AN OLD, BUT CUTE, CATALAN PROOF

VICTOR REINER

A few years ago, my colleague Bill Messing [2] suggested to me a cute proof that I'd never seen, and rather liked, of the Catalan enumeration. After consulting the experts on the domino list-server about the history, several people (David Callan, Ira Gessel, Greg Kuperberg, Gilles Schaeffer) pointed me to the references by Dorrie [1, pp. 23-24] and by Rémy [3], which both give the same proof. Dorrie credits the proof idea to Rodrigues [4] in 1838.

Theorem 0.1. Let c_n be the number of nonassociative parenthesizations of a product of n+1 symbols $a_1a_2 \cdots a_{n+1}$. Then

$$c_n = \frac{1}{n+1} \binom{2n}{n}.$$

Proof. Consider the set P_n of nonassociative parenthesizations of a product of any permutation $a_{\sigma_1} \cdots a_{\sigma_{n+1}}$ of the same n+1 symbols. Clearly the cardinality p_n of P_n satisfies $p_n = (n+1)!c_n$.

Consider the map from $f: P_n \to P_{n-1}$ that erases the symbol a_{n+1} along with the smallest parenthesis pair in which it lies. We claim that every fiber $f^{-1}(\alpha)$ of this map has the same cardinality, namely $2 \cdot (2n-1)$:

- There are 2n-1 possible factors of α which can get multiplied first with the extra letter a_{n+1} when it is added in. These factors correspond to the 2n-1 vertices in the rooted binary tree having leaves labelled a_1, \ldots, a_n which is associated with the parenthesization α .
- After choosing this factor in 2n-1 ways, one pins down the element of the fiber $f^{-1}(\alpha)$ by making one more binary choice of whether a_{n+1} is multiplied before or after that factor.

Hence the cardinality p_n of $|P_n|$ satisfies

(1)
$$p_n = 2(2n-1)p_{n-1}$$
$$p_0 = 1$$

which shows that

$$p_n = 2n(2n-1)\cdots(n+2)(n+1) = \frac{2n!}{n!}$$

and hence

$$c_n = \frac{1}{(n+1)!} p_n = \frac{1}{(n+1)!} \frac{2n!}{n!} = \frac{1}{n+1} {2n \choose n}$$

as desired.

Note that one can reinterpret the crucial recursion (1) as follows. We have shown

$$(n+1)!c_n = 2(2n-1) \cdot n!c_{n-1}$$

Date: November 2005.

or equivalently, after dividing by n!,

(2)
$$(n+1)c_n = 2(2n-1) \cdot c_{n-1}.$$

To argue this somewhat more directly (that is, with less labelling, and more symmetry), Greg Kuperberg suggests the following argument, in which c_n is interpreted as the number of triangulations of a convex (n+2)-gon, and the two sides of (2) are interpreted as counting two different kinds of markings of triangulations.

First choose a base side of both the (n+1)-gon and the (n+2)-gon. Mark the (n+1)-gon by choosing any edge, either a diagonal or any side including the base side, and orienting it. There are 2(2n-1) ways to do this. Mark the (n+2)-gon by choosing a side other than the base side. There are n+1 ways to do this.

There is a bijection between these two sets of marked triangulations: starting with the marked (n+1)-gon triangulation, open the oriented edge to a triangle that points in the direction that the edge points. The new side that you make is the marked side of the (n+2)-gon; see the figure below for an example with n=4. This proves (2).

References

- [1] H. Dörrie, 100 great problems of elementary mathematics. Their history and solution. Dover Publications, Inc., New York, 1982.
- [2] W. Messing, personal communication, early 2000's.
- [3] J.-L. Rémy, Un procédure itératif de dénombrement d'arbres binaires et son application à leur génération aléatoire. RAIRO Inform. Theor. 19, 1985, 179–195.
- [4] Rodrigues, Journal de Mathématiques 3 (1838).

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA $E\text{-}mail\ address$: reiner@math.umn.edu