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ABSTRACT. We investigate a cone in the symmetric group algebra introduced
by Stembridge [2]. It is dual to the cone of monomial-positive immanants of
n X n matrices with indeterminate entries. We present a new set of relations
between elements of the dual cone, and use these relations to show that the
cone is finitely generated for n = 6, generalizing Stembridge’s result for n = 5.

1. INTRODUCTION
1.1. Background.

Definition 1.1. Fix a positive integer n and for every pair of integers 1 <i < j <n
define the bracket [i, j] € RS, as the sum of of all permutations o of {1,...,n} that
fix integers outside the interval [i,j] = {i,i + 1,...,5 — 1,5}. More formally, let
[i, 7] = Eaes[i‘j] o where S}; j := Stab({1,2,...,i—1,j+1,...,n}) < S,.

Definition 1.2 (Stembridge [2]). Let IL,, be the set of all finite products of brackets
in RS, (really in QS,,), and define the cone C(Il,,) to be the set of all non-negative
linear combinations of elements in II,,.

Remark 1.3. The significance of the cone C(II,) is that it is dual to the cone of
monomial-positive immanants of n x n matrices with indeterminate entries. Briefly,
a function f: S, — R gives rise to an immanant A — f[A] € R[a;;] where A = (a;;)
is an n X n matrix with indeterminate entries, and the map is given by A —
ZUGS" J(0)a15(1)025(2) - - - Ano(n)- An immanant is said to be monomial-positve if
f[A4] is a polynomial with non-negative coefficients. See [2] for details.

To each product of brackets we associate a diagram, which are constructed by
drawing a line segment for each bracket, as in Figure 1 which shows the diagram
for the product [1, 2][3,4][[2, 3][2, 5].

FIGURE 1. Diagram for [1,2][3,4][2,3][2, 5]

Date: December 16, 2011.



PROPERTIES OF THE DUAL CONE OF MONOMIAL-POSITIVE IMMANANTS 2

We are preoccupied with the following conjecture:
Conjecture 1.4. The cone C(I1,,) is finitely generated (i.e. polyhedral) for each n.

The conjecture has been verified for n < 5 by Stembridge who used Maple to list
all the extreme rays (generators) of the cone [2]. In this paper we present a more
sophisticated approach to the problem, which makes verifying the conjecture for
n > 5 computationally feasible. In particular, we verify the conjecture for n = 6,
thus proving the following theorem.

Theorem 1.5. The cone C(Ilg) is finitely generated with the 748 rays given in
Appendiz A.

1.2. Our approach. We approach the problem by identifying sufficient “local”
criteria for a ray of C(II,) to not be extreme, that is, to be reducible, and using
these criteria to eliminate all but finitely many elements of Iz as possible extreme
rays. Obviously, a sufficient ‘global” condition for 7 € II to not be an extreme
ray of the cone C(II,,) is that m can be written as a positive linear combination of
products of brackets that are not positive multiples of 7 in the group algebra. In
other words, it is enough to show that = = Z?:l a;m; with a; > 0 and m; € II,
where at least one of the 7; is not a positive scalar multiple of 7 in RS,,.
Two questions arise:
(1) How do we find such decompositions of elements 7 € II,,?
(2) How do we determine if two products of brackets 7w and w2 are actually
distinct in the group algebra?

The second question warrants some explanation: it is possible for a an element
of II,, living in the group algebra RS, to have several different expressions as a
product of brackets. For example, the two products of brackets [12][24][12] and
[34][13][34] are in fact the same element of RS,,. Furthermore, it is possible for two
distinct products of brackets to be positive scalar multiples of each other, as for
example [12][13] = 2[13], or equivalently [13] = 1[12][13]. Hence, question 2 raises
a non-trivial concern.

A third, and more subtle question, arises when we try to phrase what it means for
a reduction criterion to be “local” rather than “global”. Naively, a “local” criterion
would be a decomposable product of brackets 7 such that for any two products of
brackets 7’ and 7/, the product n'7w7” is also decomposable. The existence of such
“local” criteria, however, is not at all clear:

(3) If m decomposes as Zle a;m;, how do we know that the decomposition
'’ = Zle a;w'm;w" also has the property that at least one of the
w'm;7" is not a positive scalar multiple of 7'77’?

It turns out that such a nalve“local” criterion in fact does not exist due to a
general relation we call absorption.

Proposition 1.6 (Absorption). If a bracket [i,j] is contained in a bracket [i’, j']
in the sense that i < i < j < j' (in the language of diagrams, one segment is
contained in one directly above or below it), then we have the identity:

(i 41l 5" = G =i+ DU 5 = [, 57106, 5.

Proof. Tt is clear that [¢’, j'], as the formal sum of all permutations in the subgroup
Sjir j1), 1s invariant under left- and right- multiplication by elements of that same
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/

subgroup. Since S}; j < Syir j for [i, 5] C [/, 5], it follows that for every o € S|; 5

we have o[i’, j'] = [i/,5'] = [/, 7']o and hence that
i)l =Y oli'il= > W= —i+ D)5
TE€S} 51 TE€S5p 41
@A) =157 Y o= Y [ =0G—i+ DI, j m
T€5;,5) oE€S51i,5]
Absorption makes naive “local” criteria impossible because setting ©' = [1,n]

will always kill the criterion, as in the following example. An easy computation
tells us that [12][23][12] = [12] + [13], yet by absorption we have [13][12][23][12] =
8[1,3], [13][12] = 2[1,3], and [13][13] = 6]1,3], which means that the equation
[1,3][1,2][2,3][1,2] = [1,3][1,2] + [1,3][L,3] does not guarantee that the bracket
product [1,3][1, 2][2, 3][1, 2] is not an extreme ray.

Nevertheless, we can address questions (2) and (3) in one fell swoop by defining
the notion of weight.

Definition 1.7. Given a product of brackets [i1, j1][i2, jo] - . . [ik, x| We define its
weight to be the sum Zle(jr — ;). In the language of diagrams, the weight is the
sum of the length of all the line segments (so the weight of Figure 1 is 6).

The weight satisfies two important properties. First: it is always non-negative.
Second: it is additive in the sense that if 7 and 7’ are products of brackets, then the
weight of w7’ is the sum of the weights of © and 7/. Most importantly, the weight
is a characteristic of the particular ezpression of a product of brackets, rather than
of the corresponding element of the group algebra. These properties allow us to
formulate a slightly different “local” condition, for which issues (2) and (3) do not
arise.

Proposition 1.8. A product of brackets 7 is not an expression of minimal weight
for an extreme ray of the cone (is reducible) if

k
™ = E ;75
i=1

where a; > 0 and at least one of the m; has weight lower weight than .

Proof. Clearly, if m; is of lower weight than 7 and 7 is an expression of minimal
weight for an element of the group algebra, then m; cannot be a positive multiple
of m.

Furthermore, for any two other products of brackets 7’ and ©” we have that
'’ = Zle w'm;w” and by additivity of the weight we have that the weight of
7'm;w" is lower than the weight of #’7n”. Hence, the condition is “local”. O

For example, the equation [13][12][23][12] = [13][12]+[13][13] expresses a product
of brackets of weight 5 as the sum of products of brackets of weights 3 and 4, which
automatically implies that [13][12][23][12] is reducible. In fact, writing down the
equation is unnecessary since we can simply observe that [13][12][23][12] contains
[12][23][12] as a subproduct and that the equation [12][23][12] = [12] + [13] is a
“local” condition as it expresses a product of brackets of weight 3 as the sum of
products of bracets of weights 1 and 2.
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Now, having established a reasonable notion of what a “local” condition ought
to look like, we can state the key result of our paper, which together with the
absorption relation and certain symmetries of the group algebra is enough to show
Theorem 1.5.

Proposition 1.9. A triple of brackets [1,1][k,n][1,k] for 1 <n—-1<k<Il<n
and k # 1 (illustrated in Figure 2) decomposes as:

[, ][k, n][1, K] = M[z + 1,010+ 1]k + 1,1
F k= (n— 1)k — 1)!%[1,1]% +1,m]
- M[H 1,n)[1,0 + ][k + 1,7]
+(k—n+0)(1—k+1)(k—DILIk+1,n]
| k-1 |
e n-t —

F1GURE 2. Diagram of Proposition 1.9

This proposition (actually, a slight generalization of it using absorption) is the
only general relationship of brackets of products that we have been able to find.
Notice that the term [1,I][k + 1,n] is of weight strictly less than [1,{][k,n][1, k],
which implies that for ¥ > n — [ the above is in fact a “local” condition. For
example, the easily computed relation [12][23][12] = [12] + [13] follows immediately
from setting k = 1 = 2 and n = 3. Similarly, the alluded to (and more tedious
to compute) relation [12][24][12] = [34][13][34] follows from setting k = [ = 2 and
n = 4, as does the relation [12][25][13] = [35][14][45] from setting k = 2, | = 3,
n=29.

For k = n — [, however, the relation degenerates to stating that [1,1][k, n][1, k]
equals [l + 1,n][1,] + 1][k + 1,n] as elements of the group algebra. Since both
expressions have the same weight, when k = n—1[ we do not have a “local” condition.
Nevertheless, we may use the relation when k = n — [ to decompose the product of
brackets since even though a product of brackets 7'[1,[][k, n][1, k]7" may contain
[1,1][k, n][1, k] as its only triple, it is possible that the equivalent expression 7'l +
1,n][1,14+1][k+1, n]7” may contain additional triples that do decompose with terms
of lower weight. In other words, decompositions which do not have terms of smaller
weight may still be useful in showing a product of brackets is not an extreme ray
if we allow ourselves to iteratively decompose until we do obtain a term of smaller
weight (morally, this works because allowing ourselves to iteratively decompose is
allowing ourselves to patch together several “local” decompositions or equivalences,
which can give us stronger results).
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For example, the product [12][24][12][35] of weight 6 equals (in RS,,) the product
[34][13][34][35] which by absorption is a scalar multiple of [34][13][35] which is of
weight 5. Hence, we can conclude that [12][24][12][35] is not a minimal weight
expression for an extreme ray, because it is a scalar multiple of the lower weight
expression [34][13][35].

2. PROOF OF THEOREM 1.5

In this section we prove Theorem 1.5. We begin with the single technical proof
that involves the particular structure of the group algebra — the proof of Proposi-
tion 1.9. Then, by using the elementary property of absorption (Proposition 1.6),
we amplify the Proposition to the more general Corollary 2.6. Finally, we encode
the general triple relation and the property of absorption into a computationally-
feasible algorithm that eliminates all products of brackets that are not minimal
weight expressions of extreme rays of the cone. We run this algorithm for n = 6
and obtain a list of 750 distinct products of brackets which contains a superset of
the extreme rays of C(Ilg). We then use the Parma Polyhedra Library to remove
non-extremal rays.

Throughout this section, and the rest of the paper, we will make liberal use of the
following symmetries of the group algebra, taking note that they preserve weight
and relations between products of brackets, and hence boost four-fold any “local”
condition that we prove.

(1) The standard anti-automorphism of the group algebra, which evidently
transforms II,, by the rule [i1, j1] ... [ik, Jk] = [k, Jrlliv—1,dk—1] - - [i1, 71],
effectively reversing the product of brackets. In the language of diagrams,
this corresponds to reflection about a horizontal axis.

(2) The inner automorphism of the group algebra given by conjugating by
o= (n,(n—1),...2,1) (one-line notation) which transforms II,, according
to the rule [i1, j1] ... [ik, Jk] = [0(G1),0(i1)] ... [0(jr), o (ir)], effectively re-
flecting the products of brackets around 5. In the language of diagrams,
this corresponds to reflection about a vertical axis.

2.1. Proof of Proposition 1.9.

In order to prove Proposition 1.9, we will determine the coefficients of each
permutation o in the expansions of the three products of brackets [1,{][k,n][1, k],
[[+1,n)[1,14+1][k + 1,n], and [1,{][k + 1,n] as elements of the group algebra RS,,.

First, we consider the simplest term [1,[][k + 1, n].

Lemma 2.1. The coefficient of o in [1,]][k+ 1,n] with 1 < k <1 < n is 0 if
a([LLE) NI+ 1,n] #0 and (I — k)! otherwise.

Proof. First, note that any permutation o occurring with non-zero coefficient in
[1,{][k + 1,n] can be written as a product o8 where o € Spy ) and 8 € Sppp1,p-
Evidently, « fixes point-wise the interval [[+1,n] and f3 fixes point-wise the interval
[1,k], so aB([1,k]) N[l +1,n] = 0.

Conversely, if o([1,k]) N[l +1,n] = 0, we will compute that there are (I —k)! > 0
ways of writing o = a8 where a € Sj; ;) and 8 € S[y1,n)-

Because f3 fixes point-wise the interval [1, k] it follows that for any expression
o = aff we would have that o([1,k]) = a([1, k]). Hence, given a particular o, the
values of the possible o € S[1 ;) on the interval [1, k] are already determined which
leaves exactly (I—k)! possibilities for cv. Each possibility for « gives rise to a unique
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possible 3 by the relation 5 = a~'o. We need to check that 3 is in fact in Slk+1,n]s
but that is certainly true since for every j € [1, k] we have that o(j) = a(j) and

hence a~to(j) = j.
Hence, each o with o([1, k]) N ([l + 1,n]) gives rise to exactly (I —k)! expressions
af with a € S[l,l] and (§ € S[l,k+1]- (Il

Next, we compute explicitly the coefficients of the permutations o in the expan-
sion of the product [1,I][k, n][1,k] for 1 <k <1< n.

Lemma 2.2. The coefficient of o in [1,1|[k,n][1,k] for 1 < k <1 < n, is (k —
Il —k+ 1) where i = |o([1,k]) N[l + 1,n]| <1, and zero otherwise.

Proof. First, note that any permutation o occurring with a non-zero coefficient
in [1,1][k,n][1, k] can be decomposed as a product o = a3y where o € Spy ;1,8 €
Sik,n]»Y € S[1k-

Then o([1,E]) N[l + 1,n] = aB([LLE) NI+ 1,n] = B(LE) N[+ 1,n]) =
B([k,k]) N[l 4+ 1,n]. Evidently then |o([1,k]) N[l 4+ 1, n] equals either 1 (in the case
that 8(k) € [l 4+ 1,n]) or O (in the case that 5(k) & [l + 1, n].

Conversely, suppose that o € S, is such that |o([1,k]) N[l + 1,n]| < 1, and let
i=|o([1,k]) N[l +1,n]. We will show that the number of ways of writing ¢ = afy
with o € S[l,l]» B € S[k,n]a and v € S[l,k] is (k‘ -l -k+ 1)!.

If ¢ = 1, then o sends exactly one element of [1, k] to [l + 1,n]. If that element is
J, then because « fixes point-wise [[ 4 1,n], and 8 and v fix point-wise [1, k— 1] and
[k + 1, n] respectively, the only way this could happen if ¢ = af~ is that j B AN
o(j) = o(j). Hence, we have at most (k—1)! choices for v € S}; 4. Then we need to
compute the number of ways of write oy~' = af for o € Sy and B € Spg ) For
that we can use Lemma 2.1 since it is easy to see that oy~ 1([1,k—1])N[I+1,n] =0
as oy Y (LK) N[l + 1,n] = o([1,E]) N[l + 1,n] = {o(j)} and oy~ (k) = o(j).

Hence, by Lemma 2.1 we have (I — k + 1)! ways of writing oy~! = o where
a € Sy and 8 € Sy ) for each of the v € Sy g such that v(j) = k. Since there
are (k — 1)! such v, we obtain the desired coefficient of (k — 1)!(I — k + 1)!.

If i = 0, then o sends no elements of [1, k] to [+ 1, n], and we have no restrictions
on v and hence k! choices. Again we can use Lemma 2.1 since it is again easy to see
that oy~ Y([1L,k = 1)) N[l +1,n] =0 as oy Y([1,k - 1)) N[l + 1,n] C oy L([1,k]) N
[[+1,n] =0o([1,k]) N[+ 1,n] = @ by assumption. Hence, we have (I — k+1)! ways
of writing oy~' = af where a € Sy and B € Sy for each of the v € Sy i)
Hence, we obtain the desired coefficient of k!(I — k 4+ 1)!. O

Third, we compute the coefficients of the permutations o in the expansion of
[[+1,n][1,l+1][k+1,n] in a way compatible with the coefficients of [1, ][k, n][1, k]
computed in Lemma 2.2.

Lemma 2.3. The coefficient of o in [l + 1,n][1, 1+ 1][k+1,n] for 1 <k <l <n is
(n=1l+1-9)l1—k+1)! where i =|o([1,k]) N[l + 1,n]| <1, and zero otherwise.

Proof. We will compute the coefficient of ¢ by applying the reflection and reversal
symmetry of the group algebra.

First, we set I’ = n — 1, ¥ = n — k and we observe that the reflection of
[+ 1,n][1,1 4+ 1][k + 1,n] is [1,U'][k',n][1,k'] with 1 < I’ < k' < n. Then if ¢’
is the reflection of o, then o([1,k]) N[l + 1,n| = o'([K' + 1,n]) N [1,']. Hence
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i = lo'([k' + 1,n]) N [1,I'] and the coefficient of ¢’ in [1,V][l,n][1, k'] equals the
coefficient of o in [l + 1,n][1,1 + 1][k + 1,n].

Next, observe that the anti-automorphism of the group algebra sends the product
[1,11[',n][1, K] to [1,K][',n][1,I'] and ¢’ to ¢” = o’~1. Since i = |o’'(K’ + 1,n]) N
[1,I'] and ¢” = o=, we have that i = |o”([1,1']) N [k + 1,n] and the coefficient of
o in [1L,K][U',n][1,I'] with 1 < < k' < n is the same as the coefficient of o in
[1,1][k, n][1, k]

Applying Lemma 2.2 we see that the coefficient of ¢’ in [1,K'][l’,n][1,1'] with
1<l <k <nsuchthat i = |o”"([LLIDNK +1,n]| <lis (K =)' =K +1)!is
(I" = )1(K' —I")!. But this is also the same as the coefficient of ¢ in [l + 1,n][1,] +
[k +1,n] with 1 < k <l <mnandi=|o([1,]]) N[k + 1,n]|. Rewritten in terms of
k and I, we see that the coefficient is (n — 1 —9)!(l — k + 1)! as desired. O

Finally, we prove the key Proposition 1.9, restated below, using Lemmas 2.1,
2.2, and 2.3.

Proposition 2.4. A triple of brackets [1,]][k,n][L,k] for 1l <n—-1<k<Il<n
and k # 1 decomposes as:

[LMhmuwh:(k_U%U+LMUJ+H%+Lm

(n—101-1)

(1= k+1)!

+ (e (= D)= s Lk =+ 1)

:Oﬁ;fﬁﬂV+LMUJ+H%+Lm

+(k—n+0)1—k+1)(k— DL, 0k +1,n]

Proof. Let o be a permutation such that i = |o([1,{]) N[k + 1,n]| < 1.

Under the conditions of the proposition, Lemmas 2.2 and 2.3 tell us that such
o are the only ones that have non-zero coefficient in the products [1, ][k, n][1, k]
and [l + 1,n|[1,1 + 1][k + 1,n], and the the coefficients are (k — )!(l — k + 1)! and
(n—1 =9l —k+ 1)!, respectively.

Hence, the coefficients of ¢ in %[Z +1,n][1,l + 1][k + 1,n] are (n — 1) (k —
DIl —k+1)! fori =0and (k—1!(l —k+ 1) for i = 1. Subtracting from
[1, ][k, n][L, k], we are left with a coefficient (k — (n —1))(k — 1)!(Il — k + 1)! for
1 =0 and zero for i = 1. This coefficient is non-negative only if k¥ > n — [, which is
guaranteed by our hypothesis.

Applying Lemma 2.1, we see that we can collect the (k—(n—1))!(I—k+1)! copies
of those o for which o([1,])N[k+1, n] = ) as a number of copies of [1,I][k+1,n]. In
particular, the o in [1,[][k + 1, n] occur with coefficient (I — k)!, so we have exactly

(k= (n = 1) (k — )FEEE copies of [1, ][k + 1,n]. O

2.2. The general triple relation. We now proceed to generalize Proposition 1.9.
Since for our purposes we do not need the actual values of the non-zero coefficients
in a decomposition, we will for our convenience use the notation m ~ Zle m; to
mean that there exist some non-negative numbers a; such that 7 = Zle ;.
Note that ~ is not symmetric, but is reflexive and transitive.

For example, the absorption property from Proposition 1.6 can be written as
[i,7][¢', 5] ~ [/, 4] for ' < i < j < j'. Note that it is also true that [i/,j] ~
[i, j][¢', j'] for i' < i < j<j".
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Proposition 2.5. For1<n—[1<r<k<Il<n andr # 1 we have that:
min{n—Il,k—r+1}
[1,{[r,n][1, k] ~ x[1, ][k + 1,n] + Z [+ 1,n][1,l4+i][k+1,n]
i=1
where x =0 ifn—Il=rand x=1ifn—-101<r.

Proof. We begin by considering the bracket [1,[][k,n|[1,k + s] where 1 <n —1 <
k<l<nandk#1and s > 0. Clearly, this corresponds to the case in when
k —r = s in the notation of the proposition.

We unabsorb a bracket [1, k] from [1, k+s] to obtain the quadruple [1, ][k, n][1, k+
s] ~ [1,1][k, n][1, k][1, k+s]. Evidently, Proposition 1.9 applies to the triple [1, ][k, n][1, k]
and gives us:

[1,1][k, n)[1, E][1, k+s] ~ x[1,{][k+1,n][1,k+s]+ [l +1,n][1,1+1][k+1,n][1, k+s]
where x =1ifn—-Il<kand x=0ifn—-10=k.

To ease the computations that will follow, we define F'(4,j) = [+ 1, n][1, I +4][k+
j,n][1, k+s] for integers ¢ and j. Then the term [I41, n|[1, [+1][k+1,n][1, k+s] is in
fact F(1,1). Naturally, we now consider the product of brackets [1, [][k+7, n][1, k+s]
and observe that because 1 <n -1l < k< k+j < k+s <l <n, we have the
relation

[L,1[k+ 7, n][1,k+ s] ~ x[1, ][k +Jj+ 1,n][1,k + ]
+ [+ 1Ln]1, I+ 1k +7+1,n]1,k+ ]
=F(,7+ 1)+ x[LIk+j+1,n]1,k+ s]
Iterating on [1, ][k, n][1, k + s| we see that in fact:

[1,1}[1{,71][1,]6—}—8]NZF(L]) [1,][k+s,n][k+s,n] ~ ZFlj +[1,1][k+ s, n]
j=1
if x =1, and
1,1k, n][1,k + s] ~ F(1,1)
if x =0.

Hence, to determine the decomposition of [1,][k,n][1, k + s], we need only de-
termine the decomposition of F(1,5) = [l + 1,n|[1,] + 1][k + j,n][1,k + s]. Once
again we can unabsorb from [1, k + j] from [1,k + s] and, as long as i < n — [ and
7 < s+ 1, apply Proposition 1.9 to obtain:

[+ 101,01+ [k +jn)[L,k+s] ~ [+ 1,011 +i][k+j,n][1, k+ j][L, k + j][1,k + 5]
~l+1Ln)l+i+ L)L l+i+1k+j+1,n]1,k+ s]
+ [+ 1,01, l+4dk+7+1,n][1,k+ s]
~ [+ 1L, l+i+1)[k+7+1,n][1,k+ s]
F L+ L)L+ d[k +j + 1,n][1L, k + 5]
Hence, we have that F(i,j) ~ F(i+1,j4+ 1)+ F(i,j+ 1) as long as i <n — [ and
j < s+ 1. Letting m = min{n — I, s + 1}, we can iterate relation for j < s +1 to
obtain F(1,) ~ 707 F(1 +1i, s+ 1).

Thus, we get that all the terms of F(1, j) are terms of F'(1,1) and so F(1,1) ~

Z;Zl F(1,7). Thus, we have:

[1’l][kan][l»k + 5} ~ F(la 1) + X[l’l][k + S,TL]
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which is almost the relation we set out to prove.

For the final step, we compute F(1,1) as follows: by absorbing [1,k + s] in
1,0+ 1+ 4] we get:
F(144,s+1) = [I4+1,n][1, I+ 144 [k+s+1,n][1, k+s] ~ [[+1,n][1, I+1+id][k+s+1,n]
and hence F/(1,1) ~ > F(1,s +1) ~ Y " I+ 1,n][1, 1+ ][k + s+ 1,n]. O

Note that when x = 1 this relation is in fact a “local” criterion for a product
of brackets not to be an extreme ray because the weight of [1,][k + 1, n] is surely
lower than that of [1,I][r,n][1,k]. When x = 0, however, all the terms of the
decomposition have weight than [1,][r, n][1, k].

Corollary 2.6. A product of brackets [a,!][r,n][b, k] with max{a,b} < r < k <
I <n with n—1<7r—max{a,b} + 1 (illustrated in Figure 3) decomposes as:
min{n—1l,k—r+1}
[a, lr, ][, K] ~ Xla, Qs+ 1n)b K1+ >0 [, A0+1, a1, L] o1, ] b, ]
i=1
where x =0if n — =r —max{a,b} + 1, and x =1 if n — | < r — max{a, b} + 1.

b k

|<— r—max(a,b) +1 QI
r n

|n—l$‘
a [l

1 max(a, b) n

F1GURE 3. Diagram of Corollary 2.6

Proof. Let s = max{a,b} and unabsorb [s,!] from [a,l] and [s, k] from [b, k] to
obtain [a,l][r,n][b,k] ~ [a,l][s,!][r,n][s, k][b, k], and then use Proposition 2.5 on
[s,][r,n][s, k], and the absorption [a,l][1,I][k + 1,n][b,k] ~ [a,l][k + 1,n][b, k] to
obtain the desired relation. g

Note that for x = 1 this general triple relation is also a “local” criterion since
the weight of [a, ][k + 1, n][b, k] is certainly lower than the weight of [a, [][r, n][b, k]
asr<k<k+1.

2.3. Computing the possible extreme rays for C(II,). Combining Corol-
lary 2.6 with the symmetries of the group algebra (which we have been calling
reflection and reversal), we obtain four configurations of triples that we can de-
compose. With some cleverness, it is possible to use these triple relations together
with absorption and unabsorpition to show by hand that for n = 6 any product
of brackets consisting of more than a certain number of brackets is not a minimal
weight expression for an extreme ray (1).

Since our interest, following Stembridge, lies in finding the actual extreme rays
of the cone, we implemented an algorithm in C++ for testing if a product of triples

Lthe second author did in fact perform this check by hand
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could be a minimal weight expression for an extreme ray according to the rules of
absorption and triple reduction that we proved below.

Before we describe the algorithm, we should give illustrate a key procedure which
we label “creative unabsorption”. Consider the product [13][35][23][46][35][13]. It
contains no actual triples that can be reduced. Yet we can unabsorb [12] from the
bottom and from the top [13], thus getting that

[13][35][23][46][35][13] ~ [13][35]([12][23][12])[46][35][13].

In this way, we have created a triple that can be decomposed, namely [12][23][12],
one of whose terms after decomposition is simply [12]. Thus, one of the terms
of [13][35][23][46][35][13] after such a decomposition is [13][35][12][46][35][13] ~
[13][35][46][35][13], which is of strictly smaller weight and thus we can conclude
that [13][35][23][46][35][13] is not a minimal weight expression for some extreme
ray.

The algorithm for reducing m = [i1,1]... [ir,jx] is then the following, which
quits at any point where the weight of m drops below the weight we started with.

(1) Transform 7 by either absorbing every bracket below the s*® bracket [is, j]
of 7 into [is, js], or by absorbing [is, j5] into some bracket below, if possible.

(2) For every bracket [is,js] find the largest brackets [is,js] and [igr, jer]
that can be unabsorbed from brackets below and above [is,js] so that
[isr,s][is, Js)[is7, Js] 18 a triple that can be decomposed first by Corol-
lary 2.6, and then by each of the corollary’s symmetric variants.

(3) Replace that triple with a term of the decomposition and go back to the
first step, unless we are stuck in an infinite loop, in which case proceed with
the next term or next triple.

(4) If we run out of triples, then the product of brackets could be a minimal
weight expression for an extreme ray.

Evidently, the above algorithm will terminate on any product of brackets and
return whether or not using the triple relation and unabsorption is sufficient to
determine that the product of brackets is not a minimal weight expression for an
extreme ray.

We thus use a depth first search of all possible products of brackets, noting that
any branch of the search terminates when the algorithm decides that a node is
reducible, since if 7 is reducible, then so is 77’ for any product 7’.

Hence, if the triple relation and unabsorption is sufficient to show that the C(I1,,)
is finitely generated, the procedure described above terminates, providing a list that
surely containing a possible superset of the extreme rays. For n = 6 we obtain 750
distinct products of brackets that cannot be decomposed using the triple relation
and unabsorption. Using the Parma Polyhedra Library [1], we check and find that
all the returned rays save two are extreme. The two rays which were not extreme
are notable since the top term in the Bruhat order of their values in RS, is the
permutation 123456 — 654321.

3. MISCELLANEOUS RESULTS

Proposition 3.1 (Reducibility of alternating towers). Consider a non-trivial prod-

uct of brackets [i1, j1][iz, j2]lis, Js], - - -, [ik, Ji] inside C(IL,) which alternates in the
sense that for every s the product [is—1, Js—1][ts, Js][is+1, Js+1] we have eitheris_1,isy1 <
s < Jsm1,Jst1 < Js 0T is < is—1,0541 < Js < Js—1,7s+1 (Hllustrated in Figure /).
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bounded

FIGURE 4. Diagram of Proposition 3.1

We claim that such products in C(IL,), which we call alternating towers, are of
bounded height.

Proof. Suppose that we have an irreducible alternating tower of brackets

[ilvjl][i%.]é] [i37j3}7 RN [ik)ajk:}

in C(IL,). If there does not exist an s such that i; = 1, the tower is equivalent to a
tower inside C(II,,—;) which must already be of bounded height.

If there does exist an s such that i, = 1, then it is surely enough to show that
the irreducible subtower [is, js|[is+1,Fs+1]- -, [ik, j&] 1S of bounded height. Thus,
without loss of generality we may assume that i; = 1.

Define a triple [is—1,7s—1][is,Js][is+1, Js+1] to be left-supported if it satisfies
Ts—1,0s41 < b5 < Js—1,Js4+1 < Js and right-supported if it satisfies 15 < t5_1,0541 <
Js < Js—1,Js+1. Since an alternating tower by definition is such that every triple is
either left- or right-supported, we see that inside a tower left-supported triples are
those for which i5_1 < is (equivalently i511 < 45), and right-supported triples are
those for which is < is—1 (equivalently is < isy1). It follows that

[isflajsfl] [is7 js][ierlvjerl]

is left-supported, i.e. is41 < i, if and only if the next triple

[isa js] [ierl ) js+1} [i5+27 js+2]

is right-supported.

Now, surely the triple [i1, j1][i2, j2][i3, j3] inside the tower is such that iy = 1 < is.
Hence triples of the form [i25—1, j2s—1][i2s, J2s][i254+1, J2s+1] are left-supported, and
triples of the form [ias, jos][i2s+1, Jos+1][i2(s+1)s J2(s+1) are right-supported. We will
refer to left-supported triples as even and to right-supported triples as odd (based
on the parity of the index of their middle term).

By Corollary 2.6 it follows that an even triple [igs_1, jos—1][t2s, Jos][i2s+1, J2s+1]
is irreducible only if jos —max{jos_1, jos+1} > tos —max{iss_1,42s+1 . Similarly, an
odd triple [ias, j2s] 2511, J2s+1][i2(s41), Jo(s+1] I8 irreducible only if min{izs, ig(s41) } —
Q21 > min{jos, Jo(s41)} — J2st1-

Next, we show that for an irreducible quadruple

[i2s—1, J2s—1][02s5 J2s) [i2s+15 Jas+ 1] [F2(s41)5 J2(s+1) 5
we have that i9;_1 < igsy1 implies jog > J2(s41)-
Plugging 4951 < 49541 into the irreducibility inequality for the even triple, we
obtain jos — jos41 > Jos —max{jos—1, jost1} > G2s —max{iog_1,l2541} = 925 — 2541
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Plugging in into the irreducibility inequality for the odd triple, we obtain 494 —
insp1 = min{iag, io(sp1)} — f2s11 > min{jos, jo(s41)} — Jost1. Since dgs — dagy1 <
J2s — j2s+1 it follows that jos > jo(si1)-

By reflection, we also have that jy(s41) < jo2s implies dgsy1)—1 < G2(s41)41-
Consequently, since our initial triple [i1, j1][¢2, j2][i3, j3] is such that i; = 1 < i3, it
follows that all even triples [igs_1,%2s,%92s11] for s > 1 satisfy dg(s41)—1 < f2(s41)41
and all odd triples [izs, jos][i2s+1, Jas+1][i2(s+1)s Jo(s+1)] Satisfy Jagsq1) < Jos-

Now, if isx = 1 only for s = 1, the remainder of our tower composed of triples
with s > 1 fits inside C(II,) and is thus of bounded height, so we might as well
assume that our initial triple in fact satisfies ¢; < 3.

But now we have that our tower must satisfy 1 <i; < i3 < ...igpy1 < - <m
and n > jo > jg > -+ > jor > -+ - > 1, hence it must be bounded above by 2n. 0O
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APPENDIX A. EXTREME RAYS OF C(Ilg)

1.1
2. [16]

3. [15]

4. [15][26]

5. [15][36]

6. [15][46]

7. [15][56]

8. [26]

9. [26][15]

10. [26][14]
11. [26][13]
12. [26][12]
13. [14]

14. [14][26]
15. [14][26][12]
16. [14][25]
17. [14][25] [36]
18. [14][25] [46]
19. [14][25] [56]
20. [14][36]
21. [14][36][23]
22. [14][35]
23. [14][35] [46]
24. [14]1[35][56]
25. [14][46]
26. [14] [46] [34]
27. [14] [45]
28. [14][45] [56]
29. [14][56]



30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
T1.
72.
73.
4.
75.
76.
TT.
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[14] [56] [25]
[14] [56] [25] [56]
[14] [56] [35]
[14] [56] [45]
[25]

[25] [14]

[25] [14] [56]
[25] [14] [56] [25]
[25] [14] [56] [25] [56]
[25] [14] [56] [35]
[25] [14] [56] [45]
[25] [36]

[25] [13]

[25] [13] [46]
[25] [13] [46] [25]
[25]1 [13] [46] [24]
[25] [13] [46] [35]
[25] [13] [46] [35] [23]
[25] [13] [46] [34]
[25] [13] [56]
[25] [46]

[25]1 [12]

[25] [12] [36]
[25] [12] [36] [25]
[25] [12] [36] [25] [12]
[25] [12] [36] [24]
[25] [12] [36] [23]
[25] [12] [46]
[25] [12] [56]
[25] [56]

[36]

[36] [15]

[36] [14]

[36] [14] [45]
[36] [25]

[36] [25] [14]
[36] [25] [13]
[36]1 [25] [12]
[36] [13]

[36] [13] [34]
[36] [24]

[36]1 [24] [13]
[36] [24] [12]
[36] [23]

[36] [23] [12]
[13]

[13] [26]

(131 [26] [13]

13



78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
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[13] [26] [12]
[13] [25]
[13] [25] [36]
[13] [25] [46]
[13] [25] [12]
[13] [25] [12] [46]
(131 [25] [12] [56]
[13] [25] [56]
[13] [36]
[13][36][13]
[13] [36] [24]
[13] [36] [24] [12]
[13] [36] [23]
[13] [24]
[13] [24] [36]
[13] [24] [36] [23]
[13]1[24][36] [23][12]
[13] [24] [35]
[13] [24] [35] [46]
[13] [24] [35] [56]
[13] [24] [46]
[13] [24] [46] [34]
[13] [24] [45]
[13] [24] [45] [56]
[13][35]
[13] [35] [46]
[13] [35] [23]
[13] [35] [23] [46]
[13] [35] [23] [46] [34]
[13] [35] [23] [56]
[13] [35] [56]
[13] [46]
[13] [46] [25]
[13] [46] [24]
[13] [46] [35]
[13] [46] [35] [23]
[13][46] [34]
[13] [34]
[13] [34] [46]
[13] [34] [46] [34]
[13] [34] [46] [34] [23]
[13] [34] [45]
[13] [34] [45] [56]
[13] [45]
[13] [45] [24]
[13] [45] [24] [56]
[13] [45] [24] [56] [35]
[13] [45] [24] [56] [45]

14



126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
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[13] [45] [34]

[13] [45] [34] [56]
[13] [45] [34] [56] [45]
[13] [45] [56]

[13] [56]

[13][56] [25]

[13] [56] [25] [12]
[13] [56] [25] [12] [56]
[13] [56] [25] [56]
[13] [56] [24]

[13] [66] [24] [35]
[13] [56] [24] [45]
[13][56] [35]

[13] [56] [35] [23]
[13] [56] [34]

[13] [56] [34] [45]
[13][56] [45]

[13] [56] [45] [24]
[13] [66] [45] [34]
[24]

[24] [36]

[24] [36] [13]

[24] [36] [13] [34]
[24] [36] [23]

[24] [36] [23] [12]
[24][13]

[24] [13] [46]

[24] [13] [46] [25]
[24] [13] [46] [24]
[24] [13] [46] [35]
[24] [13] [46] [35] [23]
[24] [13] [46] [34]
[24] [13] [45]

[24] [13] [45] [24]
[24] [13] [45] [24] [56]
[24] [13] [45] [24] [56] [35]
[24] [13] [45] [24] [56] [45]
[24] [13] [45] [34]
[24] [13] [45] [34] [56]
[24] [13] [45] [34] [56] [45]
[24] [13] [45] [56]
[24] [35]

[24] [35] [46]

[24] [35] [56]

[24] [46]

[24] [46] [34]
[24][12]

[24][12] [36]

15



174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
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[24] [12] [36] [25]
[24][12] [36]1 [25] [12]
[24] [12] [36] [24]
[24] [12] [36] [23]
[24] [12] [35]

[24] [12] [35] [24]
[24] [12] [35] [24] [56]
[24] [12] [35] [24] [56] [35]
[24] [12] [35] [24] [56] [45]
[24] [12] [35] [46]
[24] [12] [35] [23]
[24] [12] [35] [23] [46]
[24] [12] [35] [23] [46] [35]
[24]1 [12] [35] [23] [46] [34]
[24] [12] [35] [23] [56]
[24] [12] [35] [56]
[24] [12] [46]

[24] [12] [46] [34]
[24] [12] [46] [34] [23]
[24] [12] [45]

[24] [12] [45] [56]

[24] [45]

[24] [45] [56]

[24] [56]

[24] [56] [13]

[24] [56] [13] [45]
[24] [56] [13] [45] [24]
[24] [56] [13] [45] [34]
[24] [56] [35]

[24] [56] [12]

[24] [56] [12] [35]
[24] [56] [12] [35] [24]
[24] [56] [12] [35] [23]
[24] [56] [12] [45]
[24] [56] [45]

[35]

[35] [14]

[35] [14] [46]

[35] [14] [46] [34]
[35] [14] [56]

[35] [14] [56] [25]
[35] [14] [56] [25] [56]
[35] [14] [56] [35]
[35] [14] [56] [45]
[35] [13]

[35] [13] [46]

[35] [13] [46] [25]
[35]1 [13] [46] [24]

16
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222. [35][13][46] [35]

223. [35][13][46] [35] [23]
224. [35][13] [46] [34]

225. [35][13][34]

226. [35][13][56]

227. [35] [13] [56] [34]

228. [35][13][56] [34] [45]
229. [35] [24]

230. [35][24][13]

231. [35][24][12]

232. [35][24][56]

233. [35][24][56] [13]

234. [35][24][56] [13] [45]
235. [35][24] [56] [13] [45] [24]
236. [35][24] [56] [13] [45] [34]
237. [35] [24] [56] [35]

238. [35] [24] [56] [12]

239. [35][24] [56] [12] [35]
240. [35][24][56] [12] [35] [24]
241. [35][24] [56] [12] [35] [23]
242. [35][24][56] [12] [45]
243. [35] [24] [56] [45]

244 . [35] [46]

245. [35] [23]

246. [35] [23] [46]

247. [35] [23] [46] [35]

248. [35] [23] [46] [12]

249. [35][23][46][12] [35]
250. [35][23][46][12][35] [24]
251. [35][23][46] [12] [35] [23]
252. [35][23][46] [12] [34]
253. [35][23] [46] [12] [34] [23]
254. [35] [23] [46] [34]

255. [35][23][12]

256. [35] [23] [56]

257. [35] [23] [56] [12]

258. [35] [56]

259. [46]

260. [46] [15]

261. [46][15] [56]

262. [46] [14]

263. [46] [14] [35]

264. [46][14][45]

265. [46] [25]

266. [46] [25] [14]

267. [46][25][13]

268. [46][25][12]

269. [46] [24]



270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
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[46] [24] [13]

[46] [24] [12]

[46] [24] [12] [45]
[46] [24] [45]

[46] [35]

[46] [35] [14]

[46] [35] [13]

[46] [35] [13] [34]
[46] [35] [24]

[46] [35] [24] [13]
[46] [35] [24] [12]
[46] [35] [23]

[46] [35] [23] [12]
[46] [34]

[46] [34] [13]

[46] [34] [23]

[46] [34] [23] [12]
[12]

[12] [26]

[12] [26] [14]

[12] [26] [13]

[12] [26] [12]

[12] [25]

[12] [25] [36]

[12] [25] [13]

[12] [25] [13] [56]
[12] [25] [46]

[12] [25] [12]

[12] [25] [12] [36]
[12] [25] [12]1 [36] [25]
[12] [25] [12] [36] [24]
[12] [25] [12] [36] [23]
[12] [25] [12] [46]
[12] [25] [12] [56]
[12] [25] [56]

[12] [36]

[12] [36] [25]

[12] [36] [25] [12]
[12] [36] [24]

[12] [36] [23]

[12] [24]

[12] [24] [36]

[12] [24] [36] [13]
[12] [24] [36] [13] [34]
[12] [24] [36] [23]
[12] [24] [36]1 [23]1[12]
[12] [24] [35]

[12] [24] [35] [46]

18
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318. [12][24][35] [56]
319. [12][24] [46]

320. [12] [24] [46] [34]
321. [12][24]1[12]

322. [12][24] [12] [46]
323. [12][24][12] [46] [34]
324. [12][24][12][46][34][23]
325. [12][24] [12] [45]
326. [12][24] [12] [45] [56]
327. [12][24] [45]

328. [12] [24] [45] [56]
329. [12][35]

330. [12][35] [24]

331. [12][35] [24] [56]
332. [12][35] [24] [56] [35]
333. [12][35] [24] [56] [45]
334. [12][35] [46]

335. [12][35] [23]

336. [12][35] [23] [46]
337. [12][35] [23] [46] [35]
338. [12][35] [23] [46] [34]
339. [12][35] [23] [56]
340. [12][35] [56]

341. [12] [46]

342. [12][46] [25]

343. [12][46][25]1[13]
344. [12][46][25][12]
345. [12] [46] [24]

346. [12][46] [24][12]
347. [12][46] [24] [12] [45]
348. [12] [46] [24] [45]
349. [12][46] [35]

350. [12][46][35][24]
351. [12][46] [35] [23]
352. [12][46] [23]

353. [12] [46] [23] [35]
354. [12][46] [23][34]
355. [12] [46] [34]

356. [12][46] [34][23]
357. [12][23]

358. [12][23][36]

359. [12][23][36] [24]
360. [12][23][36] [24][13]
361. [12][23][36] [24] [12]
362. [12][23][36][23]
363. [12][23][36][23][12]
364. [12][23][35]

365. [12][23][35][46]



366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.

PROPERTIES OF THE DUAL CONE OF MONOMIAL-POSITIVE IMMANANTS

[12] [23] [35] [23]

[12] [23][35][23]1[12]
[12] [23] [35] [23] [56]
[12] [23] [35] [23] [56] [12]
[12] [23] [35] [56]

[12] [23] [34]

[12] [23] [34] [46]

[12] [23] [34] [46] [34]
[12] [23] [34] [46] [34] [23]
[12] [23] [34] [46] [34] [23]1[12]
[12] [23] [34] [45]

[12] [23] [34] [45] [56]
[12] [34]

[12] [34] [46]

[12] [34] [46] [24]

[12] [34] [46] [24] [12]
[12] [34] [46] [24] [12] [45]
[12] [34] [46] [24] [45]
[12] [34] [46] [34]

[12] [34] [46] [34] [23]
[12] [34] [23]

[12] [34] [23] [46]

[12] [34] [23] [46] [35]
[12] [34] [23] [46] [34]
[12] [34] [23] [45]

[12] [34] [23] [45] [34]
[12] [34] [23] [45] [34] [56]
[12] [34] [23] [45] [34] [56] [45]
[12] [34] [23] [45] [56]
[12] [34] [45]

[12] [34] [45] [56]

[12] [34] [56]

[12] [34] [566] [23]

[12] [34] [56] [23] [45]
[12] [34] [661 [23] [45] [34]
[12] [34] [56] [45]

[12] [45]

[12] [45] [24]

[12] [45] [24] [46]

[12] [45] [24] [46] [34]
[12] [45] [24] [12]

[12] [45] [24] [12] [46]
[12] [45] [24] [12] [46] [34]
[12] [45] [24] [12] [46] [34] [23]
[12] [45] [24] [56]

[12] [45] [24] [56] [35]
[12] [45] [24] [56] [12]
[12] [45] [24] [56] [12] [45]

20



414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424 .
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442,
443.
444 .
445,
446.
447 .
448.
449.
450.
451.
452.
453.
454 .
455.
456.
457.
458.
459.
460.
461.
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[12] [45] [24] [56] [45]
[12] [45] [23]

[12] [45] [23] [34]
[12] [45] [23] [56]
[12] [45] [23] [56] [34]
[12] [45] [23] [56] [34] [45]
[12] [45] [34]

[12] [45] [34] [23]
[12] [45] [34] [56]
[12] [45] [34] [56] [23]
[12] [45] [34] [56] [23] [45]
[12] [45] [34] [56] [23] [45] [34]
[12] [45] [34] [56] [45]
[12] [45] [56]

[12] [56]

[12] [56] [25]

[12] [56] [25] [13]
[12] [56] [25] [13] [56]
[12] [66] [25] [12]
[12] [56] [25] [12] [56]
[12] [56] [25] [56]
[12] [56] [24]

[12] [56] [24] [35]
[12] [56] [24] [12]
[12] [56] [24] [12] [45]
[12] [56] [24] [45]
[12] [56] [35]

[12] [56] [35] [24]
[12] [66] [35] [23]
[12] [56] [23]

[12] [56] [23] [35]
[12] [56] [23] [35] [23]
[12] [56] [23] [35] [23] [12]
[12] [66] [23] [34]
[12] [56] [23] [34] [45]
[12] [56] [23] [45]
[12] [56] [23] [45] [34]
[12] [56] [45]

[12] [56] [45] [24]
[12] [56] [45] [24] [12]
[12] [56] [45] [34]
[12] [56] [45] [34] [23]
[23]

[23] [36]

[23] [36] [14]

[23] [36] [14] [45]
[23] [36] [13]

[23] [36] [13] [34]
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462.
463.
464 .
465.
466.
467.
468.
469.
470.
471.
472.
473.
474 .
475.
476.
477.
478.
479.
480.
481.
482.
483.
484 .
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
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[23] [36] [24]

[23] [36] [24] [13]
[23] [36] [24] [12]
[23] [36] [23]

(23] [36] [23] [12]
[23] [35]

[23] [35] [13]

[23] [35] [13] [46]
[23] [35] [13] [46] [25]
[23]1 [35] [13] [46] [24]
[23]1 [35] [13] [46] [35]
[23] [35] [13] [46] [35] [23]
[23] [35] [13] [46] [34]
[23] [35] [13] [34]
(23] [35] [13] [56]
[23]1 [35] [13] [56] [34]
[23] [35] [13] [56] [34] [45]
[23] [35] [46]

[23] [35] [23]

(23] [35] [23] [12]
[23] [35] [23] [56]
[23]1 [35] [23] [56] [12]
[23] [35] [56]

[23] [46]

[23] [46] [35]

(23] [46] [35] [13]
[23] [46] [35] [13] [34]
[23] [46] [12]

[23] [46] [12] [35]
[23] [46] [12] [35] [24]
[23] [46] [12] [35] [23]
[23] [46] [12] [34]
[23] [46] [12] [34] [23]
[23] [46] [34]
[23][12]

[23] [12] [36]

(23] [12] [36] [25]
(23] [12] [36] [25] [12]
(23] [12] [36] [24]
[23] [12] [36] [23]
[23] [12] [35]

(23] [12] [35] [24]
[23]1 [12] [35] [24] [56]
[23] [12] [35] [24] [56] [35]
[23] [12] [35] [24] [56] [45]
[23] [12] [35] [46]
(23] [12] [35] [23]
[23] [12] [35] [23] [46]
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510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
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[23] [12] [35] [23] [46] [35]
(23] [12] [35] [23] [46] [34]
[23] [12] [35] [23] [56]

(23] [12] [35] [56]

(23] [12] [34]

[23] [12] [34] [46]

[23] [12] [34] [46] [24]

[23] [12] [34] [46] [24] [12]
[23] [12] [34] [46] [24] [12] [45]
(23] [12] [34] [46] [24] [45]
(23] [12] [34] [46] [34]

[23] [12] [34] [46] [34] [23]
[23] [12] [34] [23]

[23] [12] [34] [23] [46]

(23] [12] [34] [23] [46] [35]
[23] [12] [34] [23] [46] [34]
(23] [12] [34] [23] [45]

(23] [12] [34] [23] [45] [34]
[23] [12] [34] [23] [45] [34] [56]
(23] [12] [34] [23] [45] [34] [56] [45]
[23] [12] [34] [23] [45] [56]
[23] [12] [34] [45]

[23] [12] [34] [45] [56]

[23] [34]

[23] [34] [46]

[23] [34] [46] [34]

[23]1 [34] [46] [34] [13]

[23] [34] [46] [34] [23]

[23] [34] [46] [34] [23] [12]
[23] [34] [45]

(23] [34] [45] [56]

[23] [45]

(23] [45] [12]

(23] [45] [12] [34]

[23] [45] [12] [34] [23]

[23] [45] [12] [34] [56]

[23] [45] [12] [34] [56] [23]
[23] [45] [12] [34] [56] [23] [45]
[23] [45] [12] [34] [56] [23] [45] [34]
(23] [45] [12] [34] [56] [45]
(23] [45] [12] [56]

[23] [45] [34]

[23] [45] [34] [56]

[23] [45] [34] [56] [45]

[23] [45] [56]

[23] [56]

[23] [56] [35]

[23] [56] [35] [13]

23



558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
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[23] [56] [35]1 [13] [34]
[23] [56] [35] [23]
[23]1[56] [351[23]1[12]
[23] [56] [12]

[23] [56] [12] [35]

[23] [56] [12] [35] [24]
[23] [56] [12] [35] [23]
[23] [56] [12] [34]
[23][56] [12] [34] [23]
[23]1 [56] [12] [34] [23] [45]
[23]1 [56] [12] [34] [23] [45] [34]
[23] [56] [12] [34] [45]
[23] [56] [12] [45]

[23] [56] [12] [45] [34]
[23] [56] [12] [45] [34] [23]
[23] [56] [34]

[23] [56] [34] [45]

[23] [56] [45]

[23] [56] [45] [34]

[34]

[34] [13]

[34] [13] [36]

[34] [13] [36] [24]

[34] [13] [36] [23]
[34][13] [35]

[34] [13] [35] [46]

[34] [13] [35] [23]

[34] [13] [35] [23] [46]
[34]1 [13] [35] [23] [46] [34]
[34][13] [35] [23] [56]
[34] [13] [35] [56]

[34] [13] [46]

[34] [13] [46] [25]

[34] [13] [46] [24]

[34] [13] [46] [35]

[34] [13] [46] [35] [23]
[34] [13] [46] [34]

[34] [13] [45]

[34] [13] [45] [24]

[34] [13] [45] [24] [56]
[34] [13] [45] [24] [56] [35]
[34] [13] [45] [24] [56] [45]
[34] [13] [45] [34]

[34] [13] [45] [34] [56]
[34] [13] [45] [34] [56] [45]
[34] [13] [45] [56]

[34] [46]

[34] [46] [14]
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606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646 .
647.
648.
649.
650.
651.
652.
653.

PROPERTIES OF THE DUAL CONE OF MONOMIAL-POSITIVE IMMANANTS

[34] [46] [14] [35]

[34] [46] [14] [45]

[34] [46] [24]

[34] [46] [24] [13]

[34] [46] [24] [12]

[34] [46] [24] [12] [45]

[34] [46] [24] [45]

[34] [46] [34]

[34] [46] [34] [13]

[34] [46] [34] [23]

[34] [46] [34] [23] [12]

[34] [23]

[34] [23] [46]

[34] [23] [46] [35]

[34] [23] [46] [35] [13]

[34] [23] [46] [35] [13] [34]
[34] [23] [46] [12]

[34] [23] [46] [12] [35]

[34] [23] [46] [12] [35] [24]
[34] [23] [46] [12] [35] [23]
[34] [23] [46] [12] [34]

[34] [23] [46] [12] [34] [23]
[34] [23] [46] [34]

[34] [23] [12]

[34] [23] [45]

[34] [23] [45] [12]

[34] [23] [45] [12] [34]

[34] [23] [45] [12] [34] [23]
[34] [23] [45] [12] [34] [56]
[34] [23] [45] [12] [34] [56] [23]
[34] [23] [45] [12] [34] [56] [23] [45]
[34] [23] [45] [12] [34] [56] [23] [45] [34]
[34] [23] [45] [12] [34] [56] [45]
[34] [23] [45] [12] [56]

[34] [23] [45] [34]

[34] [23] [45] [34] [56]

[34] [23] [45] [34] [56] [45]
[34] [23] [45] [56]

[34] [45]

[34] [45] [56]

[34] [56]

[34] [56] [13]

[34] [56] [13] [35]

[34] [56] [13] [35] [23]

[34] [66] [13] [45]

[34] [56] [13] [45] [24]

[34] [56] [13] [45] [34]

[34] [56] [23]

25
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654. [34][56] [23][12]

655. [34][56] [23] [45]

656. [34] [56] [23] [45] [12]
657. [34][56] [23] [45] [12] [34]
658. [34][56][23][45] [12] [34] [23]
659. [34][56] [23] [45] [34]
660. [34] [566] [45]

661. [45]

662. [45] [14]

663. [45] [14] [36]

664. [45][14][36][23]

665. [45] [14] [46]

666. [45] [14] [46] [34]

667. [45] [14] [45]

668. [45] [14] [45] [56]

669. [45] [14] [56]

670. [45][14][56] [25]

671. [45][14] [56] [25] [56]
672. [45][14] [56] [35]

673. [45] [14] [56] [45]

674. [45][24]

675. [45][24][13]

676. [45] [24] [46]

677. [45] [24] [46] [34]

678. [45][24][12]

679. [45][24] [12] [46]

680. [45][24][12] [46] [34]
681. [45][24][12] [46] [34] [23]
682. [45] [24] [56]

683. [45] [24] [56] [13]

684. [45] [24] [56] [13] [45]
685. [45][24] [56] [13] [45] [24]
686. [45][24] [56] [13] [45] [34]
687. [45] [24] [56] [35]

688. [45] [24] [56] [12]

689. [45][24] [56] [12] [35]
690. [45][24] [56] [12] [35] [24]
691. [45][24] [56] [12] [35] [23]
692. [45][24] [56] [12] [45]
693. [45] [24] [56] [45]

694. [45] [34]

695. [45][34][13]

696. [45] [34] [23]

697. [45][34][23][12]

698. [45] [34] [56]

699. [45][34] [56][13]

700. [45][34][56][13][35]
701. [45][34] [56] [13] [35] [23]



702.
703.
704.
705.
706.
707.
708.
709.
710.
T711.
712.
713.
714.
715.
716.
T17.
718.
719.
720.
721.
722.
723.
724.
725.
726.
T27.
728.
729.
730.
731.
732.
733.
734.
735.
736.
737.
738.
739.
740.
741.
742.
743.
T44.
745.
746.
747 .
748.
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[45] [34] [56] [13] [45]
[45] [34] [661 [13] [45] [24]
[45] [34] [66]1 [13] [45] [34]
[45] [34] [56] [23]

[45] [34] [56] [23]1[12]
[45] [34] [56] [23] [45]
[45] [34] [66] [23] [45] [12]
[45] [34] [66] [23] [45] [12] [34]
[45] [34] [66]1 [23] [45] [12] [34] [23]
[45] [34] [66] [23] [45] [34]
[45] [34] [56] [45]

[45] [56]

[56]

[56] [15]

[56] [15] [46]

[56] [15] [56]

[56] [25]

[56] [25] [14]

[56] [25] [14] [56]

[56] [25] [14] [56] [25]
[56] [25] [14] [56] [35]
[56] [25] [14] [56] [45]
[56] [25] [13]

[56] [25] [13] [56]
[56]1[25] [12]

[56] [25] [12] [56]

[56] [25] [56]

[56] [35]

[56] [35] [14]

[56][35] [13]

[56] [35] [13] [34]

[56] [35] [24]

[56] [35] [24] [13]

[56] [35] [24] [12]

[56] [35] [23]

[56] [35] [23] [12]

[56] [45]

[56] [45] [14]

[56] [45] [14] [45]

[56] [45] [14] [45] [56]
[56] [45] [24]

[561 [45] [24] [13]

[561 [45] [24] [12]

[56] [45] [34]

[56] [45] [34]1 [13]

[56] [45] [34] [23]

[56] [45] [34] [23]1[12]
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