-vector subspace of R generated by the monomials of
degree i, are related by the equation

(4.1) P (R, t)H(R,−t) = 1.

It is not hard to see that Koszul-ness of R implies that the ideal
of relations J defining R is generated quadratically, but the reverse
implication holds only in special cases; see e.g. Theorem 4.5 below.

Note that H(R, t), P (R, t) are only power series in t, and not rational
functions of t in general. However, we will be particularly interested
in the case where R is a commutative ring, so that one can (uniquely)
express

H(R, t) :=
∑

i≥0

dimk Ri ti =
h(R, t)

(1 − t)d

where h(R, t) = h0+h1t+· · ·+hα(R)t
α(R) ∈ Z[t] with hα(R) 6= 0 (see [12,

Exercise 12.12, p. 284]). Here d is the Krull dimension of R, the vector
(h0, h1, . . . , hα(R)) is called the h-vector of R, and we will call h(R, t)
the h-polynomial of R. Although the quantity α(R) does not seem to
have a particular name in the literature that we could find, the degree
of H(R, t) as a rational function is usually called the a-invariant a(R).
So we can express α(R) as the sum α(R) = a(R) + d of the a-invariant
and Krull dimension.

The theory of Hilbert series relates h-polynomials of simplicial com-
plexes and W -polynomials through the polynomial h(R, t). When R is
commutative and Cohen-Macaulay we say that R is CM. The following
facts are well known (see for example [7]):

. If R is CM then h(R, t) ∈ N[t].

. If R is commutative and Gorenstein then R is CM and h(R, t) =
h0 +h1t+ · · ·+hα(R)t

α(R) satisfies hα(R)−i = hi for i ∈ [0, α(R)].

We are interested in the case when h(R, t) has only real non-positive
zeroes. This question can be approached via the theory of total pos-
itivity (see [5] for a pleasant introduction, and [26] for an extensive
treatment). We review some of the basic facts and definitions here.

Say that a sequence of real numbers (a0, a1, . . .) is a Polya frequency
sequence of order r (or PFr for short) if all minor subdeterminants of
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size at most r in the infinite Toeplitz matrix (aj−i)i,j=0,1,2,... are non-
negative. For example, PF1 means the ai are non-negative, while PF2

is equivalent to log-concavity, i.e. a2
i ≥ ai−1ai+1 for each i. A Polya

frequency sequence (or PF sequence) is one which is PFr for all r.
We say that a formal power series A(t) :=

∑
i≥0 ait

i generates a PF-
sequence if the sequence (a0, a1, . . .) is PF.

We also recall a basic relationship between zeroes/poles of rational
functions and PF-sequences, in a form stated by Brenti that is conve-
nient for our applications. It can be deduced from a fundamental and
deep result [5, Theorem 4.5.2],[26, Chapter 8, Theorem 5.1] character-
izing PF-sequences.

Theorem 4.2 (Theorem 4.5.3 [5]). Let
∑

i≥0 ait
i be a rational power

series in R[[t]] with non-negative coefficients ai. Then (a0, a1, . . .) is a
PF-sequence if and only if when we express

∑

i≥0

ait
i =

W (t)

V (t)

with W, V relatively prime polynomials in R[t], the numerator W (t)
has only real non-positive zeroes and the denominator V (t) has only
real positive zeroes.

Corollary 4.3. When R is Koszul, the following are equivalent:

(i) The sequence (Hilb(R, 0), Hilb(R, 1), . . .) generated by H(R, t)
is PF.

(ii) The sequence (β0, β1, . . .) generated by P (R, t) is PF.

When R is furthermore commutative and CM, then (i) and (ii) are
equivalent to:

(iii) h(R, t) has only negative real zeroes.
(iv) The sequence (h0, h1, . . . , hα(R)) generated by h(R, t) is PF.

Proof. The equivalence of the PF-property for power series H(t), P (t)
satisfying P (t)H(−t) = 1 is well-known [26, Theorem 8.1.2], so the
equivalence of (i), (ii) follows from (4.1).

CM-ness of R implies that the hi are non-negative, so Theorem 4.2
shows the equivalence of (iii) and (iv).

Since h0 = 1 > 0 and the hi are non-negative, the polynomial h(R, t)
does not vanish at t = 1, and consequently the numerator and denomi-

nator in H(R, t) = h(R,t)
(1−t)d are relatively prime. Hence Theorem 4.2 also

shows the equivalence of (i) and (iii). �

4.2. Questions and Examples. The questions motivating this sec-
tion are as follows. Say that a Koszul algebra R is PF if H(R, t)
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(or equivalently P (R, t)) generates a PF-sequence. Say that a Koszul
Gorenstein commutative algebra R is CD (for Charney-Davis) if either

• α(R) is odd, or

• if α(R) is even and (−1)
α(R)

2 h(R,−1) ≥ 0.

Question 4.4.

. Which Koszul algebras are PF?

. In particular, which Koszul CM-algebras are PF, that is, which
ones have only real zeroes for their h-polynomial h(R, t)?

. Which Koszul Gorenstein algebras are CD?

Note that Proposition 1.4 shows that for a Gorenstein algebra, PFim-
plies CD.

Part of the relevance of Koszul-ness for various combinatorial conjec-
tures derives from a result of Fröberg [14]. Recall that for a simplicial
complex ∆ on vertex set V the Stanley-Reisner ring k[∆] is the quotient
of k[xv : v ∈ V ] by the ideal I∆ generated by the squarefree monomials
whose support is a minimal non-face of ∆.

Theorem 4.5. [14] For monomial ideals I in S = k[x1, . . . , xn], the
algebra R = S/I is Koszul if and only if I is quadratically generated.

Consequently, for a simplicial complex ∆, the Stanley-Reisner ring
k[∆] is Koszul if and only if ∆ is flag.

Instances of Question 4.4 have occurred several times in the liter-
ature. Here are some notable examples, beginning with the two that
originally motivated us.

Example 4.6. The Charney-Davis Conjecture for a flag simplicial ho-
mology sphere ∆ asserts CD-ness for the Koszul Gorenstein Stanley-
Reisner ring k[∆].

Example 4.7. The Neggers-Stanley Conjecture for a naturally la-
belled poset P asserts PF-ness for the Koszul CM Stanley-Reisner ring
k[∆J(P )]. Here we recall from Section 2 that ∆J(P ) is the order com-
plex of the distributive lattice of order ideals in P .

Example 4.8. A conjecture generally attributed to Gasharov and
Stanley asserts that the f -polynomial of the complex ∆G of independent
(or stable) sets in a claw-free (see Example 4.12) graph G has only real
zeroes. The independent set complex ∆G is always flag: it is defined
as having a simplex for every subset of vertices that contains no edges.
Thus the Stanley-Reisner ring k[∆G] is Koszul by Theorem 4.5, and the
Gasharov-Stanley Conjecture asserts that it is PF. In general k[∆G] is
far from being CM. However its further quotient k[∆G]/(x2

v : v ∈ V ) is
of Krull dimension 0, hence Cohen-Macaulay, and also Koszul by The-
orem 4.5, having h-polynomial the same as the f -polynomial of ∆G.
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Thus one can also view the Gasharov-Stanley Conjecture as asserting
that this Koszul CM-ring is PF.

There is an interesting special case where this conjecture is known.
For a poset P let GP be the graph whose edges correspond to incompa-
rable pairs of elements in P . Then ∆GP

is the order complex ∆(P ) and
GP is claw-free if and only if P is (3t1)-free (i.e. P does not contain 4
elements whose induced subposet is a disjoint union of a chain of 3 ele-
ments and a single element). In this case it is known by work of Stanley
[41, Cor. 2.9], based on earlier work of Gasharov, that f(∆GP

, t) has
only real zeroes; see [35, Cor. 4.1] for an alternative proof.

Example 4.9. Given a graph G on vertex set [n], define its matching
complex MG to be the simplicial complex having vertex set correspond-
ing to the edges of G, and a simplex for each subset of edges that form
a partial matching. This is clearly a flag complex, so that k[MG] is
Koszul. A classical theorem in enumerative graph theory by Heilmann
and Lieb [19] can be rephrased as asserting that the f -polynomial of
MG has only real zeroes. Analogous to Example 4.8 one constructs from
the Stanley-Reisner ring k[MG] a Koszul CM-ring whose h-polynomial
is the f -polynomial of MG.

Example 4.10. In [5, Chapter 7], Brenti initiated the study of the
following question, generalizing the Neggers-Stanley problem. Given
a directed graph D (or digraph), let ai denoted the number of di-
rected walks of length k in D. For which digraphs is (a0, a1, . . .) a
PF-sequence?

The sequence (a0, a1, . . .) turns out to be the Hilbert function for a
(non-commutative) Koszul algebra studied by Bruns, Herzog and Vet-
ter, and also by Kobayashi (see [8]), who give algebraic interpretations
for some of the combinatorial results.

Example 4.11. Phung Ho Hai has shown that certain quantum de-
formations of polynomial and exterior algebras are Koszul [20] and
PF [21], by representation-theoretic means.

This list of examples might make it tempting to conjecture that any
Koszul CM-algebra is PF. But this is indeed far from being true.

Example 4.12. The claw graph G is a tree with one vertex of degree
3 connected to 3 leaves. Its independent set complex ∆G is the disjoint
union of a 2-simplex and a 0-simplex, having f -vector

(f1, f0, f1, f2) = (1, 4, 3, 1).

This implies that R = k[∆G]/(x2
1, x

2
2, x

2
3, x

2
4) is a Koszul CM-algebra

with h(R, t) = 1 + 4t + 3t2 + t3. But h(R, t) can be easily seen to have
two non-real zeroes, so R is not PF.
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4.3. Motivating Results. In this subsection we will give results that
show, in spite of Example 4.12, there is evidence for the assertion that
Koszul rings and their Hilbert functions are a good framework in which
to think about PF-questions.

One indication that the Koszul and PF-properties interact well is
the following proposition, apparently well-known to those who study
TorR

· (k, k). The authors thank Vesselin Gasharov and Irena Peeva for
bringing it to their attention.

Proposition 4.13. Let R be a Koszul algebra with rational Hilbert
series H(R, t) (e.g. if R is commutative, or finite-dimensional over k).

Then if H(R, t) has any zeroes at all, it will have at least one real
zero, namely −ρ where ρ is the radius of convergence P (R, t).

Proof. Recall that 1
H(R,−t)

= P (R, t) =
∑

i≥0 βit
i has non-negative co-

efficients βi(= dimk TorR
i (k, k)). Then Pringsheim’s Theorem [46, §7.2]

implies that whenever H(R, t) has any zeroes, P (R, t) will have a pole
(and H(R,−t) a zero) at t = ρ, where ρ is the radius of convergence
(= the minimum complex modulus of the poles) of P (R, t). �

This has consequences for CM-algebras R whose h-polynomial is of
low degree α(R).

Corollary 4.14.

(i) Every Koszul CM-algebra R with α(R) ≤ 2 is PF.
(ii) Every Koszul Gorenstein algebra R with α(R) ≤ 3 is PF.
(iii) A Koszul Gorenstein algebra R with α(R) ≤ 4 is PF if and only

if it is CD.

In particular, (iii) combines with Davis and Okun’s recent proof [11]
of the Charney-Davis Conjecture for flag simplicial homology spheres
of dimension at most 3, to show that such simplicial spheres are always
PF.

Proof. Assertion (i) is immediate from Proposition 4.13: α(R) ≤ 2
implies h(R, t) is a quadratic polynomial, and it has real coefficients,
so since it has at least one real zero, both its zeroes are real.

For assertions (ii),(iii) certain possibilities for h(R, t) when R is
Koszul and Gorenstein must be ruled out in an ad hoc way, which



30 VICTOR REINER AND VOLKMAR WELKER

we do all at once here:

(4.2)

h(R, t) = 1 + t + t2 + t3

h(R, t) = 1 + 2t + 2t2 + t3

h(R, t) = 1 + 2t + 2t2 + 2t3 + t4

h(R, t) = 1 + 3t + 4t2 + 3t3 + t4

h(R, t) = 1 + h1t + 0t2 + h1t
3 + t4

h(R, t) = 1 + h1t + 1t2 + h1t
3 + t4

Firstly, by means of Theorem 4.15 (iv) below, one can mod out by a
regular sequence of degree one and assume that R has Krull dimension
0, and hence is generated by h1 elements in degree 1. Then Koszul-
ness implies that the ideal J is generated by J2. The 5th possibility
above is absurd for a standard graded algebra. The 1st would require
J2 = 0 and hence J = 0, which is absurd since R5 = 0. In the
6th possibility above, one of Macaulay’s conditions for being an M-

vector [43, Corollary II.2.4] asserts that h3 ≤ h
〈2〉
2 , which would force

h1(= h3) = 1. This leads to a contradiction as in the 1st possibility.
For the 2nd, 3rd, and 4th possibilities, one contradicts the fact that

dimk J3 ≤ dimk J2 · dimk R1

and hence

(
h1 + 2

3

)
− h3 ≤

((
h1 + 1

2

)
− h2

)
· h1.

Now to prove assertion (ii), we must consider the case α(R) = 3, so

h(R, t) = 1 + h1t + h1t
2 + t3 = (1 + t)(1 + (h1 − 1)t + t2).

For real zeroes we need only show that h1 − 1 ≥ 2. Since h1 is a
non-negative integer, this means ruling out the first two possibilities in
(4.2), so we are done.

To prove assertion (iii), we must consider the case α(R) = 4, so

h(R, t) = 1 + h1t + h2t
2 + h1t

3 + t4.

We consider two cases, depending on whether the radius of convergence
of H(R, t) is ρ = 1 or not.
Case 1. ρ = 1. In this case, we will show R is always PF. Here h(R, t)
has t = −1 as a zero, so 1 + t as a factor, and since it is a symmetric
quartic polynomial, it must have it as a double factor:

h(R, t) = 1 + h1t + h2t
2 + h1t

3 + t4

= (1 + t)2(1 + (h1 − 2)t + t2).

For real zeroes we need only to show h1 − 2 ≥ 2, that is to rule out the
2nd, 3rd and 4th possibilities in (4.2). This was already done.
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Case 2. ρ 6= 1. In this case, since h(R, t) is symmetric, both −ρ and
−1
ρ

are zeroes. If we set a := ρ + 1
ρ
, and define b by a + b = h1, then

this means
h(R, t) = 1 + h1t + h2t

2 + h1t
3 + t4

= (1 + ρt)

(
1 +

1

ρ
t

)
q(t)

= (1 + at + t2)(1 + bt + t2)

where we further note that ab = h2 − 1. Now ρ ∈ (0, 1) since exactly
one of the two positive values ρ, 1

ρ
lies in this range, and ρ is the smaller

of the two. This implies a := ρ + 1
ρ

> 2, and hence one concludes that
the Charney-Davis quantity

h(R,−1) = (1 − a + 1)(1 − b + 1) = (a − 2)(b − 2)

has the same sign as b− 2. Thus R is CD if and only if b ≥ 2. Clearly,
h(R, t) has only real roots if and only if |b| ≥ 2. Thus if we can show
that b ≥ 0, then R is CD if and only if h(R, t) has only real zeroes, as
desired.

To see b ≥ 0, using the equation ab = h2 −2 and the fact that a > 0,
we need only show that h2 ≥ 2. In other words, we need to rule out
the last two possibilities in (4.2), which was already done. �

Next we discuss how Question 4.4 respects various natural construc-
tions. Given two commutative standard graded k-algebras R, R′ one
can form their tensor product R ⊗k R′ having

(R ⊗k R′)l :=
∑

i+j=l

Ri ⊗k R′
j,

their Segre product R ∗ R′ having

(R ∗ R′)l := Rl ⊗k R′
l,

and the d-th Veronese subalgebra R(d) having

R
(d)
l := Rdl

for any positive integer d.
These ring operations have corresponding effects on the Hilbert func-

tion. Tensor product corresponds to the convolution cl :=
∑

i+j=l aibj

of two sequences (ai), (bj). The Segre product corresponds to the
Hadamard product ci = aibi. The d-th Veronese subalgebra corresponds
to the d-th arithmetic subsequence cl = adl.

Theorem 4.15. Let R, R′ be commutative standard k-algebras, and
(ai)

∞
i=0, (bi)

∞
i=0 two sequences of complex numbers.

(i) (Tensor products)
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(a) If (ai), (bi) are PF, then so is their convolution.
(b) If R, R′ are Koszul, then so is R ⊗k R′.
(c) If R, R′ are CM, then so is R ⊗k R′.

(ii) (Segre products)
(a) If (ai), (bi) are PF, and if furthermore either both are finite

sequences, or both are polynomial functions a(i), b(i) of the
index i, then so is their Hadamard product.

(b) If R, R′ are Koszul, then so is R ∗ R′.
(c) If R, R′ are CM, and if furthermore either both have Krull

dimension zero, or both have Hilbert functions equal to
their Hilbert polynomials, then R ∗ R′ is CM also.

(iii) (Veronese subrings)
(a) If (ai) is PF, then so is (adi) for any positive integer d.
(b) If R is Koszul, then so is R(d) for any positive integer d.
(c) If R is CM, then so is R(d).

(iv) (Quotients by a linear non-zero-divisor)
(a) If

∞∑

i=0

ait
i =

h(t)

(1 − t)d

for some polynomial h(t) having h(1) 6= 0 and d > 0, then

(ai) is PF if and only if the sequence generated by h(t)
(1−t)d−1

is PF.
(b) When f ∈ R is a linear non-zero divisor, R is Koszul if

and only if R/(f) is Koszul.
(c) When f ∈ R is a linear non-zero divisor, R is CM if and

only if R/(f) is CM.

Proof. The assertions about preservation of the Koszul property follow
from a result of Backelin and Fröberg [15, Theorem 5.2]

(i)(a) Is easy (see e.g. [26, Theorem 1.2]).
(ii)(a) This is a result of Maló (see [5, Section 4.7]) when the sequences

are finite, and a result of Wagner [48] when the sequences are
polynomial.

(iii)(a) Is easy (see e.g. [5, Proposition 2.2.3]).
(iv)(a) Follows from Theorem 4.2.
(i)(c) Follows from standard facts about systems of parameters and

regular sequences in CM-rings [7].
(ii)(c) This is trivial when both R, R′ have Krull dimension 0, since

such rings are always CM. When R, R′ have Hilbert functions
which are polynomial, it follows from a result of Stückrad and
Vogel [45, Theorem, part (i), p. 378].
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(iii)(c) The arguments for this fact are given, for example, in [18, Be-
ginning of §3].

(iv)(c) Same as (i)(c).

�

5. Families of Examples

In this section, we examine some interesting families of flag simplicial
spheres and other CM flag complexes ∆. Adopting the conventions of
the previous sections we say that a flag simplicial sphere ∆ is CD if ∆
satisfies the Charney-Davis conjecture, say that a simplicial complex
∆ is PF is h(∆, t) has only real zeroes. All of these examples have been
either been checked or conjectured to be CD or PF.

5.1. Simplicial Hyperplane Arrangements. Simplicial hyperplane
arrangements turn out to give rise to complete simplicial fans which
are locally convex [27, Proposition 4.8], and hence to flag simplicial
spheres [27, Proposition 5.3]. Because of their local convexity, it was
noted in [27] that whenever the arrangements are rational, they are at
least CD. We do not know whether they are PF, nor whether they are
CD without the assumption of rationality.

Coxeter arrangements are the simplicial hyperplane arrangements
given by the reflecting hyperplanes of a finite Coxeter system (W, S),
and are closely related to the Neggers-Stanley Conjecture. The associ-
ated simplicial complex ∆(W, S), called the Coxeter complex (see [43,
§III.4]) has h-polynomial

h(∆(W, S), t) =
∑

w∈W

tdes(w)

where des(w) := #{s ∈ S : `(ws) < `(w)}. Because this h-polynomial
is multiplicative for reducible Coxeter systems (W1 × W2, S1 t S2), it
suffices to check the CD or PF-property for irreducible finite Coxeter
systems, which have a well-known classification.

For types An−1 and Bn, the h-polynomial coincides with the special
cases of k = 1 and k = 2 of a family of polynomials Ek

n(t) studied by
Steingrimsson [44] which generalize the classical Eulerian polynomials.
These satisfy

(5.1)

Ek
n(t)

(1 − t)d+1
=
∑

m≥0

(km + 1)ntm

∑

n≥0

Ek
n(t)

un

n!
=

(1 − t)eu(1−t)

1 − teku(1−t)
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From the first equation in (5.1) and results of Brenti [5], it follows that
Ek

n(t) has only real zeroes, taking care of the PF-property for type A
and B Coxeter complexes. It is known that the Charney-Davis quantity

h(∆An−1 ,−1) =
∑

w∈Sn

(−1)des(w) =

{
0 for n even

(−1)
n−1

2 En for n odd

where En is the number of alternating permutations

w = w1 < w2 > w3 < · · ·

in Sn (this can be deduced, e.g., from (5.1) by setting k = 1, t = −1
and comparing with [40, pp. 148-9]). The formulas (5.1) show similarly
that

h(∆Bn
,−1) =

{
0 for n odd

(−1)
n
2 2nEn for n even.

For type D, the h-polynomial of the Coxeter complex was first investi-
gated by Stembridge, who showed (see [32, p. 136]) that it satisfies

(5.2) h(∆(Dn), t) = h(∆(Bn), t) − 2n−1n t · h(∆(An−2), t).

Brenti further explored these polynomials, and conjectured [6, Conjec-
ture 5.1] that they are PF. Although this is not known, it can at least
be shown using (5.2) that they are CD, as follows. From the above
generating functions, and the answers for types An−1, Bn, one checks
that for n even,

(−1)
n
2 h(∆(Dn),−1) = 2n−1(2En − nEn−1).

To show the right-hand side is non-negative, we exhibit for n even an
injection

{(i, w) : i ∈ [n], w an alternating permutation in Sn−1}

φ
↪→ {ŵ ∈ Sn : ŵ is alternating or reverse alternating}

defined as follows: given (i, w) as above, define

φ(w) =
{

wi−1 > wi−2 < . . . > w1 < n > wi < wi+1 > · · · > wn−1, i odd,

w1 < w2 > . . . > wi−1 < n > wn−1 < wn−2 > · · · < wi, i even.

For the remaining (non-dihedral) exceptional finite irreducible Coxeter
groups (E6, E7, E8, F4, H3, H4), one can compute the h-polynomials of
the Coxeter complex explicitly via computer, and check ad hoc that
they have only real zeroes (in fact, most of them were already checked
in [6]).
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5.2. Generalized Associahedra. The generalized associahedra de-
fined recently by Fomin and Zelevinsky [13] are a family of flag sim-
plicial spheres associated to any finite Weyl group W ; we will denote
their associated simplicial complex ∆FZ(W ). These complexes general-
ize the associahedra and cyclohedra and possess beautiful numerology.
Their number of facets is a known Coxeter group generalization of the
Catalan numbers

Catalan(W ) =
∏

i

ei + h + 1

ei + 1
,

where h is the Coxeter number of W and ei are the exponents. From
recursions for their face numbers given in [13, §3.3], one can compute
their h-polynomials explicitly:

h(∆FZ(An−1), t) =

n−1∑

k=0

1

n

(
n

k

)(
n

k + 1

)
tk

h(∆FZ(Bn), t) =

n∑

k=0

(
n

k

)2

tk

h(∆FZ(Dn), t) = 1 + tn

+

(
n−1∑

k=1

((
n

k

)2

−
n

n − 1

(
n − 1

k − 1

)(
n − 1

k

))
tk

)

h(∆FZ(E8), t) = 1 + 120t + 1540t2 + 6120t3 + 9518t4

+ 6120t5 + 1540t6 + 120t7 + t8,

h(∆FZ(E7), t) = 1 + 63t + 546t2 + 1470t3 + 1470t4

+ 546t5 + 63t6 + t7,

h(∆FZ(E6), t) = 1 + 36t + 204t2 + 351t3 + 204t4 + 36t5 + t6,

h(∆FZ(F4), t) = 1 + 24t + 55t2 + 24t3 + t4.

For type An−1, the h-polynomial is the generating function for the
Narayana numbers [42, Exercise 6.34], and one can check (see [31,
Proposition 17]) that it coincides with W (2 × n, t), where 2 × n is a
naturally labelled Cartesian product of chains of sizes 2 and n. This
is PF by Brenti’s result that the Neggers-Stanley Conjecture holds for
all naturally labelled Gaussian posets [5, Theorem 5.6.8].

For type Bn, the h-polynomial coincides with W (ntn, t) where ntn

is a naturally labelled disjoint union of two chains of size n. This is
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PF by Simion’s result that the Neggers-Stanley Conjecture holds for
naturally labelled disjoint unions of chains [34].

For type Dn, we do not know whether the h-polynomial given above
is PF. However, one can check that it is CD. By calculating explicitly
one shows that

h(∆FZ(Dn),−1) =

{
0 for n odd

(−1)
n
2

(
n−2
n−2

2

) (
2 − 4

n

)
for n even

which for n ≥ 2 has the appropriate sign.
One can check ad hoc for each of the exceptional cases above the

h-polynomial h(∆FZ(W ), t) has only real zeroes, and hence is PF.

5.3. Barycentric Subdivisions. Barycentric subdivisions of the bou-
ndaries of convex polytopes give flag simplicial spheres which are known
to be CD. The Charney-Davis quantity in this case was observed by
Babson (see [43, p. 103], [9, §7.3]) to be a certain coefficient in a finer
enumerative invariant of the polytope known as its cd-index. Then a
result of Stanley [39] shows that these cd-index coefficients are all non-
negative for a more general class of flag simplicial spheres (barycentric
subdivisions of S-shellable regular cellular spheres). We do not know
whether these barycentric subdivisions are PF.

5.4. Broken Circuit Complexes. Given a matroid M with a linear
order ω on its ground set, there is an important shellable (hence CM)
simplicial complex known as the broken-circuit complex BC(M, ω). It
was shown by Björner and Ziegler [4, Theorem 2.8] that BC(M, ω) is
a flag complex if and only if M is supersolvable, and in this case the
h-polynomial factors

h(BC(M, ω), t) =
∏

i

(1 + (ei − 1)t)

where ei are the exponents of the supersolvable matroid M . Thus
whenever BC(M, ω) is flag, it is also trivially PF.

5.5. Regular Complex Polytopes. Regular complex polytopes were
first defined by Shephard (see [10]), as arrangements of complex affine
subspaces in Cn satisfying axioms modelled after the affine subspaces
spanned by faces in a regular convex (real) polytope. To each regu-
lar complex polytope P is associated a flag simplicial complex ∆(P)
called its Milnor fiber complex (or the order complex of its lattice of
faces). These complexes are known to be CM [30], but not known to
be shellable.
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The classification of regular complex polytopes which are not reg-
ular real convex polytopes is fairly short, with three infinite families
(simplices, generalized cross-polytopes, generalized cubes) all of whose
h(∆(P), t) are subsumed by the polynomials Ek

n(t) from (5.1), and
hence are PF. There remains a finite list of exceptions, many of which
live in C2, so that ∆(P) is 1-dimensional, and hence are PF by Propo-
sition 4.14(i). There are only four others on this list. In the following
we list their h-polynomials (where we are using Coxeter’s notation for
the polytopes themselves):

h(∆(2{4}3{3}3), t) = h(∆(3{3}3{4}2), t)

= 1 + 339t + 831t2 + 125t3,

h(∆(3{3}3{3}3), t) = 1 + 123t + 399t2 + 125t3,

h(∆(3{3}3{3}3{3}3), t) = 1 + 4796t + 56886t2 + 79196t3 + 14641t4.

All of these have real zeroes by ad hoc computation.
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[44] E. Steingŕimsson, Permutation statistics of indexed permutations. European J.

Combin. 15 (1994), 187–205.
[45] Stückrad, Jürgen; Vogel, Wolfgang On Segre products and applications. J.

Algebra 54 (1978), 374–389.
[46] E.C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press,

Oxford, 1985.
[47] D. Wagner, Enumeration of functions from posets to chains, Eur. J. Comb. 13

(1992), 313–324.
[48] D. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163

(1992), 459–483.
[49] D. Wagner, personal communication, 2002.
[50] D. White, personal communication, 2002.

School of Mathematics, University of Minnesota, Minneapolis, MN

55455, USA

E-mail address : reiner@math.umn.edu

Fachbereich Mathematik und Informatik, Philipps-Universität Mar-

burg, 35032 Marburg, Germany

E-mail address : welker@mathematik.uni-marburg.de


