
AN OLD, BUT CUTE, CATALAN PROOF

VICTOR REINER

A few years ago, my colleague Bill Messing [2] suggested to me a cute proof that
I’d never seen, and rather liked, of the Catalan enumeration. After consulting the
experts on the domino list-server about the history, several people (David Callan,
Ira Gessel, Greg Kuperberg, Gilles Schaeffer) pointed me to the references by Dorrie
[1, pp. 23-24] and by Rémy [3], which both give the same proof. Dorrie credits the
proof idea to Rodrigues [4] in 1838.

Theorem 0.1. Let cn be the number of nonassociative parenthesizations of a prod-

uct of n + 1 symbols a1a2 · · · an+1. Then

cn =
1

n + 1

(

2n

n

)

.

Proof. Consider the set Pn of nonassociative parenthesizations of a product of any

permutation aσ1
· · · aσn+1

of the same n + 1 symbols. Clearly the cardinality pn of
Pn satisfies pn = (n + 1)!cn.

Consider the map from f : Pn → Pn−1 that erases the symbol an+1 along with
the smallest parenthesis pair in which it lies. We claim that every fiber f−1(α) of
this map has the same cardinality, namely 2 · (2n − 1):

• There are 2n − 1 possible factors of α which can get multiplied first with
the extra letter an+1 when it is added in. These factors correspond to the
2n − 1 vertices in the rooted binary tree having leaves labelled a1, . . . , an

which is associated with the parenthesization α.
• After choosing this factor in 2n − 1 ways, one pins down the element of

the fiber f−1(α) by making one more binary choice of whether an+1 is
multiplied before or after that factor.

Hence the cardinality pn of |Pn| satisfies

(1)
pn = 2(2n− 1)pn−1

p0 = 1

which shows that

pn = 2n(2n− 1) · · · (n + 2)(n + 1) =
2n!

n!

and hence

cn =
1

(n + 1)!
pn =

1

(n + 1)!

2n!

n!
=

1

n + 1

(

2n

n

)

as desired. �

Note that one can reinterpret the crucial recursion (1) as follows. We have shown

(n + 1)!cn = 2(2n − 1) · n!cn−1
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or equivalently, after dividing by n!,

(2) (n + 1)cn = 2(2n− 1) · cn−1.

To argue this somewhat more directly (that is, with less labelling, and more
symmetry), Greg Kuperberg suggests the following argument, in which cn is inter-
preted as the number of triangulations of a convex (n + 2)-gon, and the two sides
of (2) are interpreted as counting two different kinds of markings of triangulations.

First choose a base side of both the (n + 1)-gon and the (n + 2)-gon. Mark the
(n + 1)-gon by choosing any edge, either a diagonal or any side including the base
side, and orienting it. There are 2(2n − 1) ways to do this. Mark the (n + 2)-gon
by choosing a side other than the base side. There are n + 1 ways to do this.

There is a bijection between these two sets of marked triangulations: starting
with the marked (n + 1)-gon triangulation, open the oriented edge to a triangle
that points in the direction that the edge points. The new side that you make is
the marked side of the (n + 2)-gon; see the figure below for an example with n = 4.
This proves (2).
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