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Abstract. We study a combinatorially-defined double complex
structure on the ordered chains of any simplicial complex. Its
columns are related to the cell complex Kn whose face poset is
isomorphic to the subword ordering on words without repetition
from an alphabet of size n. This complex is shellable and as an
application we give a representation theoretic interpretation for
derangement numbers and a related symmetric function considered
by Désarménien and Wachs.

We analyze the two spectral sequences arising from the double
complex in the case of the bar resolution for a group. This spectral
sequence converges to the cohomology of the group and provides
a method for computing group cohomology in terms of the coho-
mology of subgroups. Its behavior is influenced by the complex
of oriented chains of the simplicial complex of finite subsets of the
group, and we examine the Ext class of this complex.

1. Introduction

This work is a study of interactions between combinatorics, represen-
tation theory and topology. The construction which links everything
together is a double complex structure which may be put on the com-
plex of ordered chains of any simplicial complex. We will show that
the columns in the double complex turn out to be constructed from
shellable CW-complexes which have inherent combinatorial interest:
they provide a representation-theoretic interpretation of a symmetric
function and other formulas studied by Désarménien and Wachs in the
context of derangements. We will also show in the context of the co-
homology of groups that the double complex structure gives rise to a
spectral sequence which converges to the group cohomology.
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Figure 1. The posets Pn and cell complexes Kn for n = 1, 2.

Let us first describe the kind of CW-complex out of which we may
construct the columns of our double complex. It turns out that these
CW-complexes can be described without knowing about the double
complex structure to which we will later relate them. Consider the
subword ordering Pn on the set of words without repetition from the
alphabet [n] := {1, 2, . . . , n}, defined by

a1a2 · · ·ar ≤ b1b2 · · · bs

if a1a2 · · ·ar = bi1bi2 · · · bir for some 1 ≤ i1 < · · · < ir ≤ s. Because
lower intervals in Pn are isomorphic to Boolean algebras, Pn forms the
poset of faces in an (n − 1)-dimensional regular CW-complex, having
all faces isomorphic to simplices (see [4] for more on the combinatorics
and topology of such CW-complexes, where they are called complexes of
Boolean type; in [16] they are called Boolean complexes, and in [13, 25]
their face posets are called simplicial posets). Denote by Kn the regular
CW-complex having Pn as its face poset. For small values of n, these
CW-complexes are easily constructed by direct experimentation. The
posets P1, P2 and complexes K1, K2 are depicted in Figure 1.

Farmer [15] studied the homotopy type of Kn and showed that it
is homotopy equivalent to a wedge of (n − 1)-spheres, along with a
similar property for all of its skeleta. Björner and Wachs [5, Theorem
6.1] reproved this result by showing that the lexicographic order on
permutations in the symmetric group Sn induces a recursive coatom
ordering on Pn and hence a (dual) CL-shelling ofKn. As a consequence,
both Kn and the links of any of its faces have homology only in their
top dimension, as they are homotopy equivalent to wedges of spheres
having this dimension.

The homological properties of these CW-complexes will have impli-
cations for our double complex, to be introduced later. For now we
point out a combinatorial application, explained in detail in Section 2.
Recall that a permutation is a derangement if it has no fixed points. It
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will follow from the shellability of Kn that the rank of its top homology
is the number of derangements in Sn (see Proposition 2.1). Observe
that the permutation action of the symmetric group Sn on the alpha-
bet [n] := {1, 2, . . . , n} extends to a cellular action on Kn, and hence
to representations of Sn on the homology of Kn. We show that this
homology representation of Sn (taken with C coefficients) naturally
interprets a symmetric function that was introduced by Désarménien
and Wachs [11] in their combinatorial analysis of descent sets of de-
rangements: their symmetric function is (up to a twist by the sign
character) the image under the Frobenius characteristic map of this
homology representation (Theorem 2.4).

Let us now summarize our results as they apply to the cohomology
of groups. Given a group G we may consider the simplicial complex ∆
whose vertices are the elements of G and in which every finite subset
of G is a simplex. We may construct the unnormalized bar resolution
for ZG as Cord(∆), the complex of ordered chains of this simplicial
complex, and it may be used to compute the group homology H∗(G,M)
and cohomology H∗(G,M) for any module of coefficients M . As part
of a more general theory developed in Section 3, we introduce a natural
double complex structure on Cord(∆), whose filtrations by rows and by
columns give rise to two spectral sequences converging to H∗(G,M), or
H∗(G,M) in the cohomology version. One of these spectral sequences
has a use in computing group cohomology in a way that we have not
seen done before. We remark that the double complex structure of the
type we consider has also been used in [28] and [29].

In Section 4 we consider the spectral sequence arising from the fil-
tration by columns. It is here that we make the connection with the
combinatorics of the CW-complexes Kn, for the first column on the
E0 page of the spectral sequence is naturally isomorphic to the cellular
chain complex for Kn where n = |G|, and the remaining columns split
into direct summands naturally isomorphic (up to shifts in degree) to
cellular chain complexes for links of faces in various Kn. The vanish-
ing of homology below the top dimension for Kn and for links of its
faces then gives a simple description for the E1 page of this spectral
sequence, and shows that it stops at the E2 page (Theorem 4.4).

We investigate the row spectral sequence in Section 5, describing its
E1 page and showing (in the case of finite G) how its terms may be
computed using the Möbius function on the lattice of subgroups of G
(Proposition 6.1 and sequel). Two appealing features of this spectral
sequence in the case of finite G are that it only has a finite number of
non-zero rows – |G| of them in fact – and that many of these rows are
only non-zero on the left hand edge. The spectral sequence expresses
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the cohomology of G in terms of the cohomology of the proper sub-
groups of G, together with the cohomology of G itself, but shifted in
degree by |G| − 1.

The behavior of this spectral sequence is strongly influenced by the
properties of the complex Cori(G) of oriented chains on G, which when
augmented by a map to Z is an acyclic complex of ZG-modules (see
Corollary 7.7). It is a (|G| − 1)-fold extension of Z by a module

Z̃ (namely a copy of Z on which G acts via a sign representation)
which we call the subsets complex of G, and it represents an element

ζG ∈ Ext
|G|−1
ZG (Z, Z̃). We study when this element is non-zero and us-

ing the row spectral sequence we are able to prove that it is non-zero
when G is an elementary abelian p-group, p being any prime (Corollary
7.8). In general ζG is an essential element, meaning that it vanishes
on restriction to all proper subgroups of G (Theorem 7.5). Building
on this, we are able to construct non-zero elements in the cohomology
of other groups which are not elementary abelian (Theorem 7.9). Our
results actually apply to a more general Ext class ζΩ constructed from
an arbitrary finite G-set Ω. In the situation when Ω = {1, . . . , n} is
permuted in the natural way by the symmetric group Sn, we show that
the (n − 1)-fold extension which we construct with class ζΩ is closely
related to certain short exact sequences considered by James and Peel
[17] (Proposition 7.11). We prove in this situation that ζΩ is non-zero
precisely when n is a power of a prime (Corollary 7.10). We show also
that ζΩ can be expressed as a product of terms involving Evens’ norm
map (Proposition 7.13 and Corollary 7.14).

Several of the sections of this paper can be read more-or-less indepen-
dently of each other. Our main combinatorial work and its application
can be found in Sections 2 and 4, and for Section 4 it is necessary to
read Section 3. On the other hand, the reader interested mainly in
group cohomology can start at Section 3 and omit much of Section 4.

2. The derangement representation

The goal of this section is to give representation-theoretic intepre-
tations and analogues for combinatorial results on derangements, as
mentioned in the introduction. For the reader interested mainly in
applications to group cohomology it is possible to skip directly to Sec-
tion 3. Our notation for representations and symmetric functions will
mostly follow [22, 24], to which we refer the reader for basic facts and
undefined terms. For topological facts we refer the reader to [20]. We
alert the reader to our notation for permutations. Sometimes we write
a permutation π of {1, . . . , n} as π = π1π2 . . . πn where πi = π(i) is
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the image of i under π, and sometimes we write π in cycle notation,
depending on which is the more convenient.

We begin by reviewing some results about derangements. Recall
from the introduction that a permutation π = π1π2 . . . πn in Sn is a
derangement if it has no fixed points πi = i. Denote by Dn the set of
derangements in Sn, and let dn := |Dn| (the nth derangement number).
A simple inclusion-exclusion argument shows that

(2.1)

dn =
∑

S⊂{1,2,...,n}

(−1)|S||{π ∈ Sn : π fixes S pointwise}|

=

n
∑

k=0

(−1)k n!

k!

from which follows easily the well-known recurrence (see [23, Section
2.2, formula (13)]

(2.2) dn = ndn−1 + (−1)n.

Motivated by the desire to explain this recurrence combinatorially
Désarménien [10] introduced another subset En of the permutations Sn

(later dubbed desarrangements by M. Wachs), defined by the property
that the first ascent πi < πi+1 has i even (by convention, we set πn+1 =
+∞ for π in Sn). He gave a simple bijection showing |En| = |Dn| = dn

and a simple combinatorial interpretation of (2.2). Désarménien and
Wachs [11] then generalized the equality |En| = |Dn| in the following
fashion. Given π in Sn, define its descent set

Des(π) := {i : 1 ≤ i ≤ n− 1 : πi > πi+1}.

They showed that for any S ⊂ [n− 1],

(2.3) |{π ∈ Dn : Des(π) = S}| = |{π ∈ En : Des(π−1) = S}|.

The proof in [11] of this fact is a clever use of the theory of symmetric
functions: they artifically construct two symmetric functions (see (2.4)
below) which encode the numbers on the left- and right-hand sides of
(2.3), and then show that these symmetric functions satisfy the same
recursion, so that they must coincide. We will denote this symmetric
function by Kn(x). Subsequently they provided a purely bijective proof
of the same fact in [12]. One of our goals in this section will be to show
that the homology of the complex Kn gives a natural representation-
theoretic interpretation for Kn(x).

Let χn denote the complex character of Sn acting on the top reduced
homology H̃n−1(Kn,C), which we proceed to analyze. Recall that the
cell complex Kn is defined to be the (unique up to isomorphism) reg-
ular CW-complex having face poset Pn. Its (k − 1)-dimensional cells
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correspond to words of length k without repetitions from the alphabet
[n]. The symmetric group Sn acts transitively on such words, with
the stabilizer of a typical such word isomorphic to the Young subgroup
(S1)

k×Sn−k. Furthermore, when one considers such a word as index-
ing a basis element in the augmented cellular chain group Ck−1(Kn,C),
elements in the stabilizer act trivially on this element (that is, they in-
troduce no coefficient). Consequently the character of Sn acting on the
Ck−1(Kn,C) is the induced character 1 ↑Sn

(S1)k×Sn−k
, where 1 denotes

the trivial character of the relevant group. One has then the following
representation-theoretic analogue of equation (2.1).

Proposition 2.1.

χn =
n
∑

k=0

(−1)n−k 1 ↑Sn

(S1)k×Sn−k

In particular, taking the degree of both sides, we have that

dimC H̃n−1(Kn,C) =

n
∑

k=0

(−1)n−k n!

(n− k)!
= dn,

the nth derangement number.

Proof. The Hopf trace formula gives the following equality of virtual
characters:

∑

i≥−1

(−1)iχH̃i(Kn,C) =
∑

i≥−1

(−1)iχCi(Kn,C).

Since shellability of Kn implies H̃i(Kn,C) = 0 for i < n, and the char-
acter of Ci(Kn,C) is 1 ↑Sn

(S1)k×Sn−k
, multiplying both sides by (−1)n−1

gives the result. �

From this one can show that χn satisfies a recurrence generalizing
the recurrence (2.2) for dn:

Proposition 2.2.

χn = (1⊗ χn−1) ↑
Sn

S1×Sn−1
+(−1)n1Sn

.
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Proof. Use the previous proposition and manipulate as follows:

χn =
n
∑

k=0

(−1)n−k 1 ↑Sn

(S1)k×Sn−k

= (−1)n1Sn
+

n
∑

k=1

(−1)n−k 1 ↑Sn

(S1)k×Sn−k

= (−1)n1Sn
+

(

1⊗
n
∑

k=1

(−1)n−k 1 ↑Sn−1

(S1)k−1×Sn−k

)

↑Sn

S1×Sn−1

= (−1)n1Sn
+ (1⊗ χn−1) ↑

Sn

S1×Sn−1

�

Our next result gives the decomposition of χn into irreducible char-
acters. Recall that the irreducible complex characters χλ of Sn are
indexed by partitions λ of n, and write λ ` n when λ is a partition of
n. Given a standard Young tableau (or SYT) Q of shape λ, the descent
set Des(Q) ⊆ [n− 1] is defined to be the set of values i for which i+ 1
appears in a row below the row containing i in Q. If i is not in Des(Q),
say that i is an ascent of Q.

Proposition 2.3.

χn =
∑

λ`n

|{SY T Q of shape λ : Q has smallest descent even}|χλ

where, by convention, we say that the smallest descent of Q is n when-
ever Des(Q) = ∅ (i.e. when λ has only one row).

Proof. Using the branching rule (or Pieri formula)

(1⊗ χµ) ↑Sn

S1×Sn−1
=

∑

λ⊃µ:
|λ|=|µ|+1

χλ,

we check that the right-hand side in the proposition satisfies the recur-
rence for χn given in Proposition 2.2. To obtain the set of standard
Young tableaux described on the right-hand side for n, starting with
those for n− 1, one must add one new corner cell containing the entry
n in all possible ways, and then make two corrections related to the
special case of a single row:

• If n is odd, one should not have added a corner cell containing
n to the tableau with only row of length n − 1, as this creates
a tableau with one row having first descent n, which is odd.
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• If n is even, one should add in the tableaux which has a single
row of length n, as this has first descent n, which is even, but
cannot be obtained by adding a single cell to a tableaux with
first descent even.

Adding the new corner cell in all possible ways corresponds via the
branching rule to the first term on the right-hand side in the recur-
rence of Proposition 2.2, while the two corrections correspond to the
(−1)n1Sn

term in this recurrence. �

To define the symmetric function introduced by Désarménien and
Wachs [11], we review some of Gessel’s theory of (quasi-)symmetric
functions (see e.g. [24, §7.19]). For a fixed n, and any subset S ⊂ [n−1],
the fundamental quasi-symmetric function LS is defined by

LS =
∑

i1≥i2≥···≥in:
ij>ij+1 ∀j∈S

xi1xi2 · · ·xin

The two quasi-symmetric functions which Désarménien and Wachs de-
fined can then be written

(2.4) Kn(x) :=
∑

π∈Dn

LDes(π) =
∑

π∈En

LDes(π−1).

It is not at all obvious that these are actually symmetric functions in
the variables x1, x2, . . ., nor that they coincide – this is the main point of
[11]. It is not hard to see that the {LS}S⊂[n−1] are linearly independent,
and therefore the equality of these two symmetric functions gives the
equality (2.3) for every S ⊂ [n− 1].

It is well-known [24, Theorem 7.19.7] that the Schur function sλ(x)
has the following expansion:

(2.5) sλ(x) =
∑

SY T P of shape λ

LDes(P ).

Recall that the Frobenius characteristic map ch is a linear isomor-
phism (even an isometry with respect to appropriate inner products)
from the the space of virtual (complex) characters of Sn to the space
of symmetric functions of degree n, satisfying ch(χλ) = sλ(x). Also re-
call that the one-dimensional sign character εn of Sn has the property
εn ⊗ χ

λ = χλ′

where λ′ is the transpose or conjugate partition to λ.
The next result is the main theorem of this section, interpreting

Désarménien and Wachs’ symmetric function Kn(x).

Theorem 2.4.

Kn(x) = ch(εn ⊗ χn)
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Proof. Starting with the previous proposition, one can manipulate as
follows (see justifications below):

ch(εn ⊗ χn)

=
∑

λ`n

|{SY T Q of shape λ with smallest descent even}|ch(εn ⊗ χ
λ)

=
∑

λ`n

|{SY T Q of shape λ with smallest descent even}|sλ′

=
∑

λ`n

|{SY T Q of shape λ with smallest ascent even}|sλ

=
∑

pairs of SYT (P,Q) of same shape:
Q has smallest ascent even

LDes(P )

=
∑

π∈En

LDes(π−1)

= Kn(x)

The first equality uses linearity of the map ch. The third equality
uses the transpose or conjugation bijection on partitions and tableaux,
which swaps ascents and descents in a tableau. The fourth equality
uses (2.5). The fifth equality uses the Robinson-Schensted bijection
π 7→ (P,Q) between permutations in Sn and pairs of standard tableaux
of the same shape having n cells, along with one of its important prop-
erties [24, Lemma 7.23.1]:

Des(P ) = Des(π−1)

Des(Q) = Des(π).

�

We conclude this section by briefly drawing attention to some con-
nections with related areas in combinatorics and probability. We de-
liberately omit definitions of the terms we use, which may be found in
[9, 21, 27].

The top boundary operator of the complex of injective words Kn,
upon tensoring with the sign representation, may be identified with the
random-to-top shuffling operator on the group algebra of the symmet-
ric group. In this context, Proposition 2.1 was obtained independently
by Correll [9, Theorem 3.0.7]. Phatarfod [21] showed that this oper-
ator has eigenvalues 0, 1, . . . , n, and that the k-eigenspace has dimen-
sion equal to the number of permutations in Sn with k fixed points.
As a particular case, when k = 0 we may deduce that the top ho-
mology of Kn has dimension equal to the number of derangements.



10 VICTOR REINER AND PETER WEBB

Uyemura-Reyes [27] refined Phatarfod’s result by describing the Sn-
module structure of the eigenspaces of more general shuffling operators
in terms of induced representations.

3. Oriented and ordered chains, and a double complex

The goal of this section is to introduce a double complex structure on
the bar resolution used in computing the homology or cohomology of a
finite group, and describe the two spectral sequences which arise from
filtering it by rows and by columns. We will eventually show that the
columns in this double complex are very closely related to the topology
of the complex Kn.

We begin however in a slightly more general setting, by placing a
bigrading on the ordered simplicial chains used to compute the (ordi-
nary, non-reduced) homology of any simplicial complex [20, Chapter 1
§13]. A bigrading of this type appears also in [28] and [29].

Let ∆ be an abstract simplicial complex on vertex set V , so that
we may construct its oriented chain complex Cori(∆) [20, Chapter 1
§5] and ordered chain complex [20, Chapter 1 §13] Cord(∆). The ori-
ented chain complex may be described by placing the vertices V in
order v1 < · · · < vn and taking Cori

r (∆) to have Z-basis the symbols
[vi0 , . . . , vir ] where {vi0 , . . . , vir} is a simplex in ∆ and where we require
vi0 < · · · < vir . Should we happen to see the elements vi0 , . . . , vir in
the wrong order we identify [vi0 , . . . , vir ] with sign(σ)[vσ(i0), . . . , vσ(ir)]
for every permutation σ, and take this to be zero if terms are repeated.
The ordered chain complex Cord(∆) has Z-basis given by the symbols
(vi0, . . . , vir) where {vi0 , . . . , vir} are the vertices of a simplex of ∆, but
we have the possibility that there may be repeats among the symbols.
We will refer to (vi0 , . . . , vir) as an ordered chain.

There is a chain map u : Cord(∆) → Cori(∆) specified Z-linearly
by (vi0 , . . . , vir) 7→ [vi0 , . . . , vir ], and we recall the following result from
simplicial homology.

Theorem 3.1. [20, Chapter 1, Theorem 13.6], [18, Theorem 4.3.9]
This map is a chain homotopy equivalence. �

We now describe a double complex structure which may be put upon
the ordered chain complex. Let Cord

r,s = Cr,s be the span of those

(vi0, . . . , vir+s
) in Cord(∆) such that |{vi0 , . . . , vir+s

}| = s + 1. Then
Cn =

⊕

r+s=nCr,s and if δ denotes the dimension of ∆, we may position
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the summands on a grid which has δ + 1 rows:

C0,δ C1,δ C2,δ · · ·
...

...

C0,1 C1,1 C2,1 · · ·

C0,0 C1,0 C2,0 · · ·

On the bottom row, Cn,0 = ZV having as Z-basis the elements which
are (n + 1)-tuples (v, v, v, . . . , v) for v ∈ V . On the left edge, C0,n

has Z-basis the (n + 1)-tuples of distinct elements of V which are the
vertices of a simplex. In the boundary map

d(vi0, . . . , vir+s
) =

r+s
∑

j=0

(−1)j(vi0 , . . . , v̂ij , . . . , vir+s
)

the support of each term in the sum is either {vi0 , . . . , vir+s
} or a set of

size one smaller, and so

d(Cr,s) ⊆ Cr−1,s + Cr,s−1.

It follows that Cr,s is a double complex. The rows and columns are all
chain complexes, and the squares (anti-)commute.

We first observe that the double complex diagram for Cord may be
extended to give a commutative diagram in which the left hand edge
is Cori, as follows:

(3.1)

Cori
δ ←− C0,δ ←− C1,δ ←− C2,δ · · ·




y





y





y





y

...
...

...
...





y





y





y





y

Cori
1 ←− C0,1 ←− C1,1 ←− C2,1 · · ·




y





y





y





y

Cori
0 ←− C0,0 ←− C1,0 ←− C2,0 · · ·

This works simply because the chain map u : Cord → Cori considered
previously sends Cr,s to zero if r > 0.

We now begin to examine the properties of this double complex
in generality. Our immediate goal is Theorem 3.4 which states that
diagram 3.1 is a proper resolution in the sense of Mac Lane [19]. The
proof depends on a refined analysis of the usual proof of Theorem 3.1.
We proceed by means of two intermediate lemmas.
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It is standard (see [20, Chapter 1, Theorem 13.6], [18, Theorem
4.3.9]) to prove that the map u : Cord(∆) → Cori(∆) is a homotopy
equivalence by defining a homotopy inverse v such that uv = 1, and
constructing a chain homotopy

T : Cord
t (∆)→ Cord

t+1(∆)

satisfying

(3.2) dT + Td = 1− vu.

We observe here that it is possible to choose the homotopy T so as to
preserve the above double complex structure.

Lemma 3.2. There exists a homotopy inverse v to u and a chain-
homotopy T as above, satisfying uv = 1 and (3.2), along with the extra
property that

(3.3) T : Cord
r,s (∆)→ Cord

r+1,s(∆).

Proof. The usual homotopy inverse v is defined linearly by

v([vi0 , . . . , vit]) = (vi0 , . . . , vit)

when i0 < · · · < it, and clearly satisfies uv = 1.
The usual proof of the existence of T is an acyclic carrier argument

which proceeds by induction on t. We will also proceed in this way,
using a stronger induction hypothesis than usual. For each ordered
chain σ = (vi0, . . . , vit) let us define the support of σ to be supp(σ) =
{vi0, . . . , vit} and denote by 2supp(σ) the simplex whose faces are the
subsets of supp(σ). We will prove by induction that for each t ≥ 0
there is a map T : Cord

t (∆) → Cord
t+1(∆) satisfying 3.2 and 3.3 together

with the further property:

(3.4) for each ordered chain σ, T (σ) ⊆ Cord(2supp(σ)).

We readily see that conditions (3.3) and (3.4) taken together may be
straightforwardly expressed by saying that T (σ) is always a linear com-
bination of ordered chains, all of whose supports exactly equal supp(σ).

We check in the case t = 0 that we may choose T = 0 to satisfy
these conditions. Supposing now that t > 0 and we have defined T on
Cord

t′ (∆) when t′ < t, we need to define T (vi0 , . . . , vit) in such a way
that

dT (vi0 , . . . , vit) = (vi0, . . . , vit)− uv(vi0, . . . , vit)− Td(vi0, . . . , vit).

As in the usual proof, a straightforward calculation using the inductive
hypothesis of (3.2) shows that the right-hand side is a cycle, which we
denote z. It is clear from the induction hypothesis that every ordered
chain occurring in z has support in 2supp(σ), where σ = (vi0 , . . . , vit), but
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closer inspection shows that, in fact, the support sets of these ordered
chains are all either supp(σ) or of co-cardinality 1 in supp(σ).

To finish the usual proof, one notes that the simplex 2supp(σ) is acyclic,
so that one can find a chain c ∈ Cord

t+1(2
supp(σ)) having dc = z. For exam-

ple, one can explicitly construct such a c as follows. Pick a fixed vertex
w in supp(σ) and linearly define a map Cord

t (2supp(σ))→ Cord
t+1(2

supp(σ))
via w ∗ (vi0 , . . . , vit) = (w, vi0, . . . , vit). It is straightforward to check
that

(3.5) d(w ∗ a) = a− w ∗ da

for all a in Cord(2V ), and hence since z is a cycle, taking T (vi0, . . . , vit) =
w ∗ z does the job.

For our purposes, we want to choose T (σ) with the extra property
that every one of its terms has support supp(σ), and unfortunately
w ∗ z may not satisfy this extra condition. The proof is completed by
the following lemma.

Lemma 3.3. Let V be a finite set and let z be a cycle in Cord
t (2V ) such

that every ordered chain in z either has support V or has support of
co-cardinality 1 in V . Then it is possible to choose c in Cord

t+1(2
V ) with

dc = z such that every ordered chain in c has support V .

We remark that one cannot further relax the condition on the co-
cardinality of the support in the preceding proposition: if one takes
V = {v1, v2, v3}, then z = (v1, v1) is a cycle whose unique ordered
chain has support of co-cardinality 2, and z 6= dc for any c whose
ordered chains all have support V .

Proof. To prove the lemma, order the elements of V as v1, . . . , vs, and
let q be the largest index such that every ordered chain in z has support
containing {v1, . . . , vq} (so q = 0 unless every ordered chain in z has
v1 in its support). One proves the proposition by induction on |V | − q.
When this quantity is 0, every ordered chain in z has V as its support,
and then taking c = w ∗ z (for any choice of w in V ) will work.

In the inductive step, assume that every ordered chain in z contains
{v1, . . . , vq}. Write z = a+ b where a is the sum of all terms in z whose
support does not contain vq+1, and b consists of the remaining terms
(those whose support contains therefore {v1, . . . , vq, vq+1}). We wish to
replace z by a new cycle z′ defined as follows:

z′ := z − d(vq+1 ∗ a)

= a+ b− (a− vq+1 ∗ da) using (3.5)

= b− vq+1 ∗ da
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Note that indeed z′ is again a cycle. Note also that z′ differs from z
by the boundary of vq+1 ∗ a, which is a chain having all ordered chains
with support V . (Since a only contains ordered chains which avoid vq+1

in their support and have co-cardinality at most 1, they must all have
support exactly V − {vq+1}). Therefore we can safely replace z by z′.

However, we claim that induction applies to z′, i.e. that all its or-
dered chains have support containing {v1, . . . , vq, vq+1}. To see this,
recall that z′ = b− vq+1 ∗ da, and note that it is true by definition for
the ordered chains contained in b. For the ordered chains in vq+1 ∗ da,
first observe that da = −db since z = a+b was a cycle. Note that every
ordered chain in db must have support containing at least one subset
of {v1, . . . , vq, vq+1} of cardinality q, but since these ordered chains also
occur in da(= −db), they cannot contain vq+1. Therefore every ordered
chain in da or db has support containing {v1, . . . , vq}, and the desired
assertion for ordered chains in vq+1 ∗ da follows. This completes the
proof of the proposition, and the lemma. �

Theorem 3.4. Diagram 3.1 is a proper resolution of Cori by complexes
in the sense of Mac Lane [19, Chapter XII §11]. �

The definition of a proper resolution of complexes is that it is an
exact sequence of complexes such that in each degree the complexes of
boundaries and of cycles are also exact.

Proof. Let us write the horizontal differentials in (3.1) as dhor and the
vertical differentials as dvert, so that the total differential is d = dhor +
dvert. We show that there is a mapping τ of degree +1 defined on
each row of (3.1) so that dhorτ + τdhor = 1 and so that τ commutes
with the vertical differentials: dvertτ + τdvert = 0. In fact this mapping
τ is simply the restriction of T to each row (which makes sense by
condition (3.3)) except on the left hand edge of (3.1) where we define
τ to be v. Then the claimed equations are another way of writing the
equation dT + Td = 1− vu. From this we deduce that τ restricts to a
mapping on the complexes of cycles with respect to dvert and also on
the complexes of boundaries with respect to dvert, and on each of these
complexes dhorτ + τdhor = 1 still holds. Thus all of these complexes are
chain homotopy equivalent to the zero complex and so are acyclic. �

Theorem 3.4 has consequences for the homology groups of the verti-
cal complexes. Let Hvert

r,s (∆) denote the homology in the rth column in
3.1 with respect to its vertical differential at the (r, s) position.
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Corollary 3.5. The homology groups Hvert
∗,∗ (∆) resolve (horizontally)

the simplicial homology groups H∗(∆). That is, for each s, the sequence

(3.6) 0← Hs(∆)← Hvert
0,s (∆)← Hvert

1,s (∆)← . . .

is exact.

Proof. See [19, Chapter XII Proposition 11.2]. �

We now consider the extent to which our double complex construc-
tion is natural, and show that it gives a double complex structure on
the bar resolution for a group. Recall that if ∆,∆′ are simplicial com-
plexes on vertex sets V, V ′, respectively, a set map f : V → V ′ is called
simplicial if it takes faces of ∆ to faces of ∆′. Simplicial maps induce
homomorphisms of the chain complexes Cori, Cord and homology groups
via

f(vi0, . . . , vir) = (f(vi0), . . . , f(vir))

f [vi0 , . . . , vir ] = [f(vi0), . . . , f(vir)].

One sees that f will respect the double complex structure Cord
r,s if and

only if f is dimension-preserving, that is, for every face σ in ∆, the face
f(σ) in ∆′ has the same dimension (cardinality). One can check that
the homology groups Hvert

∗,∗ (∆) and exact sequences (3.6) are functorial
with respect to dimension-preserving simplicial maps.

An important special case of dimension-preserving simplicial maps
occurs when G is a group of simplicial automorphisms of ∆. In this
situation G acts on the chain groups in both Cori and Cord by the
formulas

g(vi0, . . . , vir) = (gvi0, . . . , gvir)

g[vi0, . . . , vir ] = [gvi0, . . . , gvir ]

so that these are chain complexes of ZG-modules. We point this out
because we do not assume the condition that the stabilizer of each
simplex must necessarily stabilize its vertices, which often is assumed
when equivariant questions are considered. We warn the reader that in
our situation the equivariant type of the complexes Cori and Cord may
be changed if we replace ∆ by a G-complex equivariantly homotopy
equivalent to ∆ (for example, the barycentric subdivision). Further-
more, whereas the map Cord → Cori is a map of chain complexes of
ZG-modules which is an ordinary chain homotopy equivalence, it need
not be an equivariant homotopy equivalence. An example illustrating
distinct equivariant types may be found by considering the action of a
cyclic group of order 2 on a single edge, interchanging the two vertices.

If G acts simplicially on ∆ then the stabilizer of a basis element
(vi0, . . . , vir) of Cord is the intersection of the stabilizers of the vij , and
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if any of these stabilizers happens to be the identity then this basis
element lies in a free G-orbit. We will be particularly interested in the
case where G permutes a set Ω and ∆ is the simplicial complex whose
simplices are the finite subsets of Ω (so that when Ω is finite, ∆ is a
single simplex). In this case, since ∆ is contractible both of the simpli-
cial chain complexes Cori and Cord are acyclic, except in dimension 0
where the homology is the trivial module Z. As a consequence of these
observations we have the following well-known result.

Proposition 3.6. Suppose that ∆ is a simplicial complex whose ver-
tices are permuted freely by G and such that every finite subset of the
vertices is a simplex. Then Cord is a free resolution of Z over ZG.
When the set of vertices is G with the regular G-action, Cord is a copy
of the unnormalized bar resolution of Z over ZG.

Proof. For a description of the unnormalized bar resolution see [19,
Chapter 4 §5]. We observe simply that when ∆ has G as its vertices,
the basis elements of Cord exactly correspond to the basis elements of
the unnormalized bar resolution. �

4. The column spectral sequence in the (co)homology of
groups

In this section we assume that ∆ is the simplicial complex which
has as its vertices the elements of a group G, and in which every finite
subset is a simplex, so that ∆ is contractible. We have seen that in this
situation Cord is a resolution of Z by free ZG-modules and that it may
be written as a double complex. When M is a ZG-module, applying
the functor ⊗ZG M to the double complex for Cord gives a double
complex whose total complex is Cord ⊗ZG M , with terms Cr,s ⊗ZG M .
The homology of the total complex is H∗(G,M). Filtering the double
complex by columns, or by rows, we obtain two spectral sequences,
each converging to H∗(G,M). In a similar way, applying the functor
HomZG( ,M) we obtain two spectral sequences, each converging to
H∗(G,M).

We begin by analyzing the spectral sequence obtained from filtering
by columns. We will see that it stops at the E2 page. The spectral
sequence obtained from filtering by rows is the subject of the next sec-
tion, and the reader interested mainly in this second spectral sequence
(which has an application to computing group cohomology) can skip
directly to Section 5 at this point.

The first thing we need to do is to determine what the columns of
the double complex for the bar resolution Cord(G) look like in order
to identify the E0 page of the spectral sequence. It is here that the
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cell complex Kn of words without repetitions and its shellability play
a crucial role. We will assume in the next result that G is finite, and
immediately afterwards deduce what happens when G is infinite.

Proposition 4.1. Let ∆ be the simplicial complex in which the vertices
are a finite set Ω and in which every subset is a simplex. Then the
vertical complexes Cvert

r,∗ obtained from the double complex for Cord all
have zero homology, except in the top degree |Ω|− 1, and except for the
left vertical edge Cvert

0,∗ which additionally has homology Z in dimension
0.

Proof. We wish to identify these vertical complexes with the cellular ho-
mology complexes of links of faces in Kn for various values of n. Given
a basis element w = (vi0 , . . . , vir+s

) in Cr,s, let Repeats(w) = u1 · · ·ut

denote the repeats subword of w, consisting of those letters which ap-
pear at least twice in w. It is easy to check that the vertical boundary
map sends w to a combination of words w′ which satisfy Repeats(w′) =
Repeats(w), and consequently the vertical complex Cvert

r,∗ is a direct sum
of complexes Cvert,u

∗ having as Z-basis the elements w with fixed repeats
subword u.

We claim that as a complex Cvert,u
∗ is isomorphic (up to a shift in

degree) to the cellular chain complex for the link of the face corre-
sponding to the word 12 · · · t in Kn where n = |Ω| + r and t is the
length of u. Recall [13, §3.3] that this link is defined to be the unique
(up to isomorphism) regular CW-complex having face poset given by
the words without repetitions from the alphabet [n] which contain the
word 12 · · · t as a subword. To make the identification, let Ω′ be the
set of |Ω| − t + r letters in Ω which do not occur in u, and choose an
arbitrary bijection φ : Ω′ → {t + 1, t + 2, . . . , |Ω| + r}. Then given a
word w having Repeats(w) = u, replace the entries in w from u by
the letters 1, 2, . . . , t from left-to-right, and replace each letter v of w
from Ω′ by φ(v). By abuse of notation, call this new word φ(w). For
example, let

Ω = {a, b, c, d, e, f}

u = bebbe

t = 5

r = 3

Ω′ = {a, c, d, f}
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If we choose the bijection φ : Ω′ → {6, 7, 8, 9} to be

φ : a 7→ 6

c 7→ 7

d 7→ 8

f 7→ 9,

then on some typical words w with Repeats(w) = u = bebbe the map
φ looks like

φ(bebbe) = 12345

φ(bcfebabe) = 17923645

φ(bedbbaefc) = 128346597

Note that the repeats word u indexes a basis element in Cvert,u
t−r−1, while

its image φ(u) = 12 · · · t indexes a basis element corresponding to the
empty face (which has dimension −1) in linkKn

12 · · · t. Thus we see
that the summand Cvert,u

∗ in the vertical complex Cvert
r,∗ is identified with

the augmented cellular chain complex C̃∗(linkKn
12 · · · t) up to a shift in

degree by t − r, that is Cvert,u
i

∼= C̃i−(t−r)(linkKn
12 · · · t). We conclude

that

Hvert,u
i

∼= H̃i−(t−r)(linkKn
12 · · · t).

A special case occurs when r = 0 (i.e. u is empty, so t = 0), as there is

no group Cvert,∅
−1 occurring in the leftmost column. Here one obtains an

identification with the ordinary (unaugmented) cellular chain complex
C̃∗(Kn) (with no shift in degree) and hence

Hvert
0,i = Hvert,∅

i
∼= Hi(Kn).

As mentioned earlier, since Kn is shellable, it and each of its links
have only reduced homology in the top dimension. As linkKn

12 · · · t
has dimension

(n− 1)− t = (|Ω|+ r − 1)− t = (|Ω| − 1)− (t− r),

this implies H̃i−(t−r)(linkKn
12 · · · t) vanishes for i < |Ω| − 1, and conse-

quently each vertical complex has no homology below dimension |Ω|−1
(with the exception of H0 = Z occurring in the 0th column, due to the
fact that Kn is connected). �

Corollary 4.2. Let ∆ be an infinite simplicial complex in which every
finite subset of the set of vertices is a simplex. Then the vertical com-
plexes Cvert

r,∗ obtained from the double complex for Cord are all acyclic,
except for the left vertical edge Cvert

0,∗ which has homology Z in dimension
0.
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Proof. Assuming that (r, s) 6= (0, 0), if z ∈ Cvert
r,s is a cycle then it is a

linear combination of simplices which lie in some finite subsimplex of
∆, and so provided the number of vertices of this subsimplex is at least
s + 2 it is in the image of the vertical boundary map by Proposition
4.1. Since ∆ is contractible, and the vertical complexes form the E1

page of a spectral sequence which converges to H∗(∆), the left vertical
edge Cvert

0,∗ has homology Z in dimension 0. �

We are now able to specify the form of the E1 page of the spectral
sequence arising from the filtration of the double complex by columns.
We assume that G permutes Ω freely and that ∆ is the simplicial
complex with vertices Ω and in which every finite subset of Ω is a
simplex. Let us first deal with the case when G is infinite.

Theorem 4.3. Let G be an infinite group which freely permutes a set
Ω, and consider the columns of the double complex of ordered chains
of ∆ as above. The left-hand vertical column Cvert

0,∗ , whose modules
have as bases the ordered chains without repeats, is a free resolution
of Z over ZG. The spectral sequence obtained by filtering the double
complex Cord ⊗ZG M by columns has E1 page which is non-zero only
on the left edge:

E1
r,s =

{

Hs(G,M) if r = 0,
0 if r ≥ 1

Proof. We have seen that the left edge is an acyclic complex except
in degree 0 where its homology is Z. Since G permutes Ω freely, the
modules which appear are free. This establishes the first statement and
also the form of E1

r,s when r = 0. When r > 0 each vertical complex
Cvert

r,∗ is an acyclic complex of free ZG-modules which is bounded below,
so it splits completely and after applying ⊗ZGM has zero homology.

�

We now deal with the case of a finite group.

Theorem 4.4. Let G be a finite group which freely permutes a finite
set Ω. The spectral sequence obtained by filtering the double complex
Cord ⊗ZG M by columns has E1-page

K ←− P|Ω| ⊗M ←− P|Ω|+1 ⊗M ←− · · ·

H|Ω|−2(G,M) ←− 0 ←− 0 ←− · · ·
...

...
...

H0(G,M) ←− 0 ←− 0 ←− · · ·
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where

0← Z← P0 ← P1 ← · · ·

is a projective resolution of Z and K = Ker(P|Ω|−1⊗M → P|Ω|−2⊗M).
It stops at the E2-page.

Proof. As in the proof of Theorem 4.3, when r ≥ 1 the vertical com-
plexes Cord

r,∗ split completely as complexes of ZG-modules, since they
are acyclic except in their top dimension, and they are complexes of
free ZG-modules. It follows from this that the top homologies are pro-
jective ZG-modules when r ≥ 1. By Corollary 3.5 these top homologies
form a projective resolution over ZG of the top homology of the left
vertical edge.

On the other hand, from Proposition 4.1 the left vertical edge com-
plex is the start of a resolution of Z by free ZG-modules, and so its
top homology is the syzygy X = Ker(Cvert

0,|Ω|−1 → Cvert
0,|Ω|−2) of the trivial

module. We write Ps = Cvert
0,s when 0 ≤ s ≤ |Ω| − 1. On applying

⊗ZG M to the double complex and taking homology with respect to
the vertical differentials we obtain the group homology Hn(G,M) on
the left hand edge except in the top dimension |Ω| − 1 where the ho-
mology is K. In the other vertical columns we obtain P(|Ω|−1)+r⊗ZGM
where

0← X ← P|Ω| ← P|Ω|+1 ← · · ·

is the projective resolution of X given by the top homologies of the
columns. �

5. The row spectral sequence in the (co)homology of
groups

We now turn to the other spectral sequence indicated at the start of
Section 4, obtained by filtering by rows. We again specialize to the case
where ∆ is the simplicial complex whose vertices are a set Ω permuted
regularly by G and in which every finite subset is a simplex, and we let
Cord and Cori be the ordered and oriented chain complexes of ∆. From
the discussion at the start of Section 4 we have two spectral sequences,
each of which converges to the cohomology of G.

In the rest of this section we describe the 0 and 1 pages of the
spectral sequence obtained by filtering by rows, showing how it may be
computed and indicating its application to group cohomology. To start
with we need to describe the rows of the double complex Cord to obtain
the E0-page of this spectral sequence. We see from Theorem 3.4 that
each row Cord

∗,n is in fact an acyclic complex except at the end, where

the homology is Cori
n . Since the modules in Cord are free ZG-modules,
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each row is thus a projective resolution of the corresponding module in
Cori. We wish to describe the modules Cori

n .

Lemma 5.1. Let ∆ be the simplicial complex of finite subsets of G.
We may write

Cori
n =

⊕

j

Z̃ ↑GHn,j

as ZG-modules, where j ranges over the orbits of the action of G on
subsets of G of size n + 1, Hn,j is the stabilizer of a subset in such an

orbit, and Z̃ = Z · [vi0 , . . . , vin] is the ZHn,j-module of Z-rank 1 where
the action of Hn,j is given by the sign representation of Hn,j acting on
the subset {vi0 , . . . , vin}.

Proof. From its definition Cori
n is the direct sum of the abelian groups

Z · [vi0 , . . . , vin ] which are permuted by G, and the stabilizer of such
a direct summand in this action is precisely the set-wise stabilizer of
{vi0, . . . , vin}. The action of the stabilizer Hn,j on Z · [vi0 , . . . , vin] is
via the sign of the permutation representation of Hn,j on {vi0 , . . . , vin}.
Specifying this information is exactly the same as giving a decomposi-
tion as a direct sum of induced modules as claimed. �

As a consequence, if we filter the double complex Cord ⊗ZG M by
rows we get a spectral sequence whose E0-page consists of projective
resolutions of

⊕

Z̃ ↑GHn,j
tensored with M . We have an analogous

description of HomZG(Cord,M). Accordingly we have:

Proposition 5.2. Let M be a ZG-module. There are 1st quadrant
spectral sequences with first pages

E1
r,s =

⊕

j

TorZHs,j

r (Z̃,M)⇒ Hr+s(G,M)

and

Er,s
1 =

⊕

j

Extr
ZHs,j

(Z̃,M)⇒ Hr+s(G,M)

where for each n, Cori
n =

⊕

Z̃ ↑GHn,j
is a decomposition of the module

of ordered subsets of G of size n + 1.

Proof. By the previous discussion the rows of the E1-page of the homol-
ogy spectral sequence have terms TorZG

r (Cori
s ,M). Using the Eckmann-

Schapiro lemma [8, Proposition X.7.3] we obtain the stated result. �

We point out that these spectral sequences are isomorphic from the
first page onwards to the hyperhomology and hypercohomology spec-
tral sequences associated to the complex Cori⊗Z M , as described in [7,
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Section VII.5]. However, we do not need to know this for the purposes
of the present exposition.

We now describe how the terms in these spectral sequences may be
computed, illustrating the calculation with an example. The first step
is to find the orbits of the action of G on the subsets of G of size n+ 1
for each n. We start with two very straightforward observations. The
second is often set as an elementary exercise in group theory.

Lemma 5.3. A subgroup H of G stabilizes a subset {vi0 , . . . , vin} if
and only if the subset is a union of cosets of H:

{vi0 , . . . , vin} = Hx1 ∪ · · · ∪Hxt

for some x1, . . . , xt ∈ G. Consequently, the stabilizer of such a subset
is the largest subgroup H for which the subset is a union of cosets of
H. �

Lemma 5.4. Let the finite group H act freely on a finite set W . The
sign representation of H in this action is non-trivial if and only if H
has a non-identity cyclic Sylow 2-subgroup and the number of orbits of
H on W is odd.

Proof. Any element h ∈ H acts on W as the product of a number
of cycles of length |〈h〉|. The action has sign −1 if and only if the
number of cycles is odd and |〈h〉| is even. This forces 〈h〉 to be a Sylow
2-subgroup of H, and the number of H-orbits on W to be odd; and
conversely in this situation h acts with sign −1. �

At this point we present as an example the structure of the spectral
sequence when G = D8 is the dihedral group of order 8 and M = Z is
the trivial module. This is a small example which we use to illustrate
the principle behind our constructions, the calculations being more
transparent than in a larger example. Towards the end of this section
we indicate in more abstract terms the properties which have been
exemplified.

Let us give names to the subgroups of G as follows: there are three
subgroups A,B,C of order 4, one of which (C, say) is cyclic. Let D
and E be representatives of the two non-central conjugacy classes of
subgroups of order 2, and let F denote the center of G. We claim that
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as a complex of ZG-modules Cori is

(5.1)

Cori
7
∼= Z





y





y

Cori
6
∼= ZG





y





y

Cori
5
∼= (Z̃ ↑GD)2 ⊕ (Z̃ ↑GE)2 ⊕ Z̃ ↑GF ⊕ZG





y





y

Cori
4
∼= ZG7





y





y

Cori
3
∼= Z ↑GA ⊕Z ↑GB ⊕Z̃ ↑GC ⊕(Z ↑GD)2 ⊕ (Z ↑GE)2 ⊕ ZG6





y





y

Cori
2
∼= ZG7





y





y

Cori
1
∼= (Z̃ ↑GD)2 ⊕ (Z̃ ↑GE)2 ⊕ Z̃ ↑GF ⊕ZG





y





y

Cori
0
∼= ZG

We have omitted a ∼ over a Z here when the action of the stabilizer
subgroup via the sign representation is trivial, the occurrence of a non-
trivial action being predicted by Lemma 5.4. The decomposition of the
modules in Cori may be computed by ad hoc means using Lemma 5.3.
However, we will indicate in Section 6 how this calculation may be done
in an efficient fashion.

We now present the E1-page of the cohomology spectral sequence
which converges to H∗(D8,Z). The cohomology of the cyclic groups
which appear here is computed by elementary methods as in [8] and



24 VICTOR REINER AND PETER WEBB

for the groups A and B we may use the Künneth formula.
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 · · ·

H0 H1 H2 H3 H4 H5 H6 H7 · · ·

Z 0 0 0 0 0 0 0 · · ·

Z C5
2 0 C5

2 0 C5
2 0 C5

2 · · ·

Z7 0 0 0 0 0 0 0 · · ·

Z12 C2 C8
2 C3

2 C10
2 C5

2 C12
2 C7

2 · · ·

Z7 0 0 0 0 0 0 0 · · ·

Z C5
2 0 C5

2 0 C5
2 0 C5

2 · · ·

s

x




Z 0 0 0 0 0 0 0 · · ·
r
−→

The E1 page of the spectral sequence for H∗(D8,Z).

To simplify the notation here we have written C2 to denote a cyclic
group of order 2, and H i to denote the cohomology group H i(D8,Z).
Note that

H0(G,Z) = Z

H1(G,Z) = 0

H2(G,Z) ∼= G/G′

and H3(G,Z) is isomorphic to the Schur multiplier of G, for any finite
group G (use the integral duality theorem [8, XII.6.6] together with
the usual results for homology).

This example illustrates a number of properties of this spectral se-
quence, which we now describe.

Proposition 5.5. For every finite group G, if g.c.d.(s + 1, |G|) = 1
then in row s of the cohomology spectral sequence of Proposition 5.2 we
have

Er,s
1 =

{

M t if r = 0

0 if r ≥ 1

where t =
(

|G|
s+1

)

/|G|.



COMBINATORICS OF THE BAR RESOLUTION 25

Proof. This follows from Lemma 5.3, because in this situation every
subset of size s + 1 must have trivial stabilizer. Since Cori

s+1 is a free

module of Z-rank
(

|G|
s+1

)

, it is a free ZG-module of rank t. The terms in

row s are thus Extr
ZG(ZGt,M) as in Proposition 5.2. When r ≥ 1 these

groups vanish, and Ext0
ZG(ZGt,M) ∼= HomZG(ZGt,M) ∼= M t. �

We see from this that the spectral sequence has many rows which
are zero, except at the left edge.

Proposition 5.6. The top non-zero row of the spectral sequence occurs

when s = |G|−1, and on this top row we have E
r,|G|−1
1 = Extr

ZG(Z̃,M).

Proof. The fact that the spectral sequence is only non-zero in rows up to
row |G|−1 is immediate from the fact that Cori is zero in degree |G| and

above. The identification of the top row arises because Cori
|G| = Z̃. �

We note that unless G has a non-identity cyclic Sylow 2-subgroup
then Z̃ = Z by Lemma 5.4. Provided G does not have such a subgroup

we thus have E
r,|G|−1
1 = Hr(G,M) on the top row.

Proposition 5.7. In case M = Z and G does not have a non-identity

cyclic Sylow 2-subgroup, the differential d : E
0,|G|−2
1 → E

0,|G|−1
1 is mul-

tiplication by |G| : Z→ Z.

Proof. Here the differential is the functor HomZG( ,M) applied to the

top boundary map d|G|−1 : Cori
|G|−1 → Cori

|G|−2 where Cori
|G|−1

∼= Z̃ ∼= Z and

Cori
|G|−2

∼= ZG. Under these isomorphisms, (as one may check in a tech-

nically elementary fashion) the boundary map embeds Z as multiples
of the element

∑

g∈G g. Since HomZG(ZG,Z) is generated by the aug-

mentation map, which sends
∑

g∈G g to |G|, the map HomZG(ZG,Z)→
HomZG(Z,Z) is multiplication by |G|. �

To illustrate these properties we show how to use the spectral se-
quence to deduce lower bounds on the sizes of certain groupsHn(D8,Z).
In each diagonal strip specified by r + s = n when n is odd, there are
only two non-zero terms when n ≥ 5 (and only one when n = 1 or
3). The position of these terms is such that elements in the mid-
dle term Er,3

1 when r ≥ 3 is odd can only be killed in later pages
of the spectral sequence on the E4-page by a differential mapping
them to something non-zero in the top row. We conclude that when
t ≥ 5 the term Er,3

t is constant, and for r ≥ 5 and odd, it has size
at least as big as |Er,3

1 |/|E
r−3,7
1 |. For example, using the fact that

H2(D8,Z) ∼= D8/D
′
8
∼= C2 × C2, we deduce

|H8(D8,Z)| ≥ 23.
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We may modify this argument when r = 3, using Proposition 5.7 to
deduce that on the E2 page E0,7

2 is cyclic of order 8, and hence the
term E3,3

1 can only be reduced on later pages by a map to this cyclic
group on the E4 page. We deduce that

|H6(D8,Z)| ≥ 22.

According to [14] the correct values are

|H6(D8,Z)| = 24

|H8(D8,Z)| = 26

so our estimates are not particularly sharp, but at least they have been
obtained without very much difficulty.

We will show in Section 7 how this spectral sequence may be used
in a more theoretical way to determine when the Ext class determined
by the complex Cori of subsets of G is non-zero.

6. Computing the decomposition of the subsets complex

In this section we will assume that G is finite. We will describe how
the orbit decomposition of G acting on subsets of a G-set may be done
in an efficient manner, and hence how the ZG-module decomposition
of the oriented chain complex Cori considered in the last section may be
obtained. We follow the approach of [30] and summarize the notation
used there. The actions on the subsets of various sizes provide an
example of what in [30] we call a graded G-set, namely a set partitioned
as

Ψ = Ψ(0) ∪ Ψ(1) ∪ Ψ(2) ∪ · · ·

in which each Ψ(i) is a G-set. We let B(G) denote the Burnside ring
of G with Q coefficients (see [6]) and write Ψ(i) also for the element of
B(G) which this G-set represents. In general, we define a power series

PΨ(t) =
∞
∑

i=0

Ψ(i)ti

in the variable t with coefficients in B(G) which we call the Poincaré
series of Ψ. This power series is simply a useful tool for manipulating
the information present in Ψ. In the case of the subsets of a G-set Ω we
may let Ψ(i) be the G-set consisting of subsets of size i, and when Ω is
finite PΨ is a polynomial. In order to obtain the orbit decomposition
of each Ψ(i), our aim is to express PΨ in terms of polynomials in the
transitive G-sets G/H which form a basis of B(G).

We may describe the graded G-set of subsets of Ω as follows. Let
Ξ = {0, 1} regarded as a graded set with deg(0) = 0 and deg(1) = 1
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and Poincaré series f(t) = 1 + t. We write Map(Ω,Ξ) for the set of
all functions φ : Ω → Ξ and define the degree of φ to be deg(φ) =
∑

g∈G deg(φ(g)). Then Map(Ω,Ξ) becomes a left G-set by means of
gφ(x) = φ(g−1x) and in our particular situation it is isomorphic to the
graded G-set of subsets of Ω.

We now quote Proposition 1.4 of [30].

Proposition 6.1. Let Ξ be a graded set with Poincaré series f and let
Ω be a finite G-set. Then

PMap(Ω,Ξ) =
∑

K≤J≤G

G/K · µ(K, J)fJ

|G : K|

where for each subgroup J of G if Ω = Ω1∪· · ·∪Ωn is the decomposition
of Ω into J-orbits then fJ(t) = f(t|Ω1|) · · · f(t|Ωn|), and µ is the Möbius
function on the poset of subgroups of G.

Specializing to our setting where Ω = G and Ξ = {0, 1}, if we fix a
subgroup K in this sum we obtain a polynomial whose coefficients are
the multiplicities of the G-set G/K in the action on subsets of G of
various sizes. For example, with G = D8 a non-central subgroup D of
order 2 of G has two subgroups properly containing it, namely the one
previously called A and G itself, so that µ(D,D) = 1, µ(D,A) = −1
and µ(D,G) = 0. Thus the coefficient of G/D in PΨ is

1

4
(1 · (1 + t2)4 − 1 · (1 + t4)2 + 0 · (1 + t8)1) = t2 + t4 + t6.

Each subgroup of G conjugate to D gives a similar contribution, and
since D has one other conjugate in G, there are 2 orbits isomorphic
to G/D in the action of G on each of subsets of size 2, 4 and 6, and
none in the other cases. Furthermore, D acts with sign +1 on subsets
of size 4, and non-trivial sign on subsets of size 2 and 6 and so we
have accounted for the terms (Z̃ ↑GD)2 and (Z ↑GD)2 which appear in our
description of the chain complex Cori for D8.

We see from this that an important ingredient in describing the ZG-
module structure of Cori is a knowledge of the Möbius function for the
poset of subgroups of G.

7. The Ext class of the subsets complex

We again assume in this section that G is finite, and let Cord and Cori

be the ordered and oriented chain complexes of the simplicial complex
whose vertices are a finite set Ω permuted by G, and in which every
subset is a simplex. We have already seen that the structure of Cori

plays a crucial role in determining the form of the spectral sequence
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coming from the row filtration considered in Section 5. We now analyze
this complex further. We will work in the generality that Ω is any finite
G-set, and we consider the simplicial complex which is a single simplex
whose vertices are the elements of Ω. The oriented chain complex of
this simplicial complex augmented by a copy of the trivial module is
an exact sequence of ZG-modules of the form

(7.1) EΩ = 0← Z← ZΩ← · · · ← ZΩ← Z̃← 0

which represents a class ζΩ ∈ Ext
|Ω|−1
ZG (Z, Z̃) and which we call the

subsets complex of Ω. In particular for each subgroup H of G, on
taking Ω = G/H we obtain a canonically defined element ζG/H , and
when H = 1 and G does not have a non-identity Sylow 2-subgroup (see
Lemma 5.4) the canonical class ζG lies in H |G|−1(G,Z). We will now
examine these cohomology classes, and investigate their significance for
the spectral sequence.

We first analyze the form of EΩ when Ω is not a transitive G-set.

Lemma 7.1. Let Ω and Ψ be G-sets. Then EΩ∪Ψ ∼= (EΩ ⊗ EΨ)[1],
where on the right we mean the total complex of the tensor product,
shifted by one degree.

Proof. We may obtain basis elements of the chain groups in EΩ∪Ψ by
ordering the elements of Ω ∪ Ψ. Order them so that the elements of
Ψ come after the elements of Ω. Now the basis elements of EΩ∪Ψ

n+1 are
lists [ω0, · · · , ωr, ψ0, · · · , ψs] where the ωi ∈ Ω and ψj ∈ Ψ are taken in
order and r+s = n. These biject with the basis elements [ω0, · · · , ωr]⊗
[ψ0, · · · , ψs] of

⊕

r+s=n E
Ω
r ⊗ E

Ψ
s , and this bijection commutes with the

boundary maps. �

Before the next result we briefly review how an exact sequence gives
rise to an Ext class. Given R-modules M,N recall that Ext∗R(M,N)
can be computed from any projective resolution of M by applying the
functor HomR( , N) and taking homology of the resulting cochain
complex. Given an exact sequence of R-modules

(7.2) 0←M ←M0 ← · · · ←Mr−1 ← N ← 0

one associates a class in Extr
R(M,N) as follows. Lift the identity map

M →M along a projective resolution as shown

0 ←−−− M ←−−− P0 ←−−− · · · ←−−− Pr ←−−− Pr+1 ←−−− · · ·
∥

∥

∥





y

f





y





y

0 ←−−− M ←−−− M0 ←−−− · · · ←−−− N ←−−− 0
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The map f ∈ HomR(Pr, N) turns out to give rise to a well-defined class
[f ] in Extr

R(M,N) which represents the sequence (7.2).

Proposition 7.2. Let R be a commutative ring and suppose that

A = 0← A−1 ← A0 ← · · · ← At ← 0

B = 0← B−1 ← B0 ← · · · ← Bu ← 0

are two exact sequences of RG-modules. Suppose that all the modules
Bj are projective as R-modules. Then the total complex of A ⊗R B
is acyclic, and the class in Extt+u+1

RG (A−1 ⊗ B−1, At ⊗ Bu) of the total
complex of A⊗R B is zero.

Proof. Since the modules Bj are all projective, as a complex of R-
modules the complex B is a direct sum of complexes of the form

· · · ← 0← X
∼=
←X ← 0← · · ·

and so A⊗R B is acyclic.
To show that its Ext class is zero, take a projective resolution

0← A−1 ⊗R B−1 ← P0 ← P1 ← · · ·

and consider the diagram

A−1 ⊗ B−1 ← P0 ← · · · ← Pt ← Pt+1

‖ ↓ ↓ ↓

A−1 ⊗ B−1 ← A0 ⊗ B−1 ← · · · ← At ⊗B−1 ← 0

↑ ↑ ↑

A−1 ⊗ B0 ← A0 ⊗B0 ← · · · ← At ⊗ B0

↑ ↑ ↑
...

...
...

↑ ↑ ↑

A−1 ⊗Bu ← A0 ⊗ Bu ← · · · ← At ⊗ Bu

In this diagram the top row is the projective resolution of A−1⊗RB−1,
and underneath it is A⊗R B. The top row of A⊗R B is A⊗R B−1 and
this is acyclic because B−1 is projective as an R-module. We may lift
maps from the resolution of A−1⊗RB−1 along this row as shown. This
is also a lifting from the resolution to A⊗R B. We reach a stage where
the map from Pt+1 is zero and so we can continue the lifting with zero
maps. The final lift to At⊗Bu is zero and so the Ext class is zero. �

We immediately obtain the following corollary.
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Corollary 7.3. If Ω is not a transitive G-set then ζΩ = 0

Proof. We simply put together the last two results. �

Building on this we obtain the following consequence:

Corollary 7.4. Suppose that Ω is a G-set for which |Ω| is not a power
of some prime. Then ζΩ = 0.

Proof. Since
⊕

P ResG
P : H∗(G, Z̃) →

⊕

P H
∗(P, Z̃) is injective, where

the sum is taken over Sylow p-subgroups P of G for different primes p
(see [8, XII.10.1]) in order to check that ζΩ 6= 0 it suffices to check it
on restriction to each Sylow p-subgroup P of G. But ResG

P (ζΩ) = ζΩ↓G
P

and if |Ω| is not a prime power then Ω ↓GP is never a transitive P -set.
Thus by Corollary 7.3 ResG

P (ζΩ) is always zero. �

We now go further and examine the structure of ζΩ when Ω is a
transitive G-set. Any such Ω is isomorphic to a coset space G/K for
some subgroup K of G. For the next theorem, recall that an element
ζ ∈ Extn

ZG(A,B) is said to be essential if ResG
H(ζ) = 0 for every proper

subgroup H of G. For a discussion of the role of essential elements in
cohomology, see for example [1].

Theorem 7.5. Let H and K be subgroups of G. Then

ResG
H ζG/K =

{

ζH/H∩K if HK = G,
0 otherwise.

Hence if K ⊆ Φ(G) then ζG/K is essential, where Φ(G) denotes the
Frattini subgroup of G.

Proof. We examine the orbits of H on G/K. Evidently there is just one
orbit if and only if HK = G, so that if HK 6= G then ResG

H ζG/K = 0
by Corollary 7.3. On the other hand if HK = G then (G/K) ↓GH is a
transitive H-set with stabilizer StabH(K) = H ∩ K, so is isomorphic
to H/H ∩K. This shows that ResG

H ζG/K = ζH/H∩K in this case. The
Frattini subgroup has the property that for no proper subgroup H of
G is HΦ(G) = G, and the final statement follows from this. �

The above theorem provides a way to construct essential elements
in cohomology, and we obtain, for instance, that ζG is always essential.
The trouble is that these elements may be zero, and indeed they often
are. We will see in Corollary 7.8 that when G is an elementary abelian
p-group for some prime p then ζG 6= 0. Also when G = C4 is cyclic of
order 4 we may show by direct calculation that ζG 6= 0. At the time of
writing, these are the only groups for which we know that ζG 6= 0, and
we have been led to wonder whether there are indeed any others.
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We will show now that it is also of interest from a different point
of view if ζG does happen to be zero, since this condition implies a
simplification of the row spectral sequence we considered in Section 5.
The effect of the simplification is that when ζG = 0 then no part of the
top row of the spectral sequence survives to infinity (and the converse
is also true), as will be expressed in Corollary 7.7. In any case, when
ζG 6= 0 we have information about the spectral sequence given in the
next lemma which is useful for computation.

Lemma 7.6. Let M be a ZG-module and let n ≥ |G|−1. The following
subgroups of Hn(G,M) are equal:
(1) The cohomology classes represented by cocycles in HomZG(Cord

n ,M)
which vanish on Cord

n,0 ⊕· · ·⊕C
ord
n−|G|+2,|G|−2 (i.e. which have support only

on the top row of the double complex for Cord),

(2) E
n−|G|+1,|G|−1
∞ , regarded as a subgroup of Hn(G,M), and

(3) ζG · Ext
n−|G|+1
ZG (Z̃,M) where ζG ∈ Ext

|G|−1
ZG (Z, Z̃) is the class of the

subsets complex.

Proof. Equality of (1) and (2): the filtration on the cochain complex
HomZG(Cord,M) given by its rows is finite, and the bottom term in
the filtration consists of the top row of the double complex. Cocycles
defined on the top row of Cord remain cocycles in HomZG(Cord,M),
and it comes from the construction of the spectral sequence that they
represent the elements in the top row of every page of the spectral
sequence from the first on. This establishes the equality.

Equality of (1) and (3): suppose that η ∈ Ext
n−|G|+1
ZG (Z̃,M). We

show first that every cohomology element of the form ζG ∪ η is repre-
sented by a cocycle in the top row of HomZG(Cord,M). For, suppose η
is represented by an extension

η : 0← Z̃← A0 ← A1 ← · · · ← At ←M ← 0

where t = n− |G|. Then ζG ∪ η is represented by the Yoneda splice of
EG and the above extension and it is represented by a cocycle which
may be obtained by lifting maps from the projective resolution Cord as
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in the following diagram:

A0 ← A1 ← · · · ← M ← 0

↙ ↑ ↑ ↑

Z̃ ← Cord
0,|G|−1 ← Cord

1,|G|−1 ← · · · ← Cord
t+1,|G|−1 ← · · ·

↓ ↓ ↓ ↓
...

...
...

...

↓ ↓ ↓ ↓

ZG ← Cord
0,0 ← Cord

1,0 ← · · · ← Cord
t+1,0 ← · · ·

↓

Z

The bottom right portion of this diagram is the double complex for
Cord. At the left edge we have Cori = EG and along the top the sequence
which represents η. The fact that we may lift along this sequence
using only maps with support on the top row of Cord may be seen
on considering that the top row is a projective resolution of Z̃, and it
is a quotient complex of Cord, so we may lift first along the quotient
complex, and then compose with the quotient homomorphism from
Cord.

Conversely we see from the same picture that every cocycle with
support in the top row represents a cohomology class of the form ζG∪η;
for we may take η to be represented by the extension obtained from
the top row of Cord by a pushout construction using the cocycle. �

Corollary 7.7. The following are equivalent:

(1) For some r, E
r,|G|−1
∞ 6= 0,

(2) E
0,|G|−1
∞ 6= 0, and

(3) ζG 6= 0 in Ext
|G|−1
ZG (Z, Z̃).

Proof. Clearly (2) implies (1). (3) implies (2) because ζG ∈ E
0,|G|−1
∞ by

Lemma 7.6. Finally (1) implies (3) because any element of E
r,|G|−1
∞ can

be written ζG ∪ η by Lemma 7.6 and if ζG = 0 then E
r,|G|−1
∞ = 0 for

every r. �

In what follows we will refer to the notion of the complexity at a
prime p of a group G. This is the Krull dimension of the even degree
part of the cohomology ring of G with Z/pZ coefficients. The dimen-
sions of the Z/pZ-vector spaces Hn(G,Z/pZ) have a polynomial rate
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of growth which has degree 1 less than the complexity. See [2] for an
overview of this theory.

Corollary 7.8. If ζG = 0 then the complexity of G at each prime
p is at most the maximum complexity of the proper subgroups of G.
Consequently, if G is an elementary abelian p-subgroup for some prime
p, then ζG 6= 0.

Proof. Taking M = Z/pZ in the spectral sequence, if ζG = 0 then by
Lemma 7.6, the growth of Hn(G,Z/pZ) is bounded by the growth of
the terms in the spectral sequence which lie below the top row, and
these terms are direct sums of Ext groups taken over proper subgroups
of G. This shows that the complexity of G at the prime p is at most
the maximum complexity of a proper subgroup of G. However, the
complexity of an elementary abelian group of rank d is equal to d, and
this is larger than the complexity of any of its proper subgroups. Thus
when G is an elementary abelian p-group, ζG 6= 0. �

We may combine this corollary with Theorem 7.5 to produce the
following result.

Theorem 7.9. Let G be a group with subgroups H and E such that
(1) E is an elementary abelian p-group for some prime p,
(2) H ∩ E = 1, and
(3) |G| = |H||E|.

Then the class ζG/H ∈ Ext
|G:H|−1
ZG (Z, Z̃) is non-zero.

Proof. From Theorem 7.5 and Corollary 7.8 it is immediate that

ResG
E ζG/H = ζE 6= 0

which implies the result. �

In the statement of Theorem 7.5, in the presence of conditions (1)
and (2) it is equivalent to replace (3) by the condition G = HE. These
conditions are very often satisfied. Any subgroup of the symmetric
group Spn which contains an elementary abelian subgroup acting regu-
larly satisfies these conditions, taking H to be the stabilizer of a point.
For example, Spn itself satisfies these conditions. For another exam-
ple consider the extraspecial p-group of exponent p and order p3 when
p is an odd prime (i.e. the Sylow p-subgroup of GL(3, p)). Taking
H to be any non-central subgroup of order p gives a non-zero class
ζG/H ∈ H

p2−1(G,Z), and taking H to be a subgroup of order p2 also
gives a non-zero class ζG/H ∈ H

p−1(G,Z).
We conclude this section by examining the subsets complex in an

important special case, namely the situation in which Ω is permuted
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by the full symmetric group on Ω. We illustrate the techniques we have
developed by determining precisely when ζΩ 6= 0.

Corollary 7.10. Let Ω = {1, . . . , n} be (faithfully) permuted by Sn.
Then ζΩ 6= 0 if and only if n is a prime power.

Proof. If n is a prime power then ζΩ 6= 0 by Theorem 7.9 and the
comments which follow it; and if n is not a prime power then ζΩ = 0
by Corollary 7.4. �

It turns out that as a complex of ZSn-modules, the subsets complex
EΩ where Ω = {1, . . . , n} is the Yoneda splice of some well-known short
exact sequences of Specht modules considered by James and Peel [17],
as we next explain. To any set D consisting of n points in the integer
plane N×N one can associate a ZSn-module called the Specht module
SD. In the case where D is a Ferrers diagram for some partition of n,
these are the usual Specht modules used in constructing the indecom-
posable representations of Sn. One can also check that when Di is the
union of i points in a column with another n− i points in a single row,
sharing no other rows or columns, SDi

is equivalent to the chain group
Cori

i−1 in EΩ. Furthermore, a very easy special case of [17, Theorem 2.4]
gives a short sequence of ZSn-modules

(7.3) 0→ S(n−i,1i) → SDi

→ S(n−i+1,1i−1) → 0.

The following proposition is then a routine check of the definitions:

Proposition 7.11. Under the identification Cori
i−1
∼= SDi

, the short
exact sequence

0→ ker(di+1)→ Cori
i → im(di)→ 0

coincides with the sequence (7.3). Hence the subsets complex EΩ is the
Yoneda splice of these short exact sequences of Specht modules.

Corollary 7.12. When n is a power of a prime p, none of the sequences
7.3 is split as a sequence of ZSn-modules.

Proof. If any of the sequences 7.3 were split then the Ext class of Cori

would be zero, by Proposition 7.11. By Corollary 7.10 this is not the
case. �

In fact we may strengthen the statement of Corollary 7.12 to say that
when n is a power of p the reduction mod p of none of the sequences 7.3
is split. This is because Corollary 7.8, on which our proof that ζΩ 6= 0
depends, comes from a property of the cohomology H∗(G,Z/pZ) when
G is an elementary abelian p-group. We may compute this cohomology
by working throughout with Z/pZ as the ground ring, and hence deduce
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that the Ext class of EΩ ⊗Z Z/pZ is non-zero. We now complete the
argument as above.

We conclude this section of results on the subsets complex by showing
that it can be expressed as a product in a certain way. More specifically,
when K and H are subgroups of G with K ≤ H then, to within signs,
the Ext class ζG/K is the cup product of ζG/H and NormG

H(ζH/K) where

NormG
H is Evens’ norm map. We start our account of this by recalling

the construction of the norm, and we will follow the description given
in [2].

Supose that H is a subgroup of G. In its regular left action on
itself, G preserves the partition G = x1H ∪ · · · ∪ xnH given by the left
cosets of H (we will take x1 = 1). The full group of permutations of
G which preserve this partition is a wreath product Sn o S|H|, where
n = |G : H|, and so G is isomorphic to a subgroup of this group. In
fact this subgroup is contained in Sn o H where H is identified as a
subgroup of S|H| via its left regular representation. We thus have an
embedding i : G ↪→ Sn oH.

Given a chain complex C on which H acts, we may define an action
of Sn oH on C⊗n by allowing each factor H of the base group Hn to act
on the corresponding factor C in the tensor product in the specified
manner, and on the remaining factors in the tensor product as the
identity. We let a permutation π ∈ Sn act on C⊗n as follows:

π(c1 ⊗ · · · ⊗ cn) = (−1)νcπ−1(1) ⊗ · · · ⊗ cπ−1(n)

where

ν =
∑

j<k
π(j)>π(k)

deg(cj) deg(ck).

This action of the wreath product restricts to give an action of G on
C⊗n. We will be interested in the situation where C only has non-zero
homology in degree zero, so appears as the truncation of a multiple
extension

C = 0← A← C0 ← C1 ← · · · ← Cs ← 0

for some ZH-module A. We will furthermore suppose that every mod-
ule is a free abelian group, so that the sequence is totally split as abelian
groups. In this case (according to the description in [2]) C⊗n has the
tensor-induced module A ↑

⊗
G as its degree zero homology and is other-

wise acyclic. The top degree term in C⊗n is the module Cs
↑
⊗

G ⊗ Z(s)

where Z(s) is the restriction to G of the Z[Sn oH]-module Z on which
H × · · · × H acts trivially and Sn acts trivially if s is even, and via
the sign representation of s is odd. Extending the usual notation, let
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us write NormG
H(C) for the extension of ZG-modules

0← A ↑
⊗

G ← · · · ← Cs
↑
⊗

G ⊗ Z(s) ← 0

just described. Then the Ext class of NormG
H(C) is the norm of the Ext

class of C.

Proposition 7.13. Suppose that K and H are subgroups of G with
K ≤ H. Then the subset complex EG/K is equivalent to the Yoneda
splice of EG/H and NormG

H(EH/K)⊗ Z̃G/H . Here equivalence means that

the two extensions represent the same Ext class, and Z̃G/H denotes the
ZG-module Z on which G acts via the sign of the permutation action
on G/H.

Proof. We start by putting a double complex structure on EG/K in a
similar way to what we have done before with ordered chain complexes.
The degree t term Ct of EG/K is spanned by symbols [g0K, . . . , gtK]
and we will write Cr,s for the span of those [g0K, . . . , gr+sK] for which
|{g0H, . . . , gr+sH}| = s+ 1. Then evidently

Ct =
⊕

r+s=t

Cr,s

and

d(Cr,s) ⊆ Cr−1,s ⊕ Cr,s−1

since when we omit a term giK from [g0K, . . . , gtK], the number of
H-cosets represented by the remaining K-cosets either stays the same
or goes down by 1. We have thus expressed EG/K as a double complex.

There is a morphism of G-sets φ : G/K → G/H specified by gK 7→
gH which gives rise to a map of the G-simplicial complexes of subsets of
these G-sets, and hence to a morphism of the augmented oriented chain
complexes φ : EG/K → EG/H . Now φ([g0K, . . . , gtK]) = [g0H, . . . , gtH]
is zero unless these t + 1 cosets of H are distinct, and so φ(Cr,s) = 0
unless r = 0. We thus have a map from the left edge of the double
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complex to EG/H , which we may picture as follows:

(7.4)

Z̃G/H ← C0,n−1 ← C1,n−1 ← · · ·

↓ ↓ ↓

Z[G/H] ← C0,n−2 ← C1,n−2 ← · · ·

↓ ↓ ↓
...

...
...

↓ ↓ ↓

Z[G/H] ← C0,0 ← C1,0 ← · · ·

↓ ↓

Z = Z

The left hand column in this diagram is EG/H and the terms to the
right of this are the double complex for EG/K. Since the construction
we have just performed depends only on the partition of G/K given
by the left cosets of H, and this is preserved by the wreath product
Sn oH, we have in fact a diagram of Z[Sn oH]-modules.

Let us now examine the top row C∗,n−1 → Z̃G/H in diagram 7.4. We

claim that it is isomorphic to NormG
H(EH/K)⊗ Z̃G/H and demonstrate

this by producing an isomorphism

θ : NormG
H(EH/K)→ (C∗,n−1 → Z̃G/H)⊗ Z̃G/H

defined on the basis elements of NormG
H(EH/K) in degree ≥ 0 by

θ([a1,0K, . . . , a1,d1K]⊗ · · · ⊗ [an,0K, . . . , an,dn
K]) =

(−1)d2+d4+d6+···[x1a1,0K, . . . , x1a1,d1K, . . . , xnan,dn
K]⊗ 1.

Here the ai,j belong to H and 1 = x1, x2, . . . , xn are representatives of
the cosets G = x1H ∪ · · · ∪ xnH. The tensor product element to which
θ is applied in the above definition is a basis element of NormG

H(EH/K)
in degree d1 + · · · + dn. We observe that the image of θ does indeed
lie in the top row of the double complex, since the terms in the top
row are the span of symbols [g0K, . . . , gtK] in which every coset of H
is represented, and this is guaranteed by the construction.

It is evident that in each degree θ determines an isomorphism of
abelian groups, since basis elements are mapped bijectively to basis
elements or their negatives. What remains is to check that θ commutes
with the boundary maps of these complexes, and that it commutes with
the action of G. In verifying the latter it is convenient to verify that θ
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commutes with the action of the larger group Sn oH since this allows
us to break up the calculation into separate checks for the base group
Hn and for Sn, and the latter may be done by considering the effect of
the Coxeter generators (i, i+1) for the symmetric group. These checks
are complicated but routine, and we leave the details to the reader.

At this stage we conclude that the top row C∗,n−1 of diagram 7.4 is

acyclic except for its zero homology Z̃G/H . The Yoneda splice of EG/H

with NormG
H(EH/K)⊗ Z̃G/H is now obtained by splicing the left vertical

column of diagram 7.4 with the top row of that diagram. We see that
there is a morphism of chain complexes from EG/K to this splice given
by φ on the left edge (except for the top term), the identity on the
top row, and zero on the remaining terms of the double complex. This
morphism is the identity on the terms at each end, and so we have an
equivalence of complexes, as claimed. �

By iterating the product decomposition of 7.13 we immediately ob-
tain the following result.

Corollary 7.14. Let K = K0 ≤ K1 ≤ K2 ≤ · · · ≤ Kt = G be a chain
of subgroups of G. Then EG/K is equivalent to the Yoneda splice of the
complexes NormG

Ki
(EKi/Ki−1)⊗ Z̃G/Ki

where 1 ≤ i ≤ t.

8. Remarks and questions

8.1. The flag f-vector, h-vector of Kn. Note that every maximal
face in the complex Kn has the same vertex set [n], and therefore Kn is
an example of a balanced complex, so that one can speak of its flag (or
fine) f -vector and h-vector (see [26, Chapter III §4]). These quantities
are easy to compute, either directly, or via the shelling of Kn, and the
comparison of answers has a curious enumerative consequence.

For any S ⊂ [n], the flag f -vector entry αKn
(S) is defined to be the

number of faces of Kn having vertex set S, while the flag h-vector entry
βKn

(S) is defined by the inclusion-exclusion-like formula

βKn
(S) =

∑

T⊂S

(−1)|S−T |αKn
(T ).

In the case of Kn it is easy to see that

(8.1)
αKn

(S) = |S|! = |{π ∈ Sn : [n]− Fix(π) ⊂ S}|

βKn
(S) = |{π ∈ Sn : [n]− Fix(π) = S}|.

where Fix(π) denotes the fixed point set of π.
On the other hand, from the fact that the lexicographic ordering on

permutations in Sn induces a shelling order on the facets of Kn, one
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can immediately deduce (cf. [26, Proposition III.2.3])

(8.2) βKn
(S) = |{π ∈ Sn : [n]− Opt(π) = S}|

where we define the optimal set Opt(π) to be those values i in [n] for
which π is the lexicographically smallest among all permutations having
[n]−{i} in the same relative order as π. For example, Opt(37246851) =
{3, 4, 6}.

Comparing (8.1) and (8.2) shows that for all S ⊂ [n],

|{π ∈ Sn : Opt(π) = S}| = |{π ∈ Sn : Fix(π) = S}|.

This begs for a bijection φ : Sn → Sn having Opt(φ(π)) = Fix(π).
The authors thank M. Wachs for pointing out that such a bijection
is given by a version of Foata and Schützenberger’s “transformation
fondamentale” (see e.g. [23, §1.3]). Given π, write it in cycle notation,
with the largest element of each cycle coming first in the cycle, and
with the cycles listed in increasing order of their largest elements. Then
erase the parentheses to obtain φ(π). For example, if we take

π =

(

123456789
792486513

)

= (4)(6)(8175)(932)

then φ(π) = 468175932. To see why this works, note that Opt(π) is
exactly the set of values in π which are left-to-right maxima having
another left-to-right maximum immediately to their right. Under the
map φ, left-to-right maxima in φ(π) correspond to the left parentheses
in cycle notation for π, and hence two adjacent left-to-right maxima
correspond to singleton cycles (fixed points) of π.

8.2. More on group cohomology. We make a few more comments
about the Ext classes ζG, only sketching the arguments. First we point
out that ζG is acted upon by the automorphism group Aut(G) (in its
functorial action on Ext groups) as multiplication by the sign of the
permution action of Aut(G) on G. We may explain this as follows.
Given any ZG-module M and α ∈ AutG we may produce a new mod-
ule αM which has the same set as M and a new G-action specified by
g ·m = (α−1

g)m. Then for every α ∈ AutG there is an isomorphism

of ZG-modules ZG ∼= αZG specified by x 7→ α−1
x, and this isomor-

phism extends to an isomorphism of chain complexes EG ∼= αEG given
on oriented chains by [g1, . . . , gt] 7→ [α

−1
g1, . . . ,

α−1
gt]. Now αZ̃ = Z̃,

and the Ext class of αEG is determined from that of EG by applying
the morphism Z̃→ αZ̃ which is the top morphism in the isomorphism
EG → αEG. Since Z̃ is spanned by an element [g1, . . . , g|G|] in which
every element of G appears just once, this morphism is multiplication
by the sign of the permutation α.
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Suppose now that G = Cd
2 is an elementary abelian 2-group and

we reduce EG modulo 2, giving an Ext class which we again denote
ζG ∈ H

|G|−1(G,F2). Since −1 = +1 in F2 we deduce that ζG is fixed
by Aut(G) = GL(d, 2), and so lies in the ring of Dickson invariants
of the polynomial algebra H∗(G,F2) (see [3] for background on the
Dickson invariants). Recall also from Corollary 7.8, whose conclusion
is also valid on reduction mod p, that ζG 6= 0. Since the degrees of the
generators of the Dickson invariants are 2d−1, 2d−2, 2d−4, . . . and all
of these are even except the highest one, it follows that EG represents
the top degree generator of the Dickson invariants.

When we try the same thing with G = Cd
p where p is an odd prime

we run into the difficulty that ζG is not fixed by Aut(G), even regarding
it as an element of H∗(G,Fp). However, we may dualize the complex
EG⊗Z Fp to give a complex (EG⊗Z Fp)

∗ = HomFp
(EG⊗Z Fp,Fp) which

represents an element ζ∗G ∈ Ext
|G|−1
FpG (F̃p,Fp). Now the cup product

ζ∗GζG ∈ Ext
2|G|−2
FpG (Fp,Fp) is fixed by Aut(G) (since Aut(G) acts on it by

the square of the sign representation) and represents a top degree gen-
erator of the Dickson invariants by similar arguments to the previous
ones.

It has been pointed out to us (and we are particularly grateful to
Michael Mandell for providing a proof) that the Ext classes ζΩ are
in fact Euler classes of representations. Specifically, if we decompose
the real permutation module on Ω as RΩ = R ⊕ A (thus defining the
representation A), then ζΩ is the Euler class of A. We have not used
this approach in our treatment here, but if we accept this identification
then a number of results follow from general properties of Euler classes.
For instance, the Euler class of a direct sum of representations is the
product of the Euler classes, and the Euler class of the trivial represen-
tation is zero, so that if Ω is not a transitive G-set then ζΩ = 0 because
in this situation the representation A has the trivial representation as
a summand. This was our Corollary 7.3. We may also obtain a part
of our Proposition 7.13 in this way. If K is a subgroup of H then the
representation A for the G-set G/H is a summand of the corresponding
representation for G/K, and so we may deduce that ζG/H is a factor
of ζG/K. Identifying the remaining factor in terms of Evens’ norm is
perhaps more difficult.

We conclude by stating again a question raised just after Theorem
7.5: what are the finite groups G for which ζG 6= 0? The only G for
which we know this to be true are the elementary abelian p-groups and
the cyclic group of order 4. On the other hand we know in a number
of other cases that ζG is in fact zero. For example if G is a quaternion
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2-group then H |G|−1(G,Z) = 0 (see [8]) which forces ζG = 0. Further-
more, any group with no non-zero essential elements in cohomology
must necessarily have ζG = 0 by Theorem 7.5 (see [1] for a discussion
of such groups). A resolution of this problem would have consequences
regardless of what the answer turns out to be. If ζG = 0 we obtain
spectral sequence information using Corollary 7.7, and if ζG 6= 0 then
we have non-zero essential elements in cohomology, which is again of
interest.
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