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Abstract

Following de Verdière-Gitler-Vertigan and Curtis-Ingerman-Morrow, we prove a host of new
results on circular planar electrical networks. We first construct a poset EPn of electrical net-
works with n boundary vertices, and prove that it is graded by number of edges of critical
representatives. We then answer various enumerative questions related to EPn, adapting meth-
ods of Callan and Stein-Everett. Finally, we study certain positivity phenomena of the response
matrices arising from circular planar electrical networks. In doing so, we introduce electrical
positroids, extending work of Postnikov, and discuss a naturally arising example of a Laurent
phenomenon algebra, as studied by Lam-Pylyavskyy.
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1 Introduction

Circular planar electrical networks are a natural generalization of an idea from classical physics:
that any electrical resistor network with two vertices connected to a battery behaves like one with
a single resistor. When we embed a resistor network in a disk and allow arbitrarily many boundary
vertices connected to batteries, the situation becomes more interesting. An inverse boundary
problem for these electrical networks was studied in detail by de Verdière-Gitler-Vertigan [dVGV]
and Curtis-Ingerman-Morrow [CIM]: given the response matrix of a network, that is, information
about how the network responds to voltages applied at the boundary vertices, can the network be
recovered?

In general, the answer is “no,” though much can be said about the information that can be
recovered. If, for example, the underlying graph of the electrical network is known and is critical, the
conductances (equivalently, resistances) can be uniquely recovered [CIM, Theorem 2]. Moreover,
any two networks which produce the same response matrix can be related by a certain class of
combinatorial transformations, the local equivalences [dVGV, Théorème 4].

The goal of this paper is to study more closely the rich theory of circular planar electrical
networks. Our first task is to define a poset EPn of circular planar graphs, under the operations of
contraction and deletion of edges. Using the important tool of medial graphs developed in [CIM]
and [dVGV], we prove:

Theorem 1.1. The poset EPn is graded by number of edges of critical representatives.

The poset EPn also has an intricate topological structure. By [CIM, Theorem 4] and [dVGV,
Théorème 3], the space of response matrices for circular planar electrical networks of order n
decomposes as a disjoint union of open cells, each diffeomorphic to a product of copies of the
positive real line. In light of this decomposition, we can describe EPn as the poset of these
cells under containment of closure. We give several conjectural properties of EPn related to this
topological structure.

We also embark on a study of the enumerative properties of EPn. Medial graphs bear a strong
resemblance to certain objects whose enumerative properties are known: stabilized-interval free
(SIF) permutations, as studied by Callan [C], and irreducible linked diagrams, as studied by Stein-
Everett [SE]. Exploiting this resemblance, we summarize and prove analogues of known results in
the following theorem:

Theorem 1.2. Put Xn = |EPn|, the number of equivalence classes of electrical networks of order
n. Then:
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(a) X1 = 1 and

Xn = 2(n− 1)Xn−1 +
n−2∑
j=2

(j − 1)XjXn−j .

(b) [tn−1]X(t)n = n · (2n− 3)!!, where X(t) is the generating function for the sequence {Xi}.

(c) Xn/(2n− 1)!! ∼ e−1/2.

n × n response matrices are characterized in [CIM, Theorem 4] as the symmetric matrices
whose circular minors are non-negative, such that the sum of the entries in each row (and column)
is zero. Furthermore, [CIM, Lemma 4.2] gives a combinatorial criterion, in terms of the underlying
electrical network, for exactly which circular minors are strictly positive. However, until now, the
combinatorial properties of these response matrices have remained largely unstudied, despite their
inherently combinatorial descriptions.

A natural question that arises is: which sets of circular minors can be positive, while the
others are zero? It is clear (for example, from the Grassmann-Plücker relations) that one cannot
construct response matrices with arbitrary sets of positive circular minors. Postnikov [P] studied
a similar question in the totally nonnegative Grassmannian, as follows: for k × n matrices A,
with k < n and all k × k minors nonnegative, which sets (in fact, matroids) of k × k minors can
be the set of positive minors of A? These sets, called positroids by Knutson-Lam-Speyer [KLS],
were found in [P] to index many interesting combinatorial objects. Two of these objects, plabic
graphs and alternating strand diagrams, are highly similar to circular planar electrial networks and
medial graphs, respectively, which we study in this paper. Our introduction of electrical positroids
is therefore a natural extension of the theory of positroids. We give a novel axiomatization of
electrical positroids, motivated by the Grassmann-Plücker relations, and prove the following:

Theorem 1.3. A set S of circular pairs is the set of positive circular minors of a response matrix
if and only if S is an electrical positroid.

Another point of interest is that of positivity tests for response matrices. In [FZP], Fomin-
Zelevinsky describe various positivity tests for totally positive matrices: given an n × n matrix,
there exist sets of n2 minors whose positivity implies the positivity of all minors. These sets of
minors are described combinatorially by double wiring diagrams. Fomin-Zelevinsky later introduced
cluster algebras in [FZ1], in part, to study similar positivity phenomena. In particular, their double
wiring diagrams fit naturally within the realm of cluster algebras as manifestations of certain cluster
algebra mutations.

In a similar way, we describe sets of
(
n
2

)
minors of an n× n matrix M whose positivity implies

the positivity of all circular minors, that is, that M is a response matrix for a top-rank (in EPn)
electrical network. However, these sets do not form clusters in a cluster algebra. Instead, they form
clusters in a Laurent phenomenon (LP) algebra, a notion introduced by Lam-Pylyavskyy in [LP].
This observation leads to the last of our main theorems:

Theorem 1.4. There exists an LP algebra LMn, isomorphic to the polynomial ring on
(
n
2

)
gen-

erators, with an initial seed Dn of diametric circular minors. Dn is a positivity test for circular
minors, and furthermore, all “Plücker clusters” in LMn, that is, clusters of circular minors, are
positivity tests.

In proving Theorem 1.4, we find that LMn is, in a sense, “double-covered” by a cluster algebra
CMn that behaves very much like LMn when we restrict to certain types of mutations. Further
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investigation of the clusters leads to an analogue of weak separation, as studied by Oh-Speyer-
Postnikov [OSP] and Scott [S]. Conjecturally, the “Plücker clusters,” of LMn correspond exactly
to the maximal pairwise weakly separated sets of circular pairs. Furthermore, we conjecture that
these maximal pairwise weakly separated sets are related to each other by mutations corresponding
to the Grasmann-Plücker relations. While we establish several weak forms of the conjecture, the
general statement remains open.

The roadmap of the paper is as follows. In an attempt to keep the exposition of this paper as
self-contained as possible, we carefully review terminology and known results in §2, where we also
establish some basic properties of electrical networks. In §3, we define the poset EPn, establishing
the equivalence of the two descriptions given above, and prove Theorem 1.1 as Theorem 3.2.4. The
study of enumerative properties of EPn is undertaken in §4, where we prove the three parts of
Theorem 1.2 as Theorems 4.1.6, 4.1.8, and 4.2.1. In the second half of the paper, we turn our
attention to response matrices. In §5, we motivate and introduce electrical positroids, proving
Theorem 1.3 as Theorem 5.1.7. Finally, in §6, using positivity tests as a springboard, we construct
LMn and prove Theorem 1.4 as Corollary 6.1.9, Lemma 6.2.6, and Theorem 6.2.17. We conclude
by establishing weak forms of Conjecture 6.3.4, which relates the clusters of LMn to positivity
tests and our new analogue of weak separation.

2 Electrical Networks

We begin a systematic discussion of electrical networks by recalling various notions and results
from [CIM]. We will also introduce some new terminology and conventions which will aid our
exposition, in some cases deviating from [CIM].

2.1 Circular Planar Electrical Networks, up to equivalence

Definition 2.1.1. A circular planar graph Γ is a planar graph embedded in a disk D. Γ is
allowed to have self-loops and multiple edges, and has at least one vertex on the boundary of D -
such vertices are called boundary vertices. A circular planar electrical network is a circular
planar graph Γ, together with a conductance γ : E(Γ)→ R>0.

To avoid cumbersome language, we will henceforth refer to these objects as electrical net-
works. We will also call the number of boundary vertices of an electrical network (or a circular
planar graph) its order.

We can interpret this construction as an electrical network in the physical sense, with a resistor
existing on each edge e with conductance γ(e). Electrical networks satisfy Ohm’s Law and
Kirchhoff’s Laws, classical physical phenomena which we neglect to explain in detail here. Given
an electrical network (Γ, γ), suppose that we apply electrical potentials at each of the boundary
vertices V1, . . . , Vn, inducing currents through the network. Then, we get a map f : Rn → Rn, where
f sends the potentials (p1, . . . , pn) applied at the vertices V1, . . . , Vn to the currents (i1, . . . , in)
observed at V1, . . . , Vn. We will take currents going out of the boundary to be negative and those
going in to the boundary to be positive.

Remark 2.1.2. The convention for current direction above is the opposite of that used in [CIM],
but we will prefer it for the ensuing elegance of the statement of Theorem 2.2.6a.

In fact, f is linear (see [CIM, §1]), and we have natural bases for the spaces of applied voltages
and observed currents at the boundary vertices. Thus, we can make the following definition:
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Figure 1: Y-∆ transformation.

Definition 2.1.3. Given an electrical network (Γ, γ), define the response matrix of the network
to be the linear map f constructed above from applied voltages to observed currents, in terms of
the natural bases indexed by the boundary vertices.

Definition 2.1.4. Two electrical networks (Γ1, γ1), (Γ2, γ2) are equivalent if they have the same
response matrix. In other words, the two networks cannot be distinguished only by applying
voltages at the boundary vertices and observing the resulting currents. The equivalence relation is
denoted by ∼.

We will study electrical networks up to equivalence. We have an important class of combina-
torial transformations that may be applied to electrical networks, known as local equivalences,
described below. These transformations may be seen to be equivalences by applications of Ohm’s
and Kirchhoff’s Laws. Note that all of these local equivalences may be performed in reverse.

1. Self-loop and spike removal. Self-loops (cycles of length 1) and spikes (edges adjoined to
non-boundary vertices of degree 1) of any conductances may always be removed.

2. Replacement of edges in parallel. Two edges e1, e2 between with common endpoints v, w
may be replaced by a single edge of conductance γ(e1) + γ(e2).

3. Replacement of edges in series. Two edges v1w,wv2 (v1 6= v2) meeting at a vertex w of
degree 2 may be replaced by a single edge v1v2 of conductance ((γ(v1w)−1 + γ(wv2)

−1)−1.

4. Y-∆ transformations. (See Figure 1) Three edges v1w, v2w, v3w meeting at a non-boundary
vertex w of degree 3 may be replaced by three edges v1v2, v2v3, v3v1, of conductances

γ1γ2
γ1 + γ2 + γ3

,
γ2γ3

γ1 + γ2 + γ3
,

γ3γ1
γ1 + γ2 + γ3

,

where γi denotes the conductance γ(viw).

In fact, local equivalences are sufficient to generate equivalence of electrical networks:

Theorem 2.1.5 ([dVGV, Théorème 4]). Two electrical networks are equivalent if and only if they
are related by a sequence of local equivalences.

When dealing with electrical networks, we will sometimes avoid making any reference to the
conductance map γ, and instead consider just the underlying circular planar graph Γ. In doing so,
we will abuse terminology by calling circular planar graphs “electrical networks.” In practice, we
will only use the following notion of equivalence on circular planar graphs:
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Definition 2.1.6. Let Γ1,Γ2 be circular planar graphs, each with the same number of boundary
vertices. Then, Γ1,Γ2 are equivalent if there exist conductivities γ1, γ2 on Γ1,Γ2, respectively
such that (Γ1, γ1), (Γ2, γ2) are equivalent electrical networks. As with electrical networks, this
equivalence is denoted ∼.

It is clear that we may still apply local equivalences with this notion of equivalence. Furthermore,
we have an analogue of Theorem 2.1.5: two circular planar graphs are equivalent if and only if they
can be related by local equivalences, where we “forget” the conductances.

2.2 Circular Pairs and Circular Minors

Circular pairs and circular minors are central to the characterization of response matrices.
Accordingly, they will provide the foundation for our study of positivity in §5 and §6.

Definition 2.2.1. Let P = {p1, p2, . . . , pk} and Q = {q1, q2, . . . , qk} be disjoint ordered subsets
of the boundary vertices of an electrical network (Γ, γ). We say that (P ;Q) is a circular pair if
p1, . . . , pk, qk, . . . , q1 are in clockwise order around the circle. We will refer to k as the size of the
circular pair.

Remark 2.2.2. We will take (P ;Q) to be the same circular pair as (Q̃; P̃ ), where P̃ denotes
the ordered set P with its elements reversed. Almost all of our definitions and statements are
compatible with this convention; most notably, by Theorem 2.2.6a, because response matrices are
positive, the circular minors M(P ;Q) and M(Q̃; P̃ ) are the same. Whenever there is a question as
to the effect of choosing either (P ;Q) or (Q̃; P̃ ), we take extra care to point the possible ambiguity.

Definition 2.2.3. Let (P ;Q) and (Γ, γ) be as in Definition 2.2.1. We say that there is a connection
from P to Q in Γ if there exists a collection of vertex-disjoint paths from pi to qi in Γ, and
furthermore each path in the collection contains no boundary vertices other than its endpoints. We
denote the set of circular pairs (P ;Q) for which P is connected to Q by π(Γ).

Definition 2.2.4. Let (P ;Q) and (Γ, γ) be as in Definition 2.2.1, and let M be the response
matrix. We define the circular minor associated to (P ;Q) to be the determinant of the k × k
matrix M(P ;Q) with M(P ;Q)i,j = Mpi,qj .

Remark 2.2.5. We will sometimes refer to submatrices and their determinants both as minors,
interchangeably. In all instances, it will be clear from context which we mean.

We are interested in circular minors and connections because of the following result from [CIM]:

Theorem 2.2.6. Let M be an n× n matrix. Then:

(a) M is the response matrix for an electrical network (Γ, γ) if and only if M is symmetric with
row and column sums equal zero, and each of the circular minors M(P ;Q) is non-negative.

(b) If M is the response matrix for an electrical network (Γ, γ), the positive circular minors
M(P ;Q) are exactly those for which there is a connection from P to Q.

Proof. (a) is immediate from [CIM, Theorem 4], which we will state as Theorem 2.3.6 later. (b)
is [CIM, Theorem 4.2]. Note that, because we have declared current going into the circle to be
negative, we do not have the extra factors of (−1)k as in [CIM].

We now define two operations on the circular planar graphs and electrical networks. Each
operation decreases the total number of edges by one.
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Definition 2.2.7. Let G be a circular planar graph, and let e be an edge with endpoints v, w.
The deletion of e from G is exactly as named; the edge e is removed while leaving the rest of the
vertices and edges of G unchanged. If v, w are not both boundary vertex of G, we may also perform
a contraction of e, which identifies all points of e. If exactly one of v, w is a boundary vertex,
then the image of e under the contraction is a boundary vertex. Note that edges connecting two
boundary vertices cannot be contracted to either endpoint.

2.3 Critical Graphs

In this section, we introduce critical graphs, a particular class of circular planar graphs. The
definition is at first somewhat mysterious, but their importance will quickly become clear.

Definition 2.3.1. Let G be a circular planar graph. G is said to be critical if, for any removal of
an edge via deletion or contraction, there exists a circular pair (P ;Q) for which P is connected to
Q through G before the edge removal, but not afterward.

Theorem 2.3.2 ([dVGV, Théorème 2]). Every equivalence class of circular planar graphs has a
critical representative.

Theorem 2.3.3 ([CIM, Theorem 1]). Suppose G1, G2 are critical. Then, G1 and G2 are Y-∆
equivalent (that is, related by a sequence of Y-∆ transformations) if and only if π(G1) = π(G2).

Proposition 2.3.4. Let G1, G2 be arbitrary circular planar graphs. Then, G1 ∼ G2 if and only if
π(G1) = π(G2).

Proof. By Theorem 2.1.5, if G1 ∼ G2, then G1 and G2 are related by a sequence of local equiva-
lences. All local equivalences preserve π(−); indeed, we have the claim for Y-∆ transformations by
Theorem 2.3.3, and it is easy to check for all other local equivalences. It follows that π(G1) = π(G2).

In the other direction, by Theorem 2.3.2, there exist critical graphs H1, H2 such that G1 ∼ H1

and G2 ∼ H2. By similar logic from the previous paragraph, we have π(H1) = π(G1) = π(G2) =
π(H2), and thus, by Theorem 2.3.3, H1 ∼ H2. It follows that G1 ∼ G2, so we are done.

Definition 2.3.5. Fix a set B of n boundary vertices on a disk D. For any set of circular minors
π, let Ω(π) denote the set of response matrices whose, with the set of positive minors being exactly
those corresponding to the elements π. We will refer to the sets Ω(π) as cells, in light of the
theorem that follows.

Theorem 2.3.6 ([CIM, Theorem 4]). Suppose that G is critical and has N edges. Put π = π(G).
Then, the map rG : RN>0 → Ω(π), taking the conductances on the edges of G to the resulting response
matrix, is a diffeomorphism.

It follows that the space of response matrices for electrical networks of order n is the disjoint
union of the cells Ω(π), some of which are empty. The non-empty cells Ω(π) are those which
correspond to critical graphs G with π(G) = π. We will describe how these cells are attached to
each other in Proposition 3.1.2.

Remark 2.3.7. Later, we will prefer (e.g. in Proposition 3.1.2) to index these cells by their
underlying (equivalence classes of) circular planar graphs, referring to them as Ω(G). Thus, Ω(G)
denotes the set response matrices for conductances on G.

Let us now characterize critical graphs in more conceptual ways. We quote a fourth character-
ization using medial graphs in Theorem 2.4.2.
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Figure 2: Medial Graphs

Theorem 2.3.8. Let (Γ, γ) be an electrical network. The following are equivalent:

(1) Γ is critical.

(2) Given the response matrix M of (Γ, γ), γ can uniquely be recovered from M and Γ.

(3) Γ has the minimal number of edges among elements of its equivalence class.

Proof. By [CIM, Lemma 13.2], (1) and (2) are equivalent. We now prove that (3) implies (1). Sup-
pose for sake of contradiction Γ has the minimal number of edges among elements of its equivalence
class, but is not critical. Then, there exists some edge that may be contracted or deleted to give Γ′,
such that π(Γ) = π(Γ′). Then, by Proposition 2.3.4, we have Γ′ ∼ Γ, contradicting the minimality
of the number of edges of Γ.

Finally, to see that (1) implies (3), suppose for sake of contradiction that Γ is critical and
equivalent to a graph Γ′ with a strictly fewer edges. Γ′ cannot be critical, or else Γ and Γ′ would
be Y-∆ equivalent and thus have an equal number of edges. However, if Γ′ is not critical, we also
have a contradiction by the previous paragraph. The result follows.

2.4 Medial Graphs

One of our main tools in studying circular planar graphs (and thus, electrical networks) will be
their medial graphs. In a sense, medial graphs are the dual object to circular planar graphs. See
Figure 2 for examples.

Let G be a circular planar graph with n boundary vertices; color all vertices of G black, for
convenience. Then, for each boundary vertex, add two red vertices to the boundary circle, one on
either side, as well as a red vertex on each edge of G. We then construct the medial graph of G,
denoted M(G), as follows.

Take the set of red vertices to be the vertex set of M(G). Two red non-boundary vertices in
M(G) are connected by an edge if and only if their associated edges share a vertex and border the
same face. Then, the red boundary vertices are each connected to exactly one other red vertex:
if the red boundary vertex r lies clockwise from its associated black boundary vertex b, then r is
connected to the red vertex associated to the first edge in clockwise order around b after the arc rb.
Similarly, if r lies counterclockwise from b, we connect r to the red vertex associated to the first
edge in counterclockwise order around b after the arc rb. Note that if no edges of G are incident at
b, then the two red vertices associated to b are connected by an edge of M(G).

We will refer to the red vertices on the boundary circle as medial boundary vertices, as
to distinguish them from the black boundary vertices, a term we will reserve for the boundary
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←→

Figure 3: Motions

−→

−→

Figure 4: Resolution of Lenses

vertices of the original circular planar graph (electrical network). The order of a medial graph is
the order of its underlying electrical network.

Note that the medial boundary vertices of M(G) have degree 1, and all other vertices have
degree 4. Thus, we may form geodesics in M(G) in the following way. Starting at each medial
boundary vertex, draw a path e1e2 · · · en (labeled by its edges) so that if the edge ei ends at the
non-medial boundary vertex v, the edge ei+1 is taken to be the edge with endpoint v such that the
edges ei and ei+1 separate the other two edges incident at v. The geodesic ends when it reaches
a second boundary vertex. The remaining geodesics are constructed in a similar way, but do not
start and end at boundary vertices: instead, they must be finite cycles inside the circle.

For example, in Figure 2, we have three geodesics in the right hand diagram: b1b4, b2b5, and
b3b6, where here we label the geodesics by their vertices. In the left hand diagram, we have the
geodesics b1b3, b2b4, and i1i2i3i4.

Definition 2.4.1. Two geodesics are said to form a lens if they intersect at distinct p1 and p2, in
such a way that they do not intersect between p1 and p2. A medial graph is said to be lensless if
all geodesics connect two medial boundary vertices (that is, no geodesics are cycles), and no two
geodesics form a lens.

The local equivalences of electrical networks may easily be translated into operations on their
medial graphs. Most importantly, Y-∆ transformations become motions, as shown in 3, and
replacing series or parallel edges with a single edge both correspond to resolution of lenses, as
shown in Figure 4. Note, however, that a lens may only be resolved if no other geodesics pass
through the lens. Defining two medial graphs to be equivalent if their underlying circular planar
graphs are equivalent, we obtain an analogue of Theorem 2.1.5.

The power of medial graphs lies in the following theorem:

Theorem 2.4.2 ([CIM, Lemma 13.1]). G is critical if and only if M(G) is lensless.
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In particular, if G is critical, the geodesics of M(G) consist only n “wires” connecting pairs of
the 2n boundary medial vertices. Thus, any critical graph G gives a perfect matching of the medial
boundary vertices. Furthermore, suppose H ∼ G is critical. By Theorem 2.3.3 and Proposition
2.3.4, G and H are related by Y-∆ transformations, so M(G) and M(H) are related by motions.
In particular, M(G) and M(H) match the same pairs of boundary medial vertices, so we have a
well-defined map from critical circular planar graph equivalence classes to matchings. In fact, this
map is injective:

Proposition 2.4.3. Suppose that the geodesics of two lensless medial graphs M(G),M(H) match
the same pairs of medial boundary vertices. Then, the medial M(G) and M(H) are related by
motions, or equivalently, G and H are Y-∆ equivalent.

Proof. Implicit in [CIM, Theorem 7.2].

Definition 2.4.4. Given the boundary vertices of a circular planar graph embedded in a disk D,
take 2n medial boundary vertices as before. A wiring diagram is collection of n smooth curves
(wires) embedded in D, each of which connects a pair of medial boundary vertices in such a way
that each medial boundary vertex has exactly one incident wire. We require that wiring diagrams
have no triple crossings or self-loops. As with electrical networks and medial graphs, the order of
the wiring diagram is defined to be equal to n.

It is immediate from Proposition 2.4.3 that, given a set of boundary vertices, perfect matchings
on the set of medial boundary vertices are in bijection with motion-equivalence classes of lensless
wiring diagrams. Thus, we have an injection G 7→ M(G) from critical graph equivalence classes to
motion-equivalence classes of lensless wiring diagram, but this map is not surjective. We describe
the image of this injection in the next definition:

Definition 2.4.5. Given boundary vertices V1, . . . , Vn and a wiring diagram W on the same bound-
ary circle, a dividing line for W is a line ViVj with i 6= j such that there does not exist a wire
connecting two points on opposite sides of ViVj . The wiring diagram is called full if it has no
dividing lines.

It is obvious that fullness is preserved under motions. Now, suppose that we have a lensless full
wiring diagram W ; we now define a critical graph E(W ). Let D be the disk in which our wiring
diagram is embedded. The wires of W divide D in to faces, and it is well-known that these faces
can be colored black and white such that neighboring faces have opposite colors.

The condition that W be full means that each face contains at most one boundary vertex. Fur-
thermore, all boundary vertices are contained in faces of the same color; without loss of generality,
assume that this color is black. Then place an additional vertex inside each black face which does
not contain a boundary vertex. The boundary vertices, in addition to these added interior vertices,
form the vertex set for E(W ). Finally, two vertices of E(W ) are connected by an edge if and only if
their corresponding faces share a common point on their respective boundaries, which must be an
intersection p of two wires of W . This edge is drawn as to pass through p. An example is shown in
Figure 5.

It is straightforward to check thatM and E are inverse maps. We have thus proven the following
result:

Theorem 2.4.6. The associations G 7→ M(G) and W 7→ E(W ) are inverse bijections between
equivalence classes of critical graphs and motion-equivalence classes of full lensless wiring diagrams.
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Figure 5: Recovering an electrical network from its (lensless) medial graph.

−→

−→

Figure 6: Breaking a crossing, in two ways.

Finally, let us discuss the analogues of contraction and deletion in medial graphs. Each operation
corresponds to the breaking of a crossing, as shown in Figure 6. A crossing may be broken in
two ways: breaking outward from the corresponding edge of the underlying electrical network
corresponds to contraction, and breaking along the edge corresponds to deletion. In the same way
that contraction or deletion of an edge in a critical graph is not guaranteed to yield a critical graph,
breaking a crossing in lensless medial graphs does not necessarily yield a lensless medial graph.

Not all breakings of crossings are valid, as some crossings may be broken in a particular way
to create a dividing line. In fact, it is straightforward to check that creating a dividing line by
breaking a crossing corresponds to contracting a boundary edge, which we also do not allow. Thus,
we allow all breakings of crossings as long as no dividing lines are created: such breakings are called
legal.

3 The Electrical Poset EPn

We now consider EPn, the poset of circular planar graphs under contraction and deletion.
We will find that, equivalently, EPn is the poset of disjoint cells Ω(G) (see Remark 2.3.7) under
containment in closure.
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3.1 Construction

Before constructing EPn, we need a lemma to guarantee that the order relation will be well-
defined.

Lemma 3.1.1. Let G be a circular planar graph, and suppose that H can be obtained from G by
a sequence of contractions and deletions. Consider a circular planar graph G′ with G′ ∼ G. Then,
there exists a sequence of contractions and deletions starting from G′ whose result is some H ′ ∼ H.

Proof. By induction, we may assume that H can be obtained from G by one contraction or one
deletion. Furthermore, by Theorem 2.1.5, we may assume by induction that G and G′ are related
by a local equivalence. If this local equivalence is the deletion of a self-loop or boundary spike, the
result is trivial. Next, suppose G′ is be obtained from G by one Y-∆ transformation. We have
several cases: in each, let the vertices of the Y (and ∆) to which the transformation is applied be
A,B,C, and let the central vertex of the Y, which may be in G or G′ be P . In each case, if the
deleted or contracted edge of G is outside the Y or ∆, it is clear that the same edge-removal may
be performed in G′.

• Suppose that a Y in G may be transformed to a ∆ in G′, and that H is obtained from G by
contraction, without loss of generality, of AP . Then, deleting the edge BC from G′ yields
H ′ ∼ H.

• Suppose that a Y in G may be transformed to a ∆ in G′, and that H is obtained from G
by deletion, without loss of generality, of AP . Then, deleting AB and AC from G′ yields
H ′ ∼ H.

• Suppose that a ∆ in G may be transformed to a Y in G′, and that H is obtained from G by
deletion, without loss of generality, of AB. Then, contracting CP in G′ yields H ′ ∼ H.

• Suppose that a ∆ in G may be transformed to a Y in G′, and that H is obtained from G by
deletion, without loss of generality, of AB. Then, contracting AP to A and AB to B in G′

yields H ′ ∼ H.

Next, consider the case in which we have parallel edges e, f connecting the vertices A,B in G,
and that G′ is obtained by removing e (analogous to replacing the parallel edges by a single edge).
If, in G, we contract or delete an edge not connecting A and B to get H, we can perform the same
operation in G′ and then delete E to get H ′ ∼ H. If, instead, we contract an edge between A
and B to get H from G, we perform the same operation in G′, and then delete e, which became
a self-loop. Finally, if we delete an edge between A and B to get H, then we can delete the same
edge in G′ to get H, unless e is deleted from G, in which case we can take H ′ = H.

Now, suppose G′ can be obtained from G by adding an edge e in parallel to an edge already in
G. Then, if we contract or delete an edge f in G to get H, we can perform the same operation in
G′, then delete e, to get H ′ ∼ H.

The case in which G′ and G are related by contracting an edge in series with another edge follows
from a similar argument. We have exhausted all local equivalences, completing the proof.

For distinct equivalence classes [G], [H], we may now define [H] < [G] if, given any G ∈ [G],
there exists a sequence of contractions and deletions that may be applied to G to obtain an element
of [H]. We thus have a (well-defined) electrical poset of order n, denoted EPn, of equivalence
classes of circular planar graphs or order n. If H ∈ [H] and G ∈ [G] with [H] < [G], we will write
H < G.
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Figure 7: EP3

Figure 7 shows EP3, with elements represented as medial graphs (left) and electrical networks
(right). Theorem 2.3.2 guarantees that the electrical networks may be taken to be critical. Note
that EP3 is isomorphic to the Boolean Lattice B3, because all critical graphs of order 3 arise from
taking edge-subsets of the top graph.

Let us now give an alternate description of the poset EPn. Associated to each circular planar
graph G, we have an open cell Ω(G) of response matrices for conductances on G, where Ω(G) is
taken to be a subset of the space Ωn of symmetric n × n matrices. It is clear that, if G ∼ G′, we
have, by definition, Ω(G) = Ω(G′).

Proposition 3.1.2. Let G be a circular planar graph. Then,

Ω(G) =
⊔
H≤G

Ω(H), (3.1.3)

where Ω(G) denotes the closure of Ω(G) in Ωn, and the union is taken over equivalence classes of
circular planar graphs H ≤ G in EPn.

Because the Ω(G) are pairwise disjoint when we restrict ourselves to equivalence classes of
circular planar graphs (a consequence of Theorems 2.2.6 and 2.3.3), we get:

Corollary 3.1.4. [H] ≤ [G] in EPn if and only if Ω(H) ⊂ Ω(G).

Proof of Proposition 3.1.2. Without loss of generality, we may take G to be critical. Let N be
the number of edges of G. By 2.3.6, the map rG : RN>0 → Ω(G) ⊂ Ωn, sending a collection
of conductances of the edges of G the resulting response matrix, is a diffeomorphism. We will
describe a procedure for producing a response matrix for any electrical network whose underlying
graph H is obtainable from G by a sequence of contractions and deletions (that is, H ≤ G).
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Given γ ∈ RN>0, write γ = (γ1, . . . , γN ). Note that for each i ∈ [1, N ] and fixed conductances
γ1, . . . , γ̂i, . . . , γn, the limit limγi→0 rG(γ) must exist; indeed, sending the conductance γi to zero is
equivalent to deleting its associated edge. This fact is most easily seen by physical reasoning: an
edge of zero conductance has no current flowing through it, and thus the network may as well not
have this edge. Thus, limγi→0 rG(γ) is just rG′(γ1, . . . , γ̂i, . . . , γn), where G′ is the result of deleting
e from G. Similarly, we find that limγi→∞ rG(γ) is rG′′(γ1, . . . , γ̂i, . . . , γn), where G′′ is the result
of contracting e.

It follows easily, then, that for all H which can be obtained from G by a contraction or deletion,
we have Ω(H) ⊂ Ω(G), because, by the previous paragraph, Ω(H) = Im(rH) ⊂ Ω(G). By induction,
we have the same for all H ≤ G.

It is left to check that any M ∈ Ω(G) is in some cell Ω(H) with H ≤ G. We have that M is a
limit of response matrices M1,M2, . . . ∈ Ω(G). The determinants of the circular minors of M are
limits of determinants of the same minors of the Mi, and thus non-negative. It follows that M is
the response matrix for some network H, that is, M ∈ Ω(H). We claim that H ≤ G, which will
finish the proof.

Consider the sequence {Ck} defined by Ck = r−1G (Mk), which is a sequence of conductances on
G. For each edge e ∈ G, we get a sequence {C(e)k} of conductances of e in {Ck}. It is then a con-
sequence of the continuity of rG, r

−1
G , and the existence of the limits limγi→0 rG(γ), limγi→∞ rG(γ),

that the sequences {C(e)k} each converge to a finite nonnegative limit or otherwise go to +∞.
Furthermore, we claim that for a boundary edge e (that is, one that connects two boundary

vertices), {C(e)k} cannot tend to +∞. Suppose, instead, that such is the case, that for some
boundary edge e = ViVj , we have C(e)k → ∞. Then, note that imposing a positive voltage at Vi
and and zero voltage at all other boundary vertices sends the current measurement at Vi to −∞ as
C(e)k →∞. In particular, our sequence M1,M2, . . . cannot converge, so we have a contradiction.

To finish, it is clear, for example, using similar ideas to the proof of the first direction, that
contracting the edges e for which C(e)k → ∞ (which can be done because such e cannot be
boundary edges) and deleting those for which C(e)k → 0 yields H. The proof is complete.

3.2 Gradedness

In this section, we prove our first main theorem, that EPn is graded.

Proposition 3.2.1. [G] covers [H] in EPn if and only if, for a critical representative G ∈ [G], an
edge of G may be contracted or deleted to obtain a critical graph in [H].

Proof. First, suppose that G and H are critical graphs such that deleting or contracting an edge
of G yields H. Then, if [G] > [X] > [H] for some circular planar graph X, some sequence of at
least two deletions or contractions of G yields H ′ ∼ H. It is clear that H ′ has fewer edges than H,
contradicting Theorem 2.3.8. It follows that [G] covers [H].

We now proceed to prove the opposite direction. Fix a critical graph G, and let e be an edge
of G that can be deleted or contracted in such a way that the resulting graph H is not critical. By
way of Lemmas 3.2.2 and 3.2.3, we will first construct T ∼ G with certain properties, then, from
T , construct a graph G′ such that [G] > [G′] > [H]. The desired result will then follow, because
suppose [G] covers [H] and G ∈ [G] is critical. Then, there exists an edge e ∈ G which may be
contracted or deleted to yield H ∈ [H], and it will also be true that H is critical.

First, we translate to the language of medial graphs. When we break a crossing in the medial
graph M(G), we may create lenses that must be resolved to produce a lensless medial graph.
Suppose that our deletion or contraction of e ∈ G corresponds to breaking the crossing between the
geodesics ab and cd inM(G), where the points a, c, b, d appear in clockwise order on the boundary
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circle. Let ab ∩ cd = p, and suppose that when the crossing at p is broken, the resulting geodesics
are ad and cb.

For what follows, let F = {f1, . . . , fk} denote the set of geodesics fi in M(G) such that fi
intersects ab between a and p, and also intersects cd between d and p. We now construct T in two
steps.

Lemma 3.2.2. There exists a lensless medial graph K such that:

• K is equivalent to M(G),

• geodesics ab and cd still intersect at p, and breaking the crossing at p to give geodesics ad, bc
yields a medial graph equivalent to M(H), and

• for fi, fj ∈ F which cross each other, the crossing fi ∩ fj lies outside the sector apd.

Proof. The proof is similar to that of [CIM, Lemma 6.2]. Start with the medial graph M(G), and
for each fi ∈ F , let vi = fi∩ab. Also, for each fi ∈ F which intersects another fj ∈ F in the sector
apd, let Di be the closest point of intersection of some fj along fi to vi in apd. Let D be the set
of Di.

If D is empty, there is nothing to check, so we assume that D is nonempty. Then, consider
the subgraph of M(G′) obtained by restricting to the geodesics in F , along with ab and cd. In
this subgraph, choose a point Di ∈ D such that the number r of regions within the configuration
formed by fi, fj , and ap is a minimum, where fj denotes the other geodesic passing through Di.

We claim that r = 1: assume otherwise. Then, there exists a geodesic fk intersecting fj
between vj and Di and intersecting ap between vi and vj , as, by definition, Di is the first point of
intersection on fi after vi. However, the area enclosed by fk, fj , and ap a number of regions strictly
fewer than r. Hence, we could instead have chosen the point Dj ∈ D, with Dj 6= Di, contradicting
the minimality.

It follows that ap, fi, and fj form a triangle, and thus the crossing at Di may be moved out of
sector apd by a motion. Iterating this process, a finite number of motions may be applied in such
so that no fi, fj ∈ F intersect in the sector apd. After applying these motions, we obtain a medial
graph K equivalent to M(G′) satisfying the first and third properties.

It is easy to see that K also satisfies the second property, as none of the motions involved
use the crossing at p. Thus, if we translate the sequence of motions into Y-∆ transformations on
circular planar graphs, starting with G, no Y-∆ transformation is applied involving the edge e
corresponding to p. Thus, deleting or contracting e commutes with the Y-∆ transformations we
have performed.

It now suffices to consider the graph K. Let f1 ∈ F be the geodesic intersecting ab at the point
v1 closest to p, and let w1 = f1 ∩ cd.

Lemma 3.2.3. There exists a lensless medial graph K ′ ∼ K, such that:

• geodesics ab and cd intersect at p, as before, and breaking the crossing at p to give geodesics
ad, bc yields a medial graph equivalent to M(H), and

• No other geodesic of K ′ enters the triangle with vertices v1, p, w1.

Proof. We first consider the set X of geodesics that only intersect cd and f1. With an argument
similar to that of Lemma 3.2.2, we may first apply motions so that any intersection of two elements
X occurs outside the triangle with vertices v1, p, w1. Then, we may apply motions at w1 to move
each of the geodesics in X outside of this triangle, so that they intersect f1 in the sector bpd. After
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applying similar motions to the set of geodesics Y intersecting ab and f1, we have K ′. The fact that
K ′ satisfies the first desired property follows from the same argument as that of Lemma 3.2.3.

We are now ready to finish the proof of Proposition 3.2.1. Let T = E(K ′) (see Theorem 2.4.6).
Then, in T , because of the properties of K ′, contracting e to form the graph H ′ ∼ H forms a pair
of parallel edges. Replacing the parallel edges with a single edge gives a circular planar graph H ′′,
which is still equivalent to H. Suppose that e has endpoints B,C and the edges in parallel are
formed with A. Then, we have the triangle ABC in T .

Write S = π(T ) (see Definition 2.2.3) and S′ = π(H ′). Because T is critical, S′ 6= S, so fix
(P ;Q) ∈ S−S′. Then, it is straightforward to check that any connection C between P and Q must
have used both B and C, but cannot have used the edge BC. Furthermore, C can use at most
one of the edges AB,AC. Indeed, if both AB,AC are used, they appear in the same path γ, but
replacing the two edges AB,AC with BC in γ gives a connection between P and Q, but we know
that no such connection can use BC, a contradiction. Without loss of generality, suppose that C
does not use AB. Then, deleting AB from T yields a graph G′ with (P ;Q) ∈ G′, hence G′ is not
equivalent to H. However, it is clear that deleting BC from G′ yields H ′′ ∼ H. It follows, then,
that in the case in which e is contracted, we have G′ such that [G] > [G′] > [H], and hence [G]
does not cover [H].

For the case in which we delete e = ZC in T , the argument is similar. Deleting e in T yields
a graph H ′ ∼ H with two edges AZ,ZB in series, which implies that T has a Y with vertices
A,B,C,Z, where Z is the middle vertex. It is easy to see that Z is not a boundary vertex. Then,
replacing AZ,ZB in H ′ with the edge AB yields a graph H ′′ ∼ H. There exists a circular pair
(P ;Q) ∈ π(T ) − π(H), so we have a connection C between P and Q using the edge ZC. Then, C
also must use exactly one of AZ and BZ: wthout loss of generality, assume it is AZ. Contracting
BZ in T to yield the graph G′ leaves C intact, and deleting ZC from G′ gives H ′′ ∼ H. As before,
we thus have [G] > [G′] > [H], so we are done.

Theorem 3.2.4. EPn is graded by number of edges of critical representatives.

Proof. First, by Theorem 2.3.8, note that for any [G] ∈ EPn, all critical representatives of [G] have
the same number of edges. Now, we need to show that if [G] covers [H], the number of edges in a
critical representative of [G] is one more than the same number for [H]. Let G ∈ [G] be critical.
By Proposition 3.2.1, an edge of G may be contracted or deleted to yield a critical representative
H ∈ [H], and it is clear that H has one fewer edge than G.

Definition 3.2.5. For all non-negative integers r, denote the set of elements of EPn of rank r by
EPn,r.

Let us pause to point out connections between EPn and two other posets, interpreting EPn as
the graded poset of lensless medial graphs with the covering relation arising from the legal breakings
of crossings that preserve lenslessness.

First, EPn bears a strong resemblance to the symmetric group Sn under the (strong) Bruhat
order, as follows. Associated to each permutation σ ∈ Sn, there is a lensless wiring diagram, with
n wires connecting two parallel lines `1, `2, both with marked points 1, 2, . . . , n. For each i ∈ [n],
there is a wire joining the point i ∈ `1 to σ(i) ∈ `2. Then, the covering relation in Sn is exactly
that of EPn, except for the fact that each crossing can be broken in exactly one legal way.

Also, consider the poset Wn of equivalence classes of lensless wiring diagrams, not necessarily
full. Here, the equivalence relation here is generated by motions and resolution of lenses. The order
relation arises from breaking of crossings, in a similar way to EPn, but we are no longer concerned

16



d d

c c

a a

b b

f e

f

e

Subcase A Subcase B

Figure 8: Possible starting configurations for two breakings using six medial boundary vertices.

about the creation of dividing lines. Wn can be proven to be graded in a similar way to the proof
of Theorem 3.2.4, and it is furthermore not difficult to check that EPn is in fact an interval in Wn.

3.3 Toward Eulerianness

In this section, we conjecture several important properties of the poset EPn. We prove that
all closed intervals of length 2 have four elements, which reduces the conjectured properties to the
existence of an L-labeling on EPn.

Lemma 3.3.1. Suppose x ∈ EPn,r−1, z ∈ EPn,r+1 with x < z. Then, there exist exactly two
y ∈ EPn,r with x < y < z.

Proof. Take x and z to be (equivalence classes of) lensless medial graphs. By Theorem 3.2.4, x may
be obtained from z by a sequence of two legal resolutions of crossings. Suppose that x contains
the intersecting wires (labeled by their endpoints) ab and cd, whose intersection is broken (legally,
that is, without creating dividing lines) by instead taking wires ac, bd. There are two cases for the
next covering relation, from which x results: either one of ac, bd is involved, or a crossing between
two new wires is broken.

In the first case, suppose that a crossing between bd and ef is broken to give wires bf, de. Up
to equivalence under motions, we have one of the two configurations in Figure 3.3.2, constituting
subcases A and B. We need to show that, in both cases, there is exactly one other sequence of two
legal breakings of crossings, starting from z, that gives x.

In subcase A, there are, at first glance, two possible other ways to get from the set of wires
{ab, cd, ef} to the set {ac, de, bf}: the first is through {ab, cf, de} and the second is through
{ae, cd, bf}. However, note that the latter case produces a lens, regardless of how the wires are
initially positioned to cross each other. Furthermore, assuming the legality of the sequence of break-
ings {ab, cd, ef} → {ac, bd, ef} → {ac, bf, de}, it is straightforward to check that {ab, cd, ef} →
{ab, cf, de} → {ae, cd, bf} is also a legal sequence of breakings. In subcase B, it is clear that the
only other way to get from z to x is through {ab, cf, de}, and indeed, it is again not difficult to
check that we get legal resolutions here.

Now, suppose instead that we have the legal sequence of resolutions

{ab, cd, ef, gh} → {ac, bd, ef, gh} → {ac, bd, eg, fh} (3.3.2)

The only other possible way to get from z to x is through {ab, cd, eg, fh}. Here, there are a number
of cases to check in order to verify legality of the sequence of two breakings involved. The essentially
different starting configurations are enumerated in Figure 9. In each, one may check that

{ab, cd, ef, gh} → {ab, cd, eg, fh} → {ac, bd, eg, fh} (3.3.3)

is a sequence of legal breakings of which does not create lenses, which will be a consequence of the
fact that the same is true of (3.3.2). The details are omitted.
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Figure 9: Possible starting configurations for two breakings using eight medial boundary vertices.

Conjecture 3.3.4. EPn is lexicographically shellable, and hence Cohen-Macaulay, spherical, and
Eulerian.

We refer the reader to [BW] for definitions. Indeed, if we have an L-labelling for EPn, it would
follow that the order complex ∆(EPn) is shellable and thus Cohen-Macaulay (see [BW, Theorem
3.4, Theorem 5.4(C)]). By Lemma 3.3.1, [B, Proposition 4.7.22] would apply, and we would conclude
that EPn is spherical and hence Eulerian.

EPn has been verified to be Eulerian for n ≤ 7, and the homology of EPn − {0̂, 1̂} agrees with
that of a sphere of the correct dimension,

(
n
2

)
− 2, for n ≤ 4. On the other hand, no L-labeling of

EPn is known for n ≥ 4.

4 Enumerative Properties

We now investigate the enumerative properties of EPn, defined in §3. In the sections that follow,
all wiring diagrams are assumed to be lensless, and are considered up to motion-equivalence.

4.1 Total size Xn = |EPn|
In this section, we extend the work of [C] to prove the first two enumerative results concerning

|EPn|, the number of equivalence classes of critical graphs (equivalently, full wiring diagrams) of
order n. There is a strong analogy between stabilized-interval free (SIF) permuations, as described
in [C], and our medial graphs, as follows. A permutation σ may be represented as a 2-regular graph
Σ embedded in a disk with n boundary vertices. Then, σ is SIF if and only if there are no dividing
lines, where here a dividing line is a line ` between two boundary vertices such that no edge of Σ
connects vertices on opposite sides of `.

To begin, we define two operations on wiring diagrams in order to build large wiring diagrams
out of small, and vice versa. In both definitions, fix a lensless (but not necessarily full) wiring
diagram M of order n, with boundary vertices labeled V1, V2, . . . , Vn.

Definition 4.1.1. Let w = XY be a wire of M . Construct the crossed expansion of M at
w, denoted Mw

+,c as follows: add a boundary vertex Vn+1 to M , with associated medial boundary
vertices A,B, so that the medial boundary vertices A,B,X, Y appear in order around the circle.
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Then, delete w from M and replace it with the crossing wires AX,BY to form Mw
+,c. Similarly,

define the uncrossed expansion of M at w, denoted Mw
+,u, to be the lensless wiring digram

obtained by deleting w and replacing it with the non-crossing wires AY,BX.

Definition 4.1.2. Let Vi be a boundary vertex with associated medial boundary vertices A,B,
such that we have the wires AX,BY ∈ M , and X 6= B, Y 6= A. Define the refinement of M at
Vi, denoted M i

− to be the lensless wiring diagram of order n − 1 obtained by deleting the wires
AX,BY as well as the vertices A,B, Vi, and adding the wire XY .

Each construction is well-defined up to equivalence under motions by Theorem 2.4.3. It is
clear that expanding M , then refining the result at the appropriate vertex, recovers M . Similarly,
refining M , then expanding the result after appropriately relabeling the vertices, recovers M if the
correct choice of crossed or uncrossed is made.

Lemma 4.1.3. Let M be a full wiring diagram, with boundary vertices V1, V2, . . . , Vn. Then:

(a) Mw
+,c is full for all wires w ∈M .

(b) Either Mw
+,u is full, or otherwise Mw

+,u has exactly one dividing line, which must have Vn+1

as one of its endpoints.

Proof. First, suppose for sake of contradiction that Mw
+,c has a dividing line `. If ` is of the form

ViVn+1, then ` must exit the sector formed by the two crossed wires coming out of the medial
boundary vertices associated to Vn+1. If this is the case, we get an intersection between M+,c and
a wire, a contradiction. If instead, ` = ViVj with i, j 6= n+ 1, then ` is a dividing line in M , also a
contradiction. We thus have (a). Similarly, we find that any dividing line of Mw

+,u must have Vn+1

as an endpoint. However, if ViVn+1, Vi′Vn+1 are dividing lines, then ViVi′ is as well, a contradiction,
so we have (b).

Lemma 4.1.4. Let M be a full wiring diagram, with boundary vertices V1, V2, . . . , Vn. Furthermore,
suppose Mn

− exists and is not full. Then, Mn
− has a unique dividing line ViVj with 1 ≤ i < j ≤ n−1

and j − i maximal.

Proof. By assumption, Mn
− has a dividing line, so suppose for sake of contradiction that `1 =

Vi1Vj1 , `2 = Vi2Vj2 are both dividing lines of M ′ with d = j1 − i1 = j2 − i2 maximal. Without loss
of generality, assume i1 < i2 (and i1 < j1, i2 < j2). If j1 ≥ i2, then Vi1Vj2 is also a dividing line
with j2 − i1 > d, a contradiction. On the other hand, if j1 < i2, at least one of `1, `2 is a dividing
line for M , again a contradiction.

If M, i, j are as above, we now define two wiring diagrams M1 and M2; see Figure 10 for an
example. First, let M1 be the result of restricting M to the wires associated to the vertices Vk,
for k ∈ [i, j] ∪ {n}. Note that M1 is a wiring diagram of order j − i + 1 with boundary vertices
Vi, Vi+1, . . . , Vj (and not Vn). Then, let M2 be the wiring diagram of order n− (j − i+ 1) obtained
by restricting M to the wires associated to the vertices Vk, for k /∈ [i, j] ∪ {n}.

Lemma 4.1.5. M1 and M2, as above, are full.

Proof. It is not difficult to check that any dividing line of M1 must also be a dividing line of M , a
contradiction. A dividing line Vi′Vj′ of M2 must also be a dividing line of Mn

−, but then j′−i′ > j−i,
contradicting the maximality from Lemma 4.1.4.

We are now ready to prove the main theorem of this section.
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Figure 10: M1 and M2, from M .

Theorem 4.1.6. Put Xn = |EPn|, which here we take to be the number of full wiring diagrams of
order n. Then, X1 = 1, and for n ≥ 2,

Xn = 2(n− 1)Xn−1 +
n−2∑
k=2

(k − 1)XkXn−k.

Proof. X1 = 1 is obvious. For n > 1, we would like to count the number of full wiring diagrams
M of order n, whose boundary vertices are labeled V1, V2, . . . , Vn, in clockwise order, with medial
boundary vertices Ai and Bi at each vertex, so that the order of points on the circle is Ai, Vi, Bi
in clockwise order. If AnBn is a wire, constructing the rest of M amounts to constructing a full
wiring diagram of order n− 1, so there are Xn−1 such full wiring diagrams in this case.

Otherwise, consider the refinement Mn
−. All M for which Mn

− is full can be obtained by ex-
panding at one of the n− 1 wires of a full wiring diagram M ′ of order n− 1. By Lemma 4.1.3, the
expanded wiring diagram is full unless it has exactly one dividing line VkVn, and furthermore it is
easy to see that any such graphs is an expansion of a full wiring diagram of order n− 1.

There are 2(n− 1) ways to expand M ′, and each expansion gives a different wiring diagram of
order n, for 2(n − 1)Xn−1 total expanded wiring diagrams. However, by the previous paragraph,
the number of these which are not full is

∑n−1
k=1 XkXn−k, as imposing a unique dividing line VkVn

forces us to construct two full wiring diagrams on either side, of orders k, n− k respectively. Thus,
we have 2(n − 1)Xn−1 −

∑n−1
k=1 XkXn−k full wiring diagrams of order n such that refining at Vn

gives another full wiring diagram.
It is left to count those M such that contracting at Vn leaves a non-full wiring diagram M ′. By

Lemma 4.1.5, such an M gies us a pair of full wiring diagrams of orders i+ j + 1, n− (i+ j + 1),
where ViVj is as in Lemma 4.1.4. Conversely, given a pair of boundary vertices Vi, Vj 6= Vn of
M and full wiring diagrams of orders j − i + 1, n − (j − i + 1), we may reverse the construction
M 7→ (M1,M2) to get a wiring diagram of order n: furthermore, it is not difficult to check that
this wiring diagram is full.

It follows that the number of such M is∑
1≤i<j≤n−1

Xj−i+1Xn−(j−i+1) =

n−2∑
k=1

kXkXn−k.

Summing our three cases together, we find

Xn = Xn−1 + 2(n− 1)Xn−1 −
n−1∑
k=1

XkXn−k +

n−2∑
k=1

kXkXn−k
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= 2(n− 1)Xn−1 +

n−2∑
k=2

(k − 1)XkXn−k,

using the fact that X1 = 1. The theorem is proven.

Remark 4.1.7. The sequence {Xn} is found in the Online Encyclopedia of Integer Sequences, see
[OEIS]. The original motivation for the sequence is unknown.

We also have an analogue of the other main result of [C].

Theorem 4.1.8. Let X(t) =
∑∞

n=0Xnt
n be the generating function for the sequence {Xn}, where

we take X(0) = 0. Then, we have [tn−1]X(t)n = n · (2n− 3)!!.

Proof. Consider n boundary vertices on a circle, labeled V1, V2, . . . , Vn in clockwise order. Then,
label 2n medial boundary vertices W1,W2, . . . ,W2n in clockwise order so that W2n−1 and W2n lie
between Vn and V1 on the circle. Note that n · (2n − 3)!! counts the number of wiring diagrams
so that the wire with endpoint W2n has second endpoint Wz, for some z odd. Call such wiring
diagrams 2n-odd. We need a bijection between 2n-odd wiring diagrams and lists of n full wiring
diagrams with sum of orders equal to n− 1.

From here, the rest of the proof is nearly identical to the analogous result given on [C, p. 3], so
we give only a sketch. We will refer the reader often to [C] for more details.

LetW be a 2n-odd wiring diagram, with boundary vertices and medial boundary vertices labeled
as above. For i = 1, 2, . . . , n, let pi denote the pair of medial boundary vertices {W2i−1,W2i}.
Consider the set of dividing lines of W . We first partition the pi in to minimal consecutive blocks
I = {pk, pk+1, . . . , p`}, where indices are not taken modulo n, such that no wire has one endpoint
in some pi ∈ I and the other in some pj /∈ I. Let π denote this partition, with blocks π1, π2, . . . , πd.
We order the blocks in such a way that if pi ∈ πa, and pj ∈ πb, then, if i < j, we have a < b. Note
that, in particular, pn ∈ πd.

Now, for each block πa, write |πa| = xa. For a < d, πa may be further partitioned in to a
non-crossing partition of total size s, according to the dividing lines in the corresponding subgraph
of W . Each such partition corresponds to a Dyck path Pa of length 2xa, by a bijection described
in [C], and it is not difficult to check that, because πa was constructed to be a minimal connected
component, Pa only touches the x-axis at its endpoints.

On πd, we first perform the following operation similar to refinement, as in Definition 4.1.2.
Let the second endpoints of the wires wα, wβ coming from W2n−1,W2n, respectively, be Wα,Wβ,
respectively. Then, delete the wires wα, wβ, and replace them with a single wire between Wα,Wβ.
If, however, W2n−1,W2n are connected by a single wire, simply delete this wire. In either case, the
resulting block π′d now has order xd−1, and it, too, may be further partitioned in to a non-crossing
partition, corresponding to a Dyck path Pd of length 2xd−2. Unlike Pa, with a < d, Pd may touch
the x-axis more than twice.

We now cut the Dyck paths Pa in a similar way to that of [C]. For a < d, we cut Pa in the
following way: remove the last upstep u, thus breaking Pa in to a path Pa, followed by an upstep u,
and then followed by a descent Da. As for Pd, recall that, due to the bijection between non-crossing
partitions and Dyck paths, the upsteps in Pd correspond to to the elements pi ∈ πd. Let u0 denote
the upstep corresponding to the pi containing Wz, the second endpoint of the wire with endpoint
W2n. Then, break Pd in to the paths R,S, where R is the part of Pd appearing before u0, and S
consists of alls steps after those of R. In the case that z = 2k − 1, note that xd = 1 and thus Pd is
empty. In this case, R,S are also taken to be empty.

Finally form the concatenated path D1uD2u · · ·Dk−1uSRP1P2 · · ·Pk−1, as in [C]. There are
n−1 upsteps in this path, which begins and ends on the x-axis. In between these n−1 upsteps are
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n (possibly empty) descents, which, using the bijection between non-crossing partitions and Dyck
paths, correspond to full sub-wiring diagrams of the pa. Therefore, we get the desired list of n full
wiring diagrams of total order n− 1, and the process is reversible by an argument similar to that
of [C]. The details are left to the reader.

4.2 Asymptotic Behavior of Xn = |EPn|
In this section, we adapt methods from [SE] to prove:

Theorem 4.2.1. We have

lim
n→∞

Xn

(2n− 1)!!
=

1√
e
.

In other words, the density of full wiring diagrams in the set of all wiring diagrams is e−1/2.

Lemma 4.2.2. For n ≥ 6, (2n− 1)Xn−1 < Xn < 2nXn−1.

Proof. We proceed by strong induction on n: the inequality is easily verified for n = 6, 7, 8 using
Theorem 4.1.6. Furthermore, note that Xn < 2nXn−1 for n = 2, 3, 4, 5 as well. Now, assume n ≥ 9.

By Lemma 4.1.6, it is enough to show

Xn−1 <

n−2∑
j=2

(j − 1)XjXn−j < 2Xn−1. (4.2.3)

We first show the left hand side of (4.2.3). Now, we have

n−2∑
j=2

(j − 1)XjXn−j > X2Xn−2 + (n− 4)Xn−3X3 + (n− 3)Xn−2X2

= 2(n− 2)Xn−2 + 8(n− 4)Xn−3

>

(
n− 2

n− 1
+

2(n− 4)

(n− 2)(n− 1)

)
Xn−1

> Xn−1,

where we have applied the inductive hypothesis.
It remains to prove the right hand side of (4.2.3). First, suppose that n is odd, with n =

2k− 1, k ≥ 4. Let Qi = Xi/Xi−1 for each i; we know that Qi > 2i− 1 for all i ≥ 5. Then, we have

n−2∑
j=2

(j − 1)XjXn−j = (2k − 3)
k−1∑
j=2

XjX2k−1−j

= (2k − 3)Xn−1

k−1∑
j=2

Xj

Q2k−2Q2k−3 · · ·Q2k−j

< (2k − 3)Xn−1

k−1∑
j=2

Xj

(4k − 5)(4k − 7) · · · (4k − 2j − 1)
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However, we claim that the terms in the sum are strictly decreasing. This amounts to the inequality
(4k−2j−1)Xj−1 > Xj for 3 ≤ j ≤ k−1, which follows by the inductive hypothesis as 4k−2j−1 > 2j.
Thus,

(2k − 3)Xn−1

k−1∑
j=2

Xj

(4k − 5)(4k − 7) · · · (4k − 2j − 1)

< (2k − 3)Xn−1

(
X2

4k − 5
+

(k − 3)X3

(4k − 5)(4k − 7)

)
= Xn−1

(
4k − 6

4k − 5
+

(4k − 12)(4k − 6)

(4k − 5)(4k − 7)

)
< 2Xn−1,

where we substitute X2 = 2, X3 = 8. The case in which n is even may be handled similarly, and
the induction is complete.

Corollary 4.2.4. There exists a limit

C = lim
n→∞

Xn

(2n− 1)!!
,

and furthermore, C > 0.

Proof. The sequence Xn/(2n − 1)!! is bounded above by 1 and is eventually strictly increasing
by Lemma 4.2.2, so the limit C exists. Furthermore, C > 0 because Xn/(2n − 1)!! is eventually
increasing.

To prove Theorem 4.2.1, we will estimate the number of non-full wiring graphs of order n. Let
Dn denote the number of wiring diagrams formed in the following way: for 1 ≤ j ≤ n− 2, choose
j pairs of adjacent boundary vertices, and for each pair, connect the two medial boundary vertices
between them. Then, with the remaining 2n − 2j vertices, form a full wiring diagram of order
n− j, which in particular has no dividing lines whose endpoints are adjacent boundary vertices. It
is clear that all such diagrams are non-full.

For completeness, we will also include in our count the wiring diagram where all pairs of adjacent
boundary vertices give dividing lines, but because we are interested in the asymptotic behavior of
Dn, this addition will be of no consequence. It is easily seen that

Dn = 1 +

n−2∑
j=1

(
n

j

)
Xn−j .

Now, let En be the number of non-full wiring diagrams not constructed above. Consider the
following construction: choose an ordered pair of distinct, non-adjacent boundary vertices on our
boundary circle. Then, on each side of the directed segment, construct any wiring diagram. This
construction yields

Yn = n
n−2∑
j=2

(2n− 2j − 1)!!(2j − 1)!!

total (not necessarily distinct) wiring diagrams, which clearly overcounts En.
We now state two lemmas:
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Lemma 4.2.5. Dn/Xn ∼
√
e− 1.

Lemma 4.2.6. Yn/Xn ∼ 0.

From here, we will be able to establish the desired asymptotic.

Proof of Theorem 4.2.1. Xn, Dn, and En together count the total number of wiring diagrams,
which is equal to (2n− 1)!!. Thus,

(2n− 1)!!

Xn
=
Xn +Dn + En

Xn
∼ 1 + (

√
e− 1) + 0 = e1/2,

assuming Lemmas 4.2.5 and 4.2.6 (we have Yn/Xn ∼ 0, so En/Xn ∼ 0 as well), so the desired
conclusion is immediate from taking the reciprocal.

Thus, it remains to prove Lemmas 4.2.5 and 4.2.6, which we defer to Appendix A.
To conclude this section, we propose the following generalization of Theorems 4.1.8 and 4.2.1:

Conjecture 4.2.7. Let λ be a positive integer. Consider the sequence {Xn,λ} defined by X1,λ = 1,
and

Xn = λ(n− 1)Xn−1,λ +
n−2∑
k=2

(j − 1)Xj,λXn−k,λ.

Then, let Xλ(t) be the generating function for the sequence {Xn,λ}. Then,

[tn−1]Xλ(t)n = n · (λn− (λ− 1)) !! · · ·!︸ ︷︷ ︸
λ

and

lim
n→∞

Xλ,n

(λn− (λ− 1)) !! · · ·!︸ ︷︷ ︸
λ

=
1
n
√
e
,

where (λn− (λ− 1)) !! · · ·!︸ ︷︷ ︸
λ

= (λn− (λ− 1))(λ(n− 1)− (λ− 1)) · · · (λ+ 1) · 1.

A proof exhibiting and exploiting a combinatorial interpretation for the sequence {Xn,λ} would
be most desirable, as we have done for λ = 2. However, no such interpretation is known for λ > 2.
The case λ = 1 is handled in [C] and [ST, §3], though the latter does not use the interpretation of
Xn,1 as SIF permutations of [n] to obtain the asymptotic.

Interestingly, if we define Xn,−1 analogously, we get Xn,−1 = (−1)n+1Cn, where Cn denotes the
n-th Catalan number, see [OEIS].

4.3 Rank sizes |EPn,r|
Proposition 4.3.1. For non-negative c ≤ n − 2, we have |EPn,(n2)−c| =

(
n−1+c

c

)
. Furthermore,

|EPn,(n2)−(n−1)| =
(
2n−2
n−1

)
− n.

Proof. For convenience, put N =
(
n
2

)
. We claim that for c ≤ n− 2, any wiring diagram of order n

with N − c crossings is necessarily full. Suppose instead that we have a dividing line, dividing our
circle in to two wiring diagrams of orders with j, n− j. Then, there are at most(

j

2

)
+

(
n− j

2

)
≤
(
n− 1

2

)
= N − (n− 1)
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crossings, so if c ≤ n− 2 we cannot have a dividing line.
Thus, for c ≤ n− 2, it suffices to compute the number of circular wiring diagrams with N − c

crossings. By [R, (1)], this number is the coefficient of the qN−c term of the polynomial

Tn(q) = (1− q)−n
n∑
j=0

(−1)j
[(

2n

n− j

)
−
(

2n

n− j − 1

)]
q(
j+1
2 ), (4.3.2)

which, as noted in [R, p. 218], is
(
n+c−1
n−1

)
for c ≤ n− 1. This immediately gives the desired result

for c ≤ n− 2.
For c = n − 1, we have, by the above,

(
2n−2
n−1

)
wiring diagrams with N − c crossings; we need

to count the number of such wiring diagrams that contain a dividing line. However, note that if
our dividing line separates the circle in to wiring diagrams of orders j, n− j for 1 < j ≤ n/2, there
are at most

(
n−2
2

)
+ 1 crossings (using a similar argument to that in the first paragraph), which is

strictly less than N − (n− 1), so we must have j = 1.
Furthermore, by the first paragraph, if j = 1, we need exactly

(
n−1
2

)
crossings. Thus, a non-full

wiring diagram with N − (n − 1) crossings must connect two adjacent medial boundary vertices
between two boundary vertices, and connect all of the other medial boundary vertices in such
the unique way such that we have the maximal possible number of crossings between the n − 1
wires. There are clearly n such non-full wiring diagrams, giving |EPn,N−(n−1)| =

(
2n−2
n−1

)
− n, as

desired.

Proposition 4.3.1 gives an exact formula for |EPn,r| for r large, but no general formula is known
for general r. For fixed r and n sufficiently large, one will only have finitely many cases to enumerate
for possible configurations of an electrical network, but the casework becomes cumbersome quickly.
However, the Möbius Inversion Formula gives us an expression for the generating function for the
number of full wiring diagrams of order n, counted by number of crossings.

Let NCn be the (graded) poset of non-crossing partitions on n, ordered by refinement. By [BS,
Proposition 2.3], we have µ(0̂, 1̂) = (−1)n−1Cn−1 in NCn, and furthermore, for any π ∈ NCn, the
interval (0̂, π) is isomorphic to a product of the partition lattices NCk, where k ranges over the
block sizes of π. Given π ∈ NCn, π may be represented as a set of dividing lines in a disk D with
boundary vertices V1, V2, . . . , Vn as follows: draw the dividing line ViVj if i, j are in the same block
of π. Furthermore, the set of dividing lines for a wiring diagram yields a non-crossing partition [n]
in the same way.

Let kπ denote the number of blocks in π. It is clear that drawing these dividing lines of π
breaks D in to n+ 1− kπ regions in which wires can be drawn (see Figure 11 for an example). Let
aπ,1, . . . , aπ,n+1−kπ denote the numbers of boundary vertices drawn in these regions. Finally, let
Xn(q) be the rank-generating function for EPn, that is, the polynomial in q such that the coefficient
of qr is |EPn,r|. Then, by Möbius Inversion, we get:

Proposition 4.3.3.

Xn(q) =
∑

π∈NCn

(−1)n−kπ
kπ∏
i=1

Cπi−1

n+1−kπ∏
j=1

Taj (q)

 , (4.3.4)

where kπ, aπ,j are as before, πi denotes the number of elements in the i-th block of π, and the
polynomial Tm(q) is as in (4.3.2).

To conclude this section, we cannot resist making the following conjecture:
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Figure 11: [1][23][4][579][6][8] breaks the disk in to four wiring regions.

Conjecture 4.3.5. EPn is rank-unimodal, for n ≥ 4.

In support of Conjecture 4.3.5, let us list the rank sizes of EPn below, for small values of n.
Rank Sizes

n Rank Size

1 1

2 1, 1

3 1, 3, 3, 1

4 1, 6, 14, 16, 10, 4, 1

5 1, 10, 40, 85, 110, 97, 65, 35, 15, 5, 1,

6 1, 15, 90, 295, 609, 873, 948, 840, 636, 421, 246, 126, 56, 21, 6, 1

7
1, 21, 175, 805, 2366, 4872, 7567, 9459,
10031, 9359, 7861, 6027, 4249, 2765, 1661, 917, 462, 210, 84, 28, 7, 1

8
1, 28, 308, 1876, 7350, 20272, 42090, 69620, 96334, 115980, 125044, 123176, 112380, 95836,
76868, 58220, 41734, 28344, 18236, 11096, 6364, 3424, 1716, 792, 330, 120, 36, 8, 1

5 Electrical Positroids

For the rest of the paper, we shift our focus to the combinatorial properties of response matrices.
By Theorem 2.2.6, n×n response matrices are characterized in the following way: a square matrix
M is the response matrix for an electrical network (Γ, γ) if and only if M is symmetric, its row and
column sums are zero, and its circular minors M(P ;Q) are non-negative. Furthermore, M(P ;Q)
is positive if and only if there is a connection from P to Q in Γ. The sets S of circular pairs for
which there exists a response matrix M with M(P ;Q) is positive if and only if (P ;Q) ∈ S, then,
are thus our next objects of study.

The case of the totally nonnegative Grassmannian was studied in [P]: for k × n (with k < n)
matrices with non-negative maximal minors, the possible sets of positive maximal minors are called
positroids, and are a special class of matroids. Our objects will be called electrical positroids, which
we first construct axiomatically, then prove are exactly those sets S of positive circular minors in
response matrices.
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5.1 Grassmann-Plücker Relations and Electrical Positroid Axioms

Here, we present the axioms for electrical positroids, which arise naturally from the Grassmann-
Plücker Relations.

Definition 5.1.1. Let M be a fixed matrix, whose rows and columns are indexed by some sets
I, J . We write ∆i1i2···im,j1j2···jn for the determinant of the matrix M ′ formed by deleting the rows
corresponding to i1, i2, . . . , im ∈ I and j1, j2, . . . , jn ∈ J , provided M ′ is square.

While the meaning ∆i1i2···im,j1j2···jn depends on the underlying sets I, J , these sets will always
be implicit.

Proposition 5.1.2. We have the following two Grassmann-Plücker relations.

(a) Let M be an n × n matrix, with a, b elements of its row set and c, d elements of its column
set. Furthermore, suppose that the row a appears above row b and column c appears to the
left of column d. Then,

∆a,c∆b,d = ∆a,d∆b,c + ∆ab,cd∆∅,∅. (5.1.3)

(b) Let M be an (n+ 1)× n matrix, with a, b, c elements of its row set (appearing in this order,
from top to bottom), and let d an element of its column set. Then,

∆b,∅∆ac,d = ∆a,∅∆bc,d + ∆c,∅∆ab,d. (5.1.4)

While the Grasmann-Plücker relations are purely algebraic in formulation, they encode combi-
natorial information concerning the connections of circular pairs in a circular planar graph Γ. As a
simple example, consider four boundary vertices a, b, d, c in clockwise order of an electrical network
(Γ, γ), and let π = π(Γ). If M is the response matrix of (Γ, γ), then M ′ = M({a, b}, {c, d}) is the
circular minor associated to the circular pair (a, b; c, d); thus, M ′ has non-negative determinant.
Furthermore, the entries of M ′ are 1× 1 circular minors of M , so they, too, must be non-negative.

Now, suppose that the left hand side of (5.1.3) is positive, that is, ∆a,c∆b,d > 0. Equivalently,
there are connections between b and d and between a and c in Γ. Then, at least one of the two
terms on the right hand side must be strictly positive; combinatorially, this means that either there
are connections between b and c and between a and d, or there is a connection between {a, b} and
{c, d}. One can derive similar combinatorial rules by assuming one of the terms on the right hand
side is positive, and deducing that the left hand side must be positive as well.

The first six of the electrical positroid axioms given in Definition 5.1.6 summarize all of the
information that can be extracted in this way from the Grassmann-Plücker relations.

Definition 5.1.5. If a ∈ P , write P − a for the ordered set formed by removing a from P .

Definition 5.1.6. A set S of circular pairs a electrical positroid if it satisfies the following eight
axioms:

1. For ordered sets P = {a1, a2, . . . , aN} and Q = {b1, b2, . . . , bN}, with a1, . . . , aN , bN , . . . , b1 in
clockwise order (that is, (P ;Q) is a circular pair), consider any a = ai, b = aj , c = bk, d = b`
with i < j and k < `. Then:

(a) If (P − a;Q − c), (P − b;Q − d) ∈ S, then either (P − a;Q − d), (P − b;Q − c) ∈ S or
(P − a− b;Q− c− d), (P ;Q) ∈ S.
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(b) If (P − a;Q− d), (P − b;Q− c) ∈ S, then (P − a;Q− c), (P − b;Q− d) ∈ S.

(c) If (P − a− b;Q− c− d), (P ;Q) ∈ S, then (P − a;Q− c), (P − b;Q− d) ∈ S.

2. For P = {a1, a2, . . . , aN+1} and Q = {b1, b2, . . . , bN}, with a1, a2, . . . , aN+1, bN , . . . , b1 in
clockwise order, consider any a = ai, b = aj , c = ak, d = b` with i < j < k. Then:

(a) If (P − b;Q), (P − a − c;Q − d) ∈ S, then either (P − a;Q), (P − b − c;Q − d) ∈ S or
(P − c;Q), (P − a− b;Q− d) ∈ S.

(b) If (P − a;Q), (P − b− c;Q− d) ∈ S, then (P − b;Q), (P − a− c;Q− d) ∈ S.

(c) If (P − c;Q), (P − a− c;Q− d) ∈ S, then (P − b;Q), (P − a− c;Q− d) ∈ S.

Finally:

3. (Subset axiom) For P = {a1, a2, . . . , an} and Q = {b1, b2, . . . , bn} with (P ;Q) a circular
pair, if (P ;Q) ∈ S, then (P − ai;Q− bi) ∈ S.

4. (∅; ∅) ∈ S.

Theorem 5.1.7. A set S of circular pairs is an electrical positroid if and only if there exists a
response matrix whose positive circular minors are exactly those corresponding to S.

Given a response matrix M , it is straightforward to check that the set S of circular pairs
corresponding to the positive circular minors of M satisfies the first six axioms, by Proposition
5.1.2. S also satisfies the Subset Axiom, by Theorem 2.2.6. Finally, adopting the convention that
the empty determinant is equal to 1, we have the last axiom. To prove Theorem 5.1.7, we thus
need to show that any electrical positroid S may be realized as the set of positive circular minors
of a response matrix, or equivalently the set of connections in a circular planar graph.

5.2 Proof of Theorem 5.1.7

We now prove Theorem 5.1.7. First, recall the important convention that (P ;Q) = (Q̃; P̃ ). We
leave it to the reader to check, whenever appropriate, that all of the definitions and statements we
make in this section are compatible with this convention.

Fix a boundary circle with n boundary vertices, which we label 1, 2, . . . , n in clockwise order.
In this section, all labels are considered modulo n. We have shown, via the Grassmann-Plücker
Relations, that the set of circular pairs corresponding to the positive circular minors of a response
matrix is an electrical positroid. We now prove that, for all electrical positroids S, there exists a
critical graph G for which π(G) = S, which will establish Theorem 5.1.7. The idea of the argument
is as follows.

Assume, for sake of contradiction, that there exists some electrical positroid S for which there
does not exist such a critical graph G with π(G) = S. Then, let S0 have maximal size among all
such electrical positroids. Note that S0 does not contain all circular pairs (P ;Q), because otherwise
S0 = π(Gmax), where Gmax denotes a critical representative of the top-rank element of EPn.

We will then add circular pairs to S0 according to the boundary edge and boundary spike
properties (cf. [CIM, §4]), discussed below, to form an electrical positroid S1. By the maximality
of S0, S1 = π(G1) for some critical graph G1. We will then delete a boundary edge or contract a
boundary spike in G1 to obtain a graph G0, and show that π(G0) = S0.

We begin by defining two properties of circular pairs, the (i, i+ 1)-boundary edge property and
the i-boundary spike property. Let us first adopt a notational convention.
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Definition 5.2.1. Given a circular pair (P ;Q), let (P + x;Q+ y) denote the unique circular pair
(if it exists) with P + x = P ∪ {x} and Q+ y = Q ∪ {y} as sets. In the ordered sets P + x,Q+ y,
x, y are inserted in the appropriate positions so that (P + x;Q+ y) is indeed a circular pair.

Given arbitrary P,Q, x, y, (P + x;Q + y) may not be a circular pair. However, whenever we
make reference to a pair of this form without commenting on its existence, we assert implicitly that
it is, in fact, a circular pair.

Definition 5.2.2. A set S of circular pairs is said to have the (i, i + 1)-BEP (boundary edge
property) if, for all circular pairs (P ;Q) ∈ S, if (P + i;Q + (i + 1)) is a circular pair, then
(P + i;Q+ (i+ 1)) ∈ S.

Remark 5.2.3. According to Remark 2.2.2, if S has the (i, i + 1)-BEP, then if (P ;Q) ∈ S and
(P + (i+ 1);Q+ i) is a circular pair, then (P + (i+ 1);Q+ i) ∈ S.

Definition 5.2.4. A set S of circular pairs is said to have the i-BSP (boundary spike property)
if, for any circular pairs (P ;Q) ∈ S and x, y such that (P + x;Q+ i), (P + i;Q+ y) ∈ S, we have
(P + x;Q+ y) ∈ S.

Lemma 5.2.5. Recall the definitions of boundary edges and boundary spikes from [CIM, §4]. Let
G be a circular planar graph, and write S = π(G).

(a) There exists H ∼ G with a boundary edge (i, i+ 1) if and only if S has the (i, i+ 1)-BEP.

(b) There exists H ∼ G has a boundary spike at i if and only if S has the i-BSP.

Proof. We prove (a); the proof of (b) is similar. Without loss of generality, we may assume that
i = 1. It easy to check that if G has a boundary edge, then S must have the corresponding BEP.
Conversely, suppose that S has the (1, 2)-BEP. Then, let G′ be the graph obtained by adding an
edge (1, 2) in G such that the added edge does not cut through any faces of G. Clearly, π(G′)− S
consists only of circular pairs (P ;Q) such that (P + 1;Q+ 2) ∈ S or (P + 2;Q+ 1) ∈ S. However,
S contains all such circular pairs, so in fact π(G′) = π(G). Then, by Theorem 2.3.3, G′ ∼ G.

It is left to check that G ∼ H, for some circular planar graph H with the boundary edge (1, 2).
Let a, b be the two medial boundary vertices between 1 and 2 inM(G). Note that adding the edge
(1, 2) to G corresponds to introducing an additional crossing inM(G) between the (distinct) wires
with endpoints a and b. Introducing this new crossing yields an equivalent medial graph, so it must
have created it a lens. From here, it is easily seen, after applying [CIM, Lemma 6.3], that motions
may be applied in M(G′) so that this lens corresponds to parallel edges between the boundary
vertices 1 and 2 in some H ∼ G′ ∼ G. The desired conclusion follows.

Lemma 5.2.6. If S has all n BEPs and all n BSPs, then S contains all circular pairs.

Proof. We proceed by induction on the size of (P ;Q) that (P ;Q) ∈ S for all circular pairs (P ;Q).
First, suppose that |P | = 1. First, (i; i + 1) ∈ S for all i, because it has all BEPs and (∅; ∅) ∈ S.
Then, because S has the i-BSP, and (i− 1; i), (i; i+ 1) ∈ S we obtain (i− 1; i+ 1) ∈ S. Continuing
in this way gives that S contains all circular pairs (P ;Q) with |P | = 1.

Now, suppose that S contains all circular pairs of size k − 1. Let (a1, . . . ak; b1, . . . bk) be a
circular pair of size k. By assumption, (a2, . . . ak; b2, . . . bk) ∈ S. Because S has all BEPs, (b1 +
1, a2, . . . ak; b1, b2, . . . bk) ∈ S and (b1 + 2, a2 . . . ak; b1 + 1, b2, . . . bk) ∈ S, so by the (b1 + 1)-BSP,
(b1 + 2, a2, . . . ak; b1, b2, . . . bk) ∈ S. Continuing in this way gives (a1, . . . ak; b1, . . . bk) ∈ S, so we
have the desired claim.
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In particular, Lemma 5.2.6 tells us that there exists an i such that S0, as defined in the beginning
of this section, either does not have the (i, i + 1)-BEP for some i, or does not have the i-BSP for
some i. We first assume that S0 does not have all BEPs; without loss of generality, suppose that
S0 does not have the (n, 1)-BEP.

We will now add circular pairs to S0 to obtain an electrical positroid S1 that does have the
(n, 1)-BEP. Specifically, we add to S0 every circular pair (P + 1;Q + n), where (P ;Q) ∈ S0 has
1 < a1 < b1 < n (here P = {a1, . . . , ak}, Q = {b1, . . . , Bk}), to obtain S1. According to Remark
2.2.2, this construction also puts any (P + n;Q+ 1) ∈ S1, where (P ;Q) ∈ S0 and 1 < bk < ak < n.

Lemma 5.2.7. S′ is an electrical positroid, and has the (n, 1)-BEP.

Proof. The proof is straightforward, so it is omitted.

By assumption, S0 is the maximal electrical positroid for which any circular planar graph G
has π(G) 6= S0. Thus, there exists a graph G1 be a graph such that π(G1) = S1, and G1 may be
taken to have a boundary edge (n, 1) by Lemma 5.2.5. Then, let G0 be the result of deleting the
boundary edge (n, 1). To obtain a contradiction, it is enough to prove that S0 = π(G0).

We now present a series of technical lemmas.

Definition 5.2.8. Consider a circular pair (P ;Q) ∈ S0 for which 1, n /∈ P ∪ Q. We will assume,
for the rest of this section, that (P + 1;Q+n) is a circular pair. (P ;Q) is said to be is incomplete
if (P + 1;Q+ n) /∈ S0, and complete if (P + 1;Q+ n) ∈ S0.
Lemma 5.2.9. Let (P ;Q) = (a1, . . . , ak; b1, . . . , bk) ∈ S0 be an incomplete circular pair, such that
(P + 1;Q+ n) is a circular pair (and is not in S0). Furthermore, assume that (P ;Q) is minimal,
that is, (P − ak;Q− bk) is complete. Then, for all 0 ≤ i ≤ k − 1, (ai; bi+1), (ai+1; bi) ∈ S0.

Proof. Immediate from Axiom 1a of Definition 5.1.6.

Lemma 5.2.10. Let (a, b, c; d, e, f) be a circular pair. Then, if (a; d), (a; f), (b; e), (c; d), (c; f) ∈ S0,
then (a; d), (b; e), (b; f), (c; e) ∈ S0.

Proof. Immediate from Axiom 1b.

Lemma 5.2.11. If (a1, . . . an; b1, . . . bn) ∈ S0, (an+1; bn+1) ∈ S0, and an, an+1, bn+1, bn appear in
clockwise order, then (a1, . . . , an−1, an+1; b1, . . . , bn−1, bn+1) ∈ S0.

Proof. If (an; bn+1) ∈ S and (an+1; bn) ∈ S, the claim follows from Axiom 2b, Axiom 2c and
induction on n. Otherwise, it follows from Axiom 1a and induction on n.

Lemma 5.2.12. Let (P ;Q) = (a1, . . . , ak; b1, . . . , bk) ∈ S0 be a complete circular pair. Then,
(P − ai;Q− bi) is complete for all i = 1, 2, . . . , k.

Proof. Applying Axiom 2c with a1, ai, ak, b1 to (P ;Q−bk) gives (P −ai;Q−bk) ∈ S. Then another
application of Axiom 2c, to (Q;P − ai) with b1, bi, bk, ai gives the desired result.

Lemma 5.2.13. Let (P, a, b, c,Q;R, d, e, f, T ) be a circular pair, where P,Q,R, T are sequences of
boundary vertices. Suppose that

(a; d), (a; e), (b; d), (b; e), (b; f), (c; e), (c; f) ∈ S,
(P, a, b;R, d, e) ∈ S, and

(P, a, c,Q;R, d, f, T ) ∈ S

Then, (P, a, b,Q;R, d, e, T ) ∈ S.
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Proof. First, write P = P ′ ∪ {p}, R = R′ ∪ {r)}, where p and r are the last elements of the ordered
sets P,R, respectively. Then, if (P ′, b;R, f) ∈ S, an application of Axiom 2b on (f, e, p, P ′; b, r, R′)
with f, e, r, p yields (P, b;R, f) ∈ S. Similarly, we find by induction that (b; f) ∈ S ⇒ (P, b;R, f) ∈
S. Then, we have (P, a, b;R, d, f) ∈ S by Axiom 2b applied to (f, e, d,R; b, a, P ) with f, e, d, a.
Similarly, write Q = {q}∪Q′, T = {t}∪T ′, where q, t are the first elements of Q,T , respectively. By
Axiom 2b applied to (P, a, b, c, q,Q′;R, d, f, t, T ′) with b, c, q, t, we see that (P, a, b,Q;R, d, f, T ) ∈ S.
The lemma then follows from Axiom 2c applied to (T, f, e, d,R;Q, b, a, P ) with T, f, e,Q.

Lemma 5.2.14. Let P,Q,R, T be sequences of indices, and let (1, P, a, b, c,Q;n,R, d, e, f, T ) be a
circular pair. Suppose

(a; d), (a; e), (b; d), (b; e), (b; f), (c; e), (c; f) ∈ S,
(1, P, a, b,Q;n,R, d, e, T ) ∈ S, and

(P, a, c,Q;R, d, f, T ) ∈ S.

Then (1, P, a, c,Q;n,R, d, f, T ) ∈ S.

Proof. With the same notation as in the previous lemma, (a, c,Q′; d, e, T ′) ∈ S ⇒ (a, c,Q; d, e, T ) ∈
S by Axiom 2c on (T ′, t, f, e, d;Q′, q, c, a) with t, f, e, q. Then, an inductive argument shows that
(a, c,Q; d, e, T ) ∈ S. A similar argument shows that (P, a, c,Q;R, d, e, T ) ∈ S. Then, Axiom 2c
applied to (1, P, a, b, c,Q;n,R, d, e, T ) with 1, b, c, n implies that (1, P, a, c,Q;n,R, d, e, T ) ∈ S and
applying Axiom 2c again to (1, P, a, c,Q;n,R, d, e, f, T ) with n, e, f, 1 yields the desired result.

Lemma 5.2.15. Consider a circular pair (P ;Q) = (a1, . . . , ak; b1, . . . , bk}, and let (P +a;Q+b) be
an incomplete circular pair with ak < a < b < bk in clockwise order. Then, any electrical positroid
Z satisfying S0 ∪ {(P + 1;Q+ n)} ⊂ Z ⊂ S1 contains (P + a+ 1;Q+ b+ n).

Proof. It is easy to see that any element of Z\S0 must be of the form (P ′+1;Q′+n), for some P ′, Q′.
By Axiom 1a, (P+1;Q+n) ∈ Z and (P+a;Q+b) ∈ Z implies that either (P+a+1;Q+b+n) ∈ Z,
or (P + a + 1;Q + b + n) /∈ Z and (P + 1;Q + b), (P + a,Q + 2) ∈ Z. We are done in the former
case, so assume for sake of contradiction that we have the latter. (P + 1;Q+ b), (P + a,Q+ 2) are
not of the form (P ′ + 1;Q′ + n), so cannot lie in Z \ S; thus, (P + 1;Q + b), (P + a,Q + 2) ∈ S.
Finally, Axiom 1b yields us (P + 1;Q+ n) ∈ S, a contradiction, so we are done.

Definition 5.2.16. Two pairs of indices (i, j) and (i′, j′) are said to cross if i < i′ < j′ < j and
(i; j′), (i′; j) ∈ S.

Definition 5.2.17. For ease of notation, denote the sequence of indices ak, . . . , a` by Ak,`.

We now algorithmically construct a set P of circular pairs, which we will call primary circular
pairs. We will use this notion to eventually prove Lemma 5.2.22, a key ingredient in our proof of
the main theorem. The construction is as follows: begin by placing (1;n) ∈ P. Then, for each
(P ;Q) = (A1,i−1;B1,i−1) ∈ P, if we also have (P ;Q) ∈ S0, perform the following operation.

• Let a be the first index appearing clockwise from ai−1 such that there exists c with (a, c)
crossing (ai−1, bi−1), and also (A2,i−1, a;B2,i−1, c) ∈ S. If a does not exist, stop. Otherwise,
with a fixed, take c to be the first index appearing counterclockwise from bi−1 satisfying these
properties.

• If a exists, add (A1,i−1, a;B1,i−1, c) to P, and remove (P ;Q) = (A1,i−1;B1,i−1).
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• Similarly, let b to be the largest index counterclockwise from bi−1 such that there exists d with
(d, b) crossing (ai−1, bi−1) and (a2, . . . d; b2, . . . bi) ∈ S. If b does not exist, stop. Otherwise,
with b fixed, take d to be the first index clockwise from ai−1 with these properties.

• If a 6= d and b 6= c (note that if a = d, then b = c), then add (A1,i−1, d;B1,i−1, b) to P. Note
that c ≤ d or else, by 1a, c could originally have been set to d.

It is easily seen that at any time, the algorithm may be performed on the elements of P in
any order, and that it will eventually terminate, when the operation described above results in no
change in P for all (P ;Q) ∈ P.

Definition 5.2.18. For a circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk), define E(P ;Q) = {{pi, qi} |
i ∈ {1, . . . , k}}. We will take E(P ;Q) to be an ordered set and abusively refer to its elements as
connections.

Lemma 5.2.19. For any incomplete circular pair (P ;Q), there exists a circular pair (P ′;Q′) ∈ P
such that any electrical positroid Z satisfying S0 ∪ {(P ′;Q′)} ⊂ Z ⊂ S1 contains (P + 1;Q+ n).

Proof. By Lemma 5.2.15, we may assume that (P ;Q) is a minimal incomplete circular pair. Let
(P +1;Q+n) = (1, a1, . . . , ak;n, b1, . . . , bk) = (1, A1,k;n,B1,k) (see Definition 5.2.17). Consider the
primary circular pairs whose first i connections are the same as those of (P ;Q). By the construction
of P, there are at most two such primary circular pairs, which we denote by

(P ;Q)1 = (A1,i, Ci+1,m;B1,i, Di+1,m)

(P ;Q)2 = (A1,i, Ei+1,m′ ; b1,i, fi+1,m′).

By Lemma 5.2.9 and the construction of P, we have that ci+1 ≤ ai+1 and di+1 ≥ bi+1 or ei+1 ≤ ai+1

and fi+1 ≥ bi+1 (or else we would have been able to set di+1 = bi+1 or ei+1 = ai+1). Furthermore,
exactly one of these pairs of inequalities holds. Let us assume that the former holds, as the latter
case is identical, and in this case, call (P ;Q)1 the primary circular pair associated to (P ;Q). If, on
the other hand, (P ;Q)1 (as above) is the only primary circular pair sharing its i connections with
(P ;Q), then ci+1 ≤ ai+1 and di+1 ≥ bi+1, and we still refer to (P ;Q)1 as the primary circular pair
associated to (P ;Q).

We now prove the lemma by retrograde induction on i, where here i is such that the first i connec-
tions of (P ;Q) are shared with some primary circular pair. If i = k, we are done by Lemma 5.2.15,
and if the first i connections of (P ;Q) are exactly the primary circular pair in question, we are done
by the Subset Axiom. Otherwise, we first need (A;B) = (A1,i, ci+1, Ai+2,k;B1,i, di+1, Bi+2,k) ∈ S0,
which follows from Lemmas 5.2.10 and 5.2.13, where the conditions of these lemmas are satis-
fied as a result of Lemma 5.2.9. It is easy to see that the primary circular pair associated
to (A;B) is the same as that for (P ;Q). It follows, then, by the inductive hypothesis, that
(1, A1,i, ci+1, Ai+2,k;B1,i, di+1, Bi+2,k, n) ∈ Z. When ai+1 6= ci+1 and bi+1 6= di+1, Lemma 5.2.14
yields the desired result, and if one of ai+1 = ci+1 or bi+1 = di+1, we are done by a similar
argument.

Lemma 5.2.20. There is exactly one circular pair in P that does not lie in S0, which we call the
S0-primary circular pair.

Proof. By Lemma 5.2.19, P \S0 has at least one element, because S0 does not have the (n, 1)-BEP.
Assume, for sake of contradiction, that P \ S0 has two elements, of the form

(A1,i−1, c, P ;B1,i−1, d,Q)
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(A1,i−1, e, P
′;B1,i−1, f,Q

′).

Because (A1,i−1, c, P ;B1,i−1, d,Q) /∈ S0 and (A1,i−1, P ;B1,i−1, Q), (A2,i−1, c, P ;B2,i−1, d,Q) ∈ S0,
we must have (A2,i−1, c, P ;B1,i−1, Q) ∈ S0, by Axiom 1a. Thus, (A2,i−1, c;B1,i−1) ∈ S0, by the
Subset Axiom. By the same argument applied to e, f , we must have (A1,i−1;B2,i−1, f) ∈ S0, so
Axiom 1b gives (A2,i−1, c;B2,i−1, f) ∈ S0. However, because f > d, we have a contradiction of the
definition of d. Thus, |P \ S0| = 1.

Lemma 5.2.21. For any incomplete circular pair (P ;Q), any electrical positroid Z satisfying
S0 ∪ {(P + 1;Q+ n)} ⊂ Z ⊂ S1 contains the S0-primary circular pair.

Proof. Proceed by retrograde induction on i, where i is such that the first i connections of (P ;Q) are
the same as those of some primary circular pair. By the Subset Axiom, we can assume that (P ;Q) is
minimal. The base case is immediate from the Subset Axiom, so suppose that i < k. Let (P ;Q) =
(A1,k;B1,k). Then, we need to show that, if (P+1;Q+n) ∈ Z, then (1, A1,i, ci+1, Ai+2,k;n,B1,k) ∈ Z.

First, suppose that both ci+1 < ai+1 and bi+1 < di+1. Then, the desired claim is exactly
Lemma 5.2.13, as long as i+ 1 < m. Assume, then, that i+ 1 = m. First, an application of Lemma
5.2.13 yields (A1,i, ci+1, Ai+2,k;B1,i, di+1, Bi+2,k) ∈ S0, which implies (A1,i, ci+1, Ai+2,k, B1,k) ∈ S0
and (A1,k;B1,i, di+1, Bi+2,k) ∈ S0. Furthermore, if (Ai,i, ci+1, Ai+1,k;n,B1,k) ∈ S0, then Axiom 2b
yields (1, A1,k;n,B1,k) ∈ S0, a contradiction.

Similarly, we have (1, A1,i, ci+1, Ai+2,k;B1,i, di+1, Bi+1,k) /∈ S0. As a result, applying Axiom
2a to (1, A1,i, ci+1, Ai+1,k;n,B1,k) with 1, ci+1, ai+1, n gives (1, A1,i, ci+1, Ai+2,k;n,B1,k) ∈ S0. One
more application of Axiom 2a to (1, A1,i, ci+1, Ai+2,k;n,B1,i, di+1, Bi+1, k) with n, di+1, bi+1, 1 yields
the desired result.

If one of the indices ai+1 = ci+1 or bi+1 = di+1, then we are also done by a similar argument.

Corollary 5.2.22. For any two incomplete circular pairs (P ;Q) and (P ′;Q′), any electrical positroid
Z satisfying S ∪ {(P + 1;Q+ n)} ⊂ Z ⊂ S1 must also contain (P ′ + 1;Q′ + n).

Proof. By Lemma 5.2.21, Z must contain the S0-primary circular pair. The claim then follows by
Lemma 5.2.19.

By the above results, if we start with our set S0 and some incomplete circular pair (P ;Q) ∈ S0,
“completing” (P ;Q) by adding (P + 1;Q + n) to S0 will require that we have completed every
incomplete pair. We now finish the proof of Theorem 5.1.7, in the boundary edge case.

Let T0 ⊂ S0 denote the subset of circular pairs in S0 without the connection (1, n), and define
T1, T

′
0 similarly for S1, S

′
1, respectively. By construction, it is easily seen that T0 = T1 = T ′0. While

T0 may not necessarily be an electrical positroid, we have:

Lemma 5.2.23. There exists an electrical positroid T with T0 ⊂ T ⊂ S0 ∩ S′0.

Proof. We give an algorithm to construct such an electrical positroid T . We begin by setting T = T0;
note that T satisfies the last two electrical positroid axioms, but may not satisfy the first six. Each
of the first six axioms are of the form A,B ∈ T ⇒ C,D ∈ T , or otherwise A,B ∈ T ⇒ C,D ∈ T or
E ,F ∈ T . At each step of the algorithm, if T is an electrical positroid, we stop, and if not, we pick
an electrical positroid axiom α (among the first six) not satisfied by A,B ∈ T . We then show that
we can add elements of S0 ∩ S′0 to T so that α is satisfied by A,B, and so that T also still satisfies
the Subset Axiom.

It is clear that adding circular pairs to T in this way is possible when α is one of Axioms 1b,
1c, 2b, and 2c: we take the add circular pairs C,D, as above, as well as all of the circular pairs
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formed by subsets of their respective connections. We will show that this operation is also possible
when α is one of Axioms 1a and 2a. From here, it will be clear that the algorithm must terminate,
because we can only add finitely many elements to T . Therefore, we will eventually find T with
the desired properties.

In each of the cases below, the circular pairs added to T are always assumed to be added along
with each of their subsets, that is, the circular pairs formed by subsets of their connections. In this
way, the Subset Axiom is satisfied by T at all steps in the algorithm.

We first consider Axiom 1a, which we assume to fail in T when applied to (P − a;Q− c), (P −
b;Q − d) ∈ T . If (P − a;Q − c), (P − b;Q − d) ∈ S0, either (P − a;Q − d), (P − b;Q − c) ∈ S0 or
(P − a − b;Q − c − d), (P ;Q) ∈ S0. It is easy to see that 1 ∈ P and n ∈ Q (or vice versa, but we
can swap P and Q and reverse their orders), or else Axiom 1a already would have been satisfied
by (P − a;Q− c), (P − b;Q− d) ∈ T . We proceed by casework:

• (a, c) = (1, n). Then, because Axiom 1a fails, we have (P − b;Q − c) /∈ T0, S0, S′0. Thus, we
may add (P − a− b;Q− c− d), (P ;Q) to T , and these lie in S ∩ S′′.

• a = 1, c 6= n. We have (P−a;Q−c), (P−b;Q−d) ∈ T . First, suppose that (P−a;Q−d) /∈ T .
Because (P −a;Q−d) does not contain the connection (1, n), we have (P −a;Q−d) /∈ S0, S′0.
Then, (P − a− b;Q− c− d), (P ;Q) ∈ S0, S′0, so we may add may (P ;Q) to T , so that Axiom
1a is satisfied with (P − a;Q − c), (P − b;Q − d) ∈ T (note that (P − a − b;Q − c − d) is
already in T ).

Now, suppose instead that (P−a;Q−d) ∈ T . If (P−b−1;Q−c−n) /∈ T , then (P−b;Q−c) /∈
S0, S

′
0 by the Subset Axiom. Then, (P − a − b;Q − c − d), (P ;Q) ∈ S0, S′0, and so we may

add (P ;Q) to T to satisfy Axiom 1a. Now, assume that (P − b− 1;Q− c− n) ∈ T . For any
electrical positroid S, Axiom 2b applied to (P−b;Q) and d, c, n, 1 gives that (P−b;Q−d) ∈ S
and (P − b − 1;Q − c − n) ∈ S implies (P − b;Q − c) ∈ S and (P − b − 1;Q − n − d) ∈ S.
By the discussion above, we have (P − b;Q− d), (P − b− 1;Q− c− n) ∈ T, S0, S′0, and so we
may add (P − b;Q− c) to T . The case in which a 6= 1, c = n is identical.

• The case a 6= 1, c 6= n may be handled using similar logic; the details are left to the reader.

Finally, consider Axiom 2a, which we assume to fail for (P − b;Q), (P − a− c;Q− d) ∈ T . As
before, we may assume 1 ∈ P, n ∈ Q.

• (a, d) = (1, n), or (d, a) = (n, 1). Similar to the first case above.

• a = 1, d 6= n. Then, we have (P−b;Q), (P−a−c;Q−d) ∈ T, S0, S′0. As in the second case for
Axiom 1a, we may assume that we have (P−a;Q) ∈ T, S0, S′0 and (P−a−b;Q−d) ∈ T, S0, S′0,
or else both S0 and S′0 would contain exactly one of (P − a;Q), (P − b − d;Q − d) and
(P−c;Q), (P−a−b;Q−d). Moreover, we may assume that we have (P−1−b−c;Q−n−d) ∈
T, S0, S

′
0 by similar logic. Because (P − b;Q) ∈ T, S0, S′0 and (P − 1 − b − c;Q − n − d) ∈

T, S0, S
′
0, we may apply Axiom 1c to find that (P − b− c;Q− d) ∈ S0, S′0. Thus, we can add

(P − b− c;Q− d) to T , so that we still have T ⊂ S0 ∩ S′0. The case a = n, d 6= 1 is identical.

• The cases a 6= 1, d = n and a 6= 1, d 6= n may be handled using similar logic; we again omit
the details.

Thus, in all cases, our algorithm is well-defined, and we are done.
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Proof of Theorem 5.1.7. By Lemma 5.2.22, we must in fact have S0 = T = S′0, provided that
neither S0 nor S′0 is equal to S1, which is true by construction (recall that G′0 is critical). The proof
is complete, in the boundary edge case.

It is left to consider the case in which S0 has the (i, i + 1)-BEP, for each i, but fails to have
the i-BSP, for some i. Without loss of generality, suppose that S0 does not have the 1-BSP.
We now form S1 as the union of S0 and the set of all circular pairs (P + x;Q + y) such that
(P + x;Q+ 1), (P + 1, Q+ y) ∈ S0, where (P ;Q) is a circular pair with 1, x /∈ P, 1, y /∈ Q.

In Appendix B, we form a circular planar graph G1 such that π(G1) = S1 and G1 has a boundary
spike at 1. Then, contracting this boundary spike to obtain the graph G0, we find that π(G0) = S0.
Therefore, with the additional results of Appendix B, the theorem is proven.

6 The LP Algebra LMn

We now study the LP Algebra LMn. Our starting point will be positivity tests; a particular
positivity test will form the initial seed in LMn. We then proceed to investigae the algebraic and
combinatorial properties of clusters in LMn.

6.1 Positivity Tests

Let M be a symmetric n× n matrix with row and column sums equal to zero. In this section,
we describe tests for deciding if M is the response matrix for an electrical network in the top rank
of EPn. Equivalently, we describe tests for deciding if all of the circular minors of M are positive.
These tests are similar to certain tests for total positivity described in [FZP]. Throughout the
remainder of this section, all indices around the circle are considered modulo n, and we will refer
to circular pairs and their corresponding minors interchangeably.

Definition 6.1.1. A set S of circular pairs is a positivity test if, for all matrices M whose
minors corresponding to S are positive, every circular minor of M is positive (equivalently, M is
the response matrix for a top-rank electrical network).

We begin by describing a positivity test of size
(
n
2

)
. Fix n vertices on a boundary circle, labeled

1, 2, . . . , n in clockwise order.

Definition 6.1.2. For two points a, b ∈ [n], let d(a, b) denote the number of boundary vertices on
the arc formed by starting at a and moving clockwise to b, inclusive.

Definition 6.1.3. A circular pair (P ;Q) = (p1, · · · , pk; q1, · · · , qk) is called solid if both sequences
p1, . . . , pk and q1, . . . , qk appear consecutively in clockwise order around the circle. Write d1 =
d1(P ;Q) = d(pk, qk), and d2 = d2(P ;Q) = d(q1, p1). We will call a solid circular pair (P ;Q)
picked if one of the following conditions holds:

• d1 ≤ d2 and 1 ≤ p1 ≤ n
2 , or

• d1 ≥ d2 and 1 ≤ qk ≤ n
2

Definition 6.1.4. Let M be a fixed symmetric n× n matrix. Define the set of diametric pairs
Dn to be the set of solid circular pairs (P ;Q) such that either |d1 − d2| ≤ 1 or |d1 − d2| = 2 and
(P ;Q) is picked. We will refer to the elements of Dn as circular pairs and minors interchangeably.

It is easily checked that |Dn| =
(
n
2

)
.

35



Remark 6.1.5. For a solid circular pair (P ;Q), we have that |d1−d2| ≡ n (mod 2), so Dn consists
of the solid circular pairs with |d1 − d2| = 1 when n is odd, and the solid circular pairs with either
|d1 − d2| = 0, or |d1 − d2| = 2 and (P ;Q) is picked when n is even.

Recall (see Remark 2.2.2) that the circular pairs (P ;Q) and (Q̃; P̃ ) will be regarded as the
same. Note, for example, that (P ;Q) ∈ Dn if and only if (Q̃; P̃ ) ∈ Dn, so the definition of Dn is
compatible with this convention.

Proposition 6.1.6. If M is taken to be an n×n symmetric matrix of indeterminates, any circular
minor is a positive rational expression in the determinants of the elements of Dn.

Proof. We will make use of the Grassmann-Plücker relations, (5.1.3) and (5.1.4), so we repeat them
here:

For (a, b; c, d) a circular pair,

∆a,c∆b,d = ∆a,d∆b,c + ∆ab,cd∆∅,∅ (5.1.3)

and for a, b, c, d in clockwise order,

∆b,∅∆ac,d = ∆a,∅∆bc,d + ∆c,∅∆ab,d (5.1.4)

We will first show, by induction on |d1 − d2|, that any solid circular pair is a positive rational
expression in the elements of Dn. There is nothing to check when |d1− d2| is equal to 0 (when n is
even) or 1 (when n is odd). If (P ;Q) = (p1, . . . , pk; q1, . . . , qk) is a solid circular pair such that |d1−
d2| = 2 (hence, n is even) and (P ;Q) is not picked, then either (p1− 1, p1, . . . , pk; q1 + 1, q1, . . . , qk)
or (p1, . . . , pk, pk + 1; q1, . . . , qk, qk − 1) is a solid circular pair with |d1 − d2| = 2, and it must be
picked. Assume, without loss of generality, that it is the former, and let p0 = p1 − 1, q0 = q1 + 1.
Letting ∆ = (p0, . . . , pk; q0, . . . , qk), we have, by (5.1.3), that:

∆p0,q0 =
∆p0,qk∆pk,q0 + ∆p0pk,q0qk∆∅,∅

∆pk,qk
. (6.1.7)

Because (p1, . . . , pk; q1, . . . , qk) = ∆p0,q0 is not picked, ∆pk,qk corresponds to a picked circular
pair with |d1 − d2| = 2, and ∆p0,qk ,∆pk,q0 ,∆p0pk,q0qk , and ∆∅,∅ all have |d1 − d2| = 0, so we have
that (P ;Q) is a rational expression of elements of Dn.

Now, for m ≥ 3, assume that all solid pairs with |d1 − d2| < m are positive rational expression
in the elements of Dn, and consider a solid pair (P ;Q) with |d1 − d2| = m. Then, either (p1 −
1, p1, . . . , pk; q1 + 1, q1, . . . , qk) or (p1, . . . , pk, pk + 1; q1, . . . , qk, qk − 1) is a solid circular pair with
|d1− d2| < m. Assume, without loss of generality, that the former is the case. Then, we may again
set p0 = p1 − 1, q0 = q1 + 1, and ∆ = (p0, . . . , pk; q0, . . . , qk), and (6.1.7) still holds. Each term
on the right hand side corresponds to a solid pair with a smaller value of |d1 − d2|, so (P ;Q) is a
positive rational expression in the elements of Dn, by the inductive hypothesis.

We now show that any circular pair is a positive rational expression in the elements of Dn. For
a sequence P = p1, . . . , pk of points ordered clockwise around the circle, let cP ∈ {1, . . . , k} be the
largest index such that p1, . . . , pcP are consecutive. If cP < k, then define d3(P ) = d(pcP , pcP+1)
and d4(P ) = d(p1, pk). If, on the other hand, cP = k, define d3(P ) = d4(P ) = 0. Similarly, for a
sequence Q = q1, . . . , qk of points ordered counterclockwise around the circle, let cQ ∈ {1, . . . , k} be
the smallest index such that qk, . . . , qcQ are consecutive. If cP > 1, then define d3(Q) = d(pcQ+1, pcQ)
and d4(Q) = d(qk, q1). If, on the other hand, cQ = 1, define d3(P ) = d4(P ) = 0.
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For a circular pair (P ;Q), define Φ((P ;Q)) = d3(P ) + d4(P ) + d3(Q) + d4(Q), and note that
Φ((P ;Q)) = Φ((Q̃; P̃ )), so Φ is well-defined when we impose the convention (P ;Q) = (Q̃; P̃ ). We
finish the proof by showing that any circular pair is a positive rational expression in the elements
of Dn by induction on Φ.

If Φ((P ;Q)) = 0, then (P ;Q) is solid and hence a rational expression in the elements of Dn.
Now, assume that for any m > 0, every circular pair (P ′;Q′) with Φ((P ′;Q′)) < m is a ratio-
nal expression in the elements of Dn, and consider a circular pair (P ;Q) with Φ((P ;Q)) = m.
Assume, without loss of generality, that cP 6= k, and let ` = pcP + 1. Applying (5.1.3) to
∆ = (p1, . . . , pcP , `, pcP+1, . . . , pk; q1, . . . , qk), we get:

∆`,∅ =
∆p1,∅∆`pk,qk + ∆pk,∅∆p1`,qk

∆p1pk,qk
. (6.1.8)

Each term on the right hand side is easily seen to have a smaller value of Φ than m, so we are done
by induction.

Corollary 6.1.9. Dn is a positivity test.

6.2 CMn and LMn

The positive rational expressions from the previous section are reminiscent of a cluster algebra
structure (see [FP, §3] for definitions). In fact, (5.1.3) and (5.1.4) are exactly the exchange relations
for the local moves in double wiring diagrams [FZP, Figure 9]. Due to parity issues similar to
those encountered when attempting to associate a cluster algebra to a non-orientable surface in
[DP], the structure of positivity tests is slightly different from a cluster algebra. We present the
structure in two different ways: first, as a Laurent phenomenon (LP) algebra LMn (see [LP, §2,3]
for definitions), and secondly as a cluster algebra CMn similar to the double cover cluster algebra
in [DP]. LMn, we will find, is isomorphic to the polynomial ring on

(
n
2

)
variables, but more

importantly encodes the information of the positivity of the circular minors of a fixed n×n matrix.
We begin by describing an undirected graph Un that encodes the desired mutation relations

among our initial seed. The vertex set of Un will be Vn = Dn ∪ {(∅; ∅)}.
Definition 6.2.1. A solid circular pair (p1, . . . , pk; q1, . . . , qk) is called maximal if 2k + 2 > n or
2k + 2 = n and d1 = d2. A solid circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk) is called limiting if
|d1 − d2| = 2, (P ;Q) is picked, and 1 = p1 or 1 = qk.

Let us now describe the edges of Un: see Figure 12 for an example. For each (P ;Q) ∈ Vn that is
not maximal, limiting, or empty (that is, equal to (∅; ∅)), there is a unique way to substitute values
in 5.1.3 such that (P ;Q) appears on the left hand side, and all four terms on the right hand side
are in Vn. We draw edges from (P ;Q) to these four vertices in Un. Finally, if (P ;Q), (R;S) ∈ Vn
are limiting, we draw an edge between them if their sizes differ by 1. The edges drawn in these two
cases constitute all edges of Vn.

For any maximal circular pair (P ;Q), it can be proven that there exists a symmetric matrix
A such that A is positive on any circular pair except A(P ;Q) ≤ 0. In fact, if (P ;Q) is maximal
and has |d1 − d2| ≤ 1, then the set of all circular pairs other than (P ;Q) is an electrical positroid.
Hence, in our quivers, we will take the vertices corresponding to the maximal circular pairs and
(∅; ∅) to be frozen.

Un can then be embedded in the plane in a natural way with the circular pairs of size k lying on
the circle of radius k centered at (∅; ∅), and all edges except those between vertices corresponding
to limiting circular pairs either along those circles or radially outward from (∅; ∅).
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(∅; ∅)

(1; 5)

(2; 5)

(3; 6)

(3; 7)
(4; 7)

(4; 8)

(1; 4)

(12; 65)

(23; 65)

(23; 76)

(34; 76)

(34; 87)

(45; 87)

(45; 18)

(12; 54)

(234; 876)

(234; 765)

(123; 765)

(123; 654)

(345; 876)

(812; 654)

(345; 187)

(456; 187)

(1234; 8765)(2345; 1876)

(3456; 2187) (8123; 7654)

(2; 6)(2; 6)

Figure 12: The graph U8 depicting the desired exhange relations among D8. Vertices marked as
squares correspond to frozen variables. (4; 8), (45; 18) and (812; 654) are the limiting circular pairs.
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If we could orient the edges of Un such that they alternate between in- and out-edges at each
non-frozen vertex, then the resulting quiver would give a cluster algebra such that mutations at
vertices whose associated cluster variables are neither frozen not limiting correspond to the relation
Grassmann-Plücker relation (5.1.3). Furthermore, these mutation relations among the vertices of
Vn constitute all of the Grassmann-Plücker relations for which five of the six terms on the right
hand side are elements in Vn, and the term which is not in Vn is on the left hand side of the relation
(5.1.3) or (5.1.4). However, for n ≥ 5, such an orientation of the edges of Un is impossible, because
the dual graph of Un contains odd cycles. We thus define:

Definition 6.2.2. Let LMn be the LP algebra constructed as follows: the initial seed Sn has
cluster variables equal to the minors in Vn, with the maximal pairs and (∅; ∅) frozen, and, for
any other (P ;Q) ∈ Vn, the exchange polynomial F(P ;Q) is the same as what is obtained from a
quiver with underlying graph Un, such that the edges around the vertex associated to (P ;Q) in Un
alternate between in- and out-edges.

For example, in LM8, the exchange polynomial associated to the cluster variable x(12;54) is
x(45;18)x(12;65)+x(1;5)x(812;654). We need the additional technical condition that F(P ;Q) is irreducible
as a polynomial in the cluster variables Vn, but the irreducibility is clear.

We next define a cluster algebra CMn which is a double cover of positivity tests, in the following
sense: we begin consider an n × n matrix M ′, which we no longer assume to be symmetric. We
write non-symmetric circular pairs in the row and column sets of M ′ as (P ;Q)′, so that (P ;Q)′

and (Q̃; P̃ )′ now represent different circular pairs. We will say that two expressions A,B in the
entries of M ′ correspond if swapping the rows and columns for each entry in A gives B, and we
will write B = c(A). For instance, (P ;Q)′ = c((Q;P )′).

The set of cluster variables V ′n in our initial seed will consist of pairs (P ;Q)′ such that (P ;Q) ∈
Vn. Note that |V ′n| = 2

(
n
2

)
+ 1, as V ′n contains (P ;Q)′ and (Q̃; P̃ )′ for each (P ;Q) ∈ Dn, and finally

(∅; ∅). (P ;Q)′ will be frozen in V ′n if (P ;Q) was frozen in Vn.
We construct the undirected graph U ′n with vertex set V ′n by adding edges in the same way

that Un was constructed. The only difference in our description is that if (P ;Q), (R;S) ∈ Vn are
limiting, then they will be adjacent only if their sizes differ by 1 and P ∩R 6= ∅. See Figure 13 for
an example.

Unlike in Un, the edges of U ′n can be oriented such that they are alternating around each non-
frozen vertex. Let Qn be the quiver from either orientation. Then, let CMn be the cluster algebra
with initial quiver Qn.

Breaking the symmetry of M ′ removed the parity problems from Un, so that we could define a
cluster algebra, but we are still interested in using U ′n to study M when M is symmetric. Toward
this goal, we can restrict ourselves so that whenever we mutate at a cluster variable v, we then
mutate at c(v) immediately afterward. Call this restriction the symmetry restriction.

Lemma 6.2.3. After the mutation sequence µx1 , µc(x1), µx2 , µc(x2), . . . , µxr , µc(xr) from the initial
seed in CMn, the number of edges from x to y in the quiver is equal to the number of edges from
c(y) to c(x) for each x, y in the final quiver.

Proof. We proceed by induction on r; for r = 0, we have the claim by construction. Now, suppose
that we have performed the mutations µx1 , µc(x1), µx2 , µc(x2), . . . , µxr−1 , µc(xr−1) and currently have
the desired symmetry property. By the inductive hypothesis, xr and c(xr) are not adjacent, or else
we would have had edges between them in both directions, which would have been removed after
mutations. Thus, no edges incident to c(xr) are created or removed upon mutating at xr. Hence,
mutating at c(xr) afterward makes the symmetric changes to the graph, as desired.
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(1; 3)′
(1; 4)′

(2; 4)′

(2; 5)′

(3; 5)′

(3; 1)′
(4; 1)′

(4; 2)′

(5; 2)′

(5; 3)′

(12; 43)′

(12; 54)′

(23; 54)′

(23; 15)′

(34; 15)′(34; 21)′

(45; 21)′

(45; 32)′

(51; 32)′

(51; 43)′

Figure 13: The graph U ′5. In the quiver Qn, the edges alternate directions around a non-frozen
vertex.

Definition 6.2.4. Let C[M ] and C[M ′] denote the polynomial rings in the off-diagonal entries
of M and M ′ respectively; recall that M is symmetric, so Mij = Mji. Then, we can define the
symmetrizing homomorphism C : C[M ′] → C[M ] by its action on the off-diagonal entries of
M ′:

C(M ′ij) = C(M ′ji) = Mij .

If S is a set of polynomials in C[M ′], then write C(S) = {C(s) | s ∈ S}.

Lemma 6.2.5. Let L′1 be the cluster of CMn that results from starting at the initial cluster and
performing the sequence of mutations µx1 , µc(x1), µx2 , µc(x2), . . . , µxr , µc(xr). Let L2 be the cluster
of LMn that results from starting at the initial cluster and performing the sequence of mutations
µx1 , µx2 , . . . , µxr . Then, C(L′1) = L2.

Proof. Using Lemma 6.2.3, the proof is similar to [LP, Proposition 4.4].

In light of Lemma 6.2.5, we may understand the clusters in LMn by forming “double-cover”
clusters in CMn. A sequence µ of mutations in LMn corresponds to a sequence µ′ of twice as
many mutations in CMn, where we impose the symmetry restriction, and the cluster variables in
LMn after applying µ are the symmetrizations of those in CMn after applying µ′.

Lemma 6.2.6. Any cluster S of LMn consisting entirely of circular pairs is a positivity test.

Proof. In CMn, the exchange polynomial has only positive coefficients, so each variable in any
cluster is a rational function with positive coefficients in the variables of any other cluster. In
particular, each non-symmetric circular pair in Vn − (∅; ∅)′ is a rational function with positive
coefficients in the variables of any cluster reachable under the symmetry restriction. Hence, by

40



Lemma 6.2.5, each circular pair in Dn can be written as a rational function with positive coefficients
of the variables in S. The desired result follows easily.

As with double wiring diagrams for totally positive matrices [FZP], and plabic graphs for the
totally nonnegative Grassmannian [P], we now restricting ourselves to certain types of mutations
in LMn. A natural choice is mutations with exchange relations of the form 5.1.3 or 5.1.4. These
mutations keep us within clusters consisting entirely of circular minors, the “Plücker clusters.”

We begin by restricting ourselves only to mutations with exchange relations of the form 5.1.3.
Because the initial seed Sn consists only of solid circular pairs, we will only be able to mutate to
other clusters consisting entirely of solid circular pairs. Our goal is to chracterize these clusters.
We will be able to write down such a characterization using Corollary 6.2.16 and Lemma 6.2.5, and
give a more elegant description of the clusters in Proposition 6.3.6.

Definition 6.2.7. Let (P ;Q)′ = (p1, . . . , pk; q1, . . . , qk)
′ be a non-symmetric, non-empty circular

pair. Define the statistics D(P ;Q)′, T (P ;Q)′, and k(P ;Q)′ by:

D(P ;Q)′ = d1(P ;Q)′ − d2(P ;Q)′ = d(pk, qk)− d(q1, p1)

T (P ;Q)′ =

{
p1+q1

2 (mod n) if p1 < q1
p1+q1+n

2 (mod n) if p1 > q1

k(P ;Q)′ = |P |, that is, the size of (P ;Q)′

Remark 6.2.8. A non-symmetric solid circular pair (P ;Q)′ is uniquely determined by the triple
(D(P ;Q)′, T (P ;Q)′, k(P ;Q)′). A necessary condition for a triple (D,T, k) to correspond to a non-
symmetric solid circular pair is that |D|+2k ≤ n. When the terms are non-symmetric solid circular
pairs, (5.1.3) can be written using these triples as:

(D − 2, T, k)(D + 2, T, k) = (D,T − 1/2, k)(D,T + 1/2, k) + (D,T, k + 1)(D,T, k − 1). (6.2.9)

Definition 6.2.10. We call two non-symmetric solid circular pairs corresponding to the triples
(D1, T1, k1) and (D2, T2, k2) adjacent if T1 = T2 and |k1 − k2| = 1, or k1 = k2 and T1 − T2 ≡
±1/2 (mod n). We call (P ;Q)′ and (R;S)′ diagonally adjacent if there are two non-symmetric
solid circular pairs (A;B)′, (C;D)′ which are both adjacent to both (P ;Q)′ and (R;S)′. We call
(A;B)′, (C;D)′ the connection of (P ;Q)′, (R;S)′.

Note that, in the initial quiver Qn, adjacent and diagonally adjacent circular pairs correspond
to vertices which are adjacent in particular ways. Specifically, adjacent circular pairs correspond
to vertices which are adjacent on the same concentric circle, or along the same radial spoke of
U ′n. Diagonally adjacent circular pairs correspond to those which are adjacent via all other edges,
the “diagonal” edges. We can now classify clusters of CMn which can be reached only using the
mutations with exchange relation (5.1.3).

Definition 6.2.11. We call a set S of 2
(
n
2

)
+ 1 non-symmetric solid circular pairs a solid cluster

if it has the following properties:

• (∅; ∅)′ ∈ S,

• for each integer 1 ≤ k ≤ n
2 , and each T ∈ {0.5, 1, 1.5, 2, . . . , n}, unless k = n

2 and T is an
integer, there is a D such that the non-symmetric solid circular pair corresponding to (D,T, k)
is in S, and
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(−1, 2, 1)
(1, 2.5, 1)

(−1, 3, 1)

(1, 3.5, 1)

(−1, 4, 1)

(1, 4.5, 1)
(−1, 5, 1)

(1, 0.5, 1)

(−1, 1, 1)

(1, 1.5, 1)

(−1, 2.5, 2)

(1, 3, 2)

(−1, 3.5, 2)

(1, 4, 2)

(−1, 4.5, 2)(1, 5, 2)

(−1, 0.5, 2)

(1, 1, 2)

(−1, 1.5, 2)

(1, 2, 2)

Figure 14: The graph U ′5 with non-symmetric solid circular pairs labeled by triples (D,T, k). In
Qn, the edges alternate directions around each non-frozen vertex. Compare to Figure 13.

(−1, 2, 1)
(−3, 2.5, 1)

(−1, 3, 1)

(1, 3.5, 1)

(−1, 4, 1)

(−1, 2.5, 2)

(1, 3, 2)

(−1, 3.5, 2)

(1, 4, 2)

(1, 2, 2)

(1, 4.5, 1)
(−1, 5, 1)

(1, 0.5, 1)

(−1, 1, 1)

(1, 1.5, 1)

(−1, 4.5, 2)(1, 5, 2)

(−1, 0.5, 2)

(1, 1, 2)

(−1, 1.5, 2)

Figure 15: The graph U ′5 after a mutation at (1, 2.5, 1), with non-symmetric solid circular pairs
labeled by triples (D,T, k). In the quiver, the edges alternate directions around each non-frozen
vertex.
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• if (P ;Q)′, (R;S)′ ∈ S and (P ;Q)′ is adjacent to (R;S)′, then |D(P ;Q)′ −D(R;S)′| = 2.

Remark 6.2.12. There is a natural embedding of a solid cluster S in the plane, similar to our
embedding of U ′n. We place (∅; ∅)′ at any point, and then pairs of size k on the circle of radius k
centered at that point. Moreover, we place adjacent pairs of the same size consecutively around
each circle, and adjacent pairs of different sizes collinear with (∅; ∅)′.

Definition 6.2.13. For a solid cluster S of CMn and associated quiver B, we call (S,B) a solid
seed if it has the following properties:

• vertices corresponding to maximal non-symmetric solid circular pairs are frozen,

• there is an edge between any pair of adjacent vertices that are not both frozen,

• there is an edge between diagonally adjacent vertices (P ;Q)′, (R;S)′ if their connection
(A;B)′, (F ;G)′ satisfies |D(A;B)′ −D(F ;G)′| = 4,

• there is an edge from a size 1 vertex (P ;Q)′ to (∅; ∅)′ if it would make the degree of (P ;Q)′

even,

• all edges of B are in drawn in one of the four ways described above, and

• all edges are oriented so that, in the embedding described in Remark 6.2.12, edges alternate
between in- and out-edges around any non-frozen vertex.

If, furthermore, s ∈ S if and only if C(s) ∈ S, or equivalently, the non-symmetric solid circular
pair corresponding to (D,T, k) is in S if and only if that corresponding to (−D,T, k) is, then we
call (S, b) a symmetric solid seed.

See, for example, Figure 15.

Remark 6.2.14. In a solid seed (S,B), a variable (P ;Q)′ ∈ S has an exchange polynomial of the
form (5.1.3) whenever its corresponding vertex in B, and has edges to the vertices corresponding
to its four adjacent variables in B, and no other vertices.

Lemma 6.2.15. In CMn, from the initial seed with cluster V ′n and quiver Q′n, mutations of the
form (5.1.3) may be applied to obtain the seed (W ′n,R′n) if and only if (W ′n,R′n) is a solid seed.
Here, we do not impose the symmetry restriction.

Proof. First, assume that (W ′n,R′n) via mutations of the form (5.1.3). First, it is easy to check that
(V ′n,Q′n) is a solid seed. Then, our mutations do indeed turn non-symmetric solid circular pairs
into other non-symmetric solid circular pairs. Furthermore, when we perform a mutation of the
form (6.2.9) at the vertex v, the values of T and k do not change, and the value of D changes from
being either 2 more than the values of D at the vertices adjacent to v to being 2 less, or vice versa.
Hence, the resulting seed is also solid, so, by induction, (W ′n,R′n) is solid.

Conversely, assume (W ′n,R′n) is solid. We begin by noting that, by Remark 6.2.14, whenever
the four terms on the right hand side of (6.2.9) and one term on the left hand side are in our cluster,
then we can perform the corresponding mutation.

Now, define (I ′n,QI ′n) to be the unique symmetric solid seed such that, for each (P ;Q)′ ∈ I ′n,
D(P ;Q)′ ∈ {−2,−1, 0, 1, 2}. For any solid seed (W ′n,R′n), we give a mutation sequence µ(W ′n,R′n)
using only mutations of the form (6.2.9) that transforms (W ′n,R′n) into (I ′n, QI

′
n). Hence, we will

be able to get from the seed (V ′n,Q′n) to (W ′n,R′n) by performing µ(V ′n,Q′n), followed by µ(W ′n,R′n) in
reverse order.
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It is left to construct the desired mutation sequence. We define µ(W ′n,R′n) as follows: while
the current seed is not (I ′n,QI ′n), choose a vertex v of the quiver, with associated cluster variable
(P ;Q)′, for which the value of |D(P ;Q)′| is maximized. We must have |D(P ;Q)′| > 2, and by
maximality, for each vertex (R;S)′ adjacent to (P ;Q)′, we must have |D(R;S)′| = |D(P ;Q)′| − 2.
Hence, we can mutate at (P ;Q) to reduce |D(P ;Q)′| by at least 2. This process may be iterated
to decrease the sum, over all cluster variables (P ;Q)′ in our seed, of the |D(P ;Q)′|, until we reach
the seed (I ′n,QI ′n). The proof is complete.

Corollary 6.2.16. In CMn, from our initial seed with cluster V ′n and quiver Q′n, we can apply
symmetric pairs of mutations (that is, mutations with the symmetry restriction) of the form (5.1.3)
to obtain the seed (W ′n,R′n) if and only if (W ′n,R′n) is a symmetric solid seed.

Proof. The proof is almost identical to that of Lemma 6.2.15. It suffices to note that in a symmetric
solid seed, (P ;Q)′ has a maximal value of |D| if and only if c(P ;Q)′ does, so the mutation sequence
µ(W ′n,R′n) can be selected to obey the symmetry restriction.

Using Corollary 6.2.16 and Lemma 6.2.5, we could also prove a similar result for the LP algebra
LMn. However, we will wait to do so until Lemma 6.3.6 where we will describe it more elegantly
using the notion of weak separation.

We have now have the required machinery to prove our main theorem of this section.

Theorem 6.2.17. Fix a symmetric n×n matrix M of distinct indeterminates. Then, the C-Laurent
phenomenon algebra LMn is isomorphic to the polynomial ring (over C) on the

(
n
2

)
non-diagonal

entries of M .

Proof. We may directly apply the analogue of [FP, Proposition 3.6] for LP algebras (for which
the proof is identical) to LMn as defined in Definition 6.2.2. It is well-known that minors of a
matrix of indeterminates are irreducible, so we immediately have that all of our seed variables are
pairwise coprime. We also need to check that each initial seed variable is is coprime to the variable
obtained by mutating its associated vertex in Qn, and that this new variable is in the polynomial
ring generated by the non-diagonal entries of M . For non-limiting (and non-frozen) minors, this
is clear, because each such mutation replaces a minor with another minor via (5.1.3). For limiting
minors, this is not the case, and we defer the proof to Appendix C.

It remains to check, then that each of the n(n− 1) non-diagonal entries of M ′ appear as cluster
variables in some cluster of CMn. However, because 1× 1 minors are solid, the result is immediate
from Lemma 6.2.16 and Lemma 6.2.5.

Because all 1 × 1 minors are solid, mutations of the form (5.1.3) were sufficient to establish
Theorem 6.2.17. Once we allow mutations of the form (5.1.4), the clusters become more diffi-
cult to describe. However, let us propose the following conjecture, which has been established
computationally for n ≤ 6.

Conjecture 6.2.18. Every cluster of LMn consisting entirely of circular pairs can be reached from
the initial cluster using only mutations of the form (5.1.3) or (5.1.4).

6.3 Weak Separation

We next introduce an analogue of weakly separated sets from [LZ] for circular pairs. We recall
the definition used in [S], [OSP], which is more natural in this case1:

1Our definition varies slightly from that in the literature in the case where the two sets do not have the same size.
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Definition 6.3.1. Two sets A,B ⊂ [n] are weakly separated if there are no a, a′ ∈ A \ B and
b, b′ ∈ B \A such that a < b < a′ < b′ or b < a < b′ < a′.

Our analogue is as follows:

Definition 6.3.2. Two circular pairs (P ;Q) and (R;S) are weakly separated if P ∪R is weakly
separated from Q ∪ S, and P ∪ S is weakly separated from Q ∪R.

Remark 6.3.3. Note that (P ;Q) is weakly separated from itself and from (Q̃; P̃ ). Furthermore,
(P ;Q) is weakly separated from (R;S) if and only if (Q̃; P̃ ) is, so under the convention (P ;Q) =
(Q̃; P̃ ), weak separation is well-defined.

Conjecture 6.3.4. Let C be a set of circular minors, for an n× n generic response matrix.

P: C is a minimal positivity test.

S: C is a maximal set of pairwise weakly separated circular pairs.

C: C is a cluster of LMn.

Conjecture 6.3.4 has been computationally verified for n ≤ 6. We now prove various weak
forms of this conjecture. First, for all clusters C of LMn that are reachable from the initial seed
via Grasmann-Plücker Relations (cf. Conjecture 6.2.18), the elements of C are pairwise weakly
separated:

Proposition 6.3.5. If C is a set of pairwise weakly separated circular pairs such that, for some
substitution of values into (5.1.3) or (5.1.4), all the terms on the right hand side, and one term
(P ;Q) on the left hand side, are in C, then the remaining term (R;S) on the left hand side is
weakly separated from all of C − (P ;Q).

Proof. Let a, b, c, d be as in (5.1.3) or (5.1.4). It is clear that (R;S) can only be non-weakly
separated from an element of C − (P ;Q), if a, b, c, d are boundary vertices forcing the non-weak
separation.. However, this is easily seen to be impossible.

When restricting ourselves to clusters of solid minors, the analogue of Corollary 6.2.16 for LMn

matches exactly with a weak form of the equivalence S⇔ C in Conjecture 6.3.4.

Proposition 6.3.6. A set C of solid circular pairs can be reached (as a cluster) from the initial
cluster Sn in LMn using only mutations of the form (5.1.3) if and only if C is a set of

(
n
2

)
pairwise

weakly separated solid circular pairs.

Proof. The elements of the initial cluster Sn in LMn, which consists of the diametric pairs Dn, are
easily seen to be pairwise weakly separated. Then, by Proposition 6.3.5, any cluster we can reach
from Sn using only mutations of the form (5.1.3) must also be pairwise weakly separated.

Conversely, consider any set C of
(
n
2

)
pairwise weakly separated solid circular pairs. Let C ′ =

{(P ;Q)′ | (P ;Q) ∈ C}, and notice that |C ′| = 2
(
n
2

)
. By Corollary 6.2.16 and Lemma 6.2.5, it is

enough to prove that that C ′ ∪{(∅; ∅)} is a solid cluster (see Definition 6.2.11) in CMn. From here
it will follow by definition that C ′ is a symmetric solid seed, meaning C can be reached from Sn in
LMn using only mutations of the form (5.1.3), as desired.

Before proceeding, it is straightforward to check that circular pairs (P ;Q) = (p1, . . . , pa; q1, . . . , qa)
and (R;S) = (r1, . . . , rb; s1, . . . , sb) are weakly separated if and only if the following four intersec-
tions are non-empty:

{p1, q1} ∩ (R ∪ S), {pa, qa} ∩ (R ∪ S), {r1, s1} ∩ (P ∪Q), {rb, sb} ∩ (P ∪Q).
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We now prove that C ′ ∪ {(∅; ∅)} is a solid cluster. First, notice that if non-symmetric circular
pairs (P ;Q)′ = (p1, . . . , pa; q1, . . . , qa)

′ and (R;S)′ = (r1, . . . , rb; s1, . . . , sb)
′ are such that k(P ;Q)′ =

k(R;S)′ and T (P ;Q)′ = T (R;S)′, but D(P ;Q)′ 6= D(R;S)′, then (P ;Q) and (R;Q) are not weakly
separated. Hence, at most one of (P ;Q)′ and (R;S)′ is in C ′. As there are exactly 2

(
n
2

)
choices

of T and k that give valid non-symmetric solid circular pairs, there must be one element of C ′

corresponding to each choice of (T, k).
Second, consider any adjacent (P ;Q)′ and (R;S)′ in C ′. Without loss of generality, one of

• k(P ;Q)′ = k(R;S)′ and T (P ;Q)′ = T (R;S)′ + 1
2 ,

• T (P ;Q)′ = T (R;S)′ and k(P ;Q)′ = k(R;S)′ + 1.

holds. In either case, because (P ;Q)′ and (R;S)′ are weakly separated, we can see that |D(P ;Q)′−
D(R;S)′| = 2. It follows that C ′ ∪ {(∅; ∅)} is a solid cluster, so we are done.

We now relate C and P. Recall that, by Lemma 6.2.6, any if C satisfies C, then C is a positivity
test. Furthermore, |C| =

(
n
2

)
. We can prove, similarly to [LZ, Theorem 1.2], that:

Proposition 6.3.7. If C satisfies S, then |C| ≤
(
n
2

)
.

In fact, we can prove a slightly stronger result by interpreting a circular pair as a set of edges.

Definition 6.3.8. For a circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk), define E(P ;Q) = {{pi, qi} |
i ∈ {1, . . . , k}} (cf. Definition 5.2.18). Similarly, for a set D ⊂ {{i, j} | 1 ≤ i < j ≤ n} of edges
such that no two edges in D cross, let P (E) be the circular pair for which E(P (D)) = D.

Proposition 6.3.9. If C is a set of pairwise weakly separated circular pairs with

E =
⋃

(P ;Q)∈C

E(P ;Q),

then |C| ≤ |E|.

Proof. Procced by induction on |E|. The case |E| = 0 is trivial, so assume the result is true for
|E| < m. Suppose that we have C,E with |E| = m, and assume for sake of contradiction that
|C| > m. Choose some {a, b} ∈ E such that, for any other {c, d} ∈ E, c and d do not both lie on
the arc drawn from a to b in the clockwise direction (this arc is taken to include both a and b).
Now, letting E′ = E \ {{a, b}}, define the projection map J : 2E → 2E

′
by:

J(D) =

{
D \ {{a, b}} if {a, b} ∈ D,
D otherwise.

We may define J for circular pairs analogously: J(P ;Q) = V (J(E(P ;Q))), and let C ′ = {J(P ;Q) |
(P ;Q) ∈ C}. Let us now prove two lemmas.

Lemma 6.3.10. The elements of C ′ are pairwise weakly separated.

Proof. Assume, for sake of contradiction, that we have (P ;Q), (R;S) ∈ C, such that J(P ;Q)
and J(R;S) are not weakly separated. If {a, b} ∈ E(P ;Q), E(R;S) or {a, b} /∈ E(P ;Q), E(R;S),
the claim is clear. Thus, we may assume without loss of generality, that a ∈ P , b ∈ Q, and
{a, b} /∈ E(R;S). Because J(P ;Q) and J(R;S) are not weakly separated, suppose, without loss of
generality, that w, y ∈ R ∪ (P \ {a}) and x, z ∈ S ∪ (Q \ {b}) such that w, x, y, z are in clockwise
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order, and furthermore w, y /∈ S∪ (Q\{b}) and x, z /∈ R∪ (P \{a}). Note that, if a, b /∈ {w, x, y, z},
then w, x, y, z would also show that (P ;Q) is not weakly separated from (R;S).

Assume that a = w; the other cases are similar. First, suppose that b 6= x. Then, we must
have w ∈ R, and we obtain a similar contradiction to before. On the other hand, if b = x, then
a = w ∈ R and b = x ∈ S. But, since {a, b} /∈ E(R;S), a and b are in distinct non-intersecting
edges in E(R;S). Because these edges are also in E, we have a contradiction of the construction
of {a, b}. The lemma follows.

Lemma 6.3.11. There is at most one (P ;Q) ∈ C with {a, b} ∈ E(P ;Q) and J(P ;Q) ∈ C.

Proof. Assume for sake of contradiction that we have distinct circular pairs (P ;Q), (R;S) ∈ C,
with {a, b} ∈ E(P ;Q), E(R;S), and J(P ;Q), J(R;S) ∈ C. Without loss of generality, assume that
a ∈ P,R and b ∈ Q,S. By the fact that J(P ;Q), J(R;S) ∈ C and the construction of {a, b}, there
exist two points u, v on the clockwise arc from b to a not containing its endpoints, which are both
in exactly one of P,Q,R, S.

First, if u ∈ Q and v ∈ P , then the points a, b, u, v force J(P ;Q) and (R;S) not to be weakly
separated. However, J(P ;Q), (R;S) ∈ C, so we have a contradiction.

If u ∈ Q and v ∈ R, then we get a similar contradiction if d(b, v) < d(b, u), so we have that
a, b, u, v are in clockwise order. Because |Q| = |P | and |R| = |S|, there must be an x such that
x ∈ P ∪ S but x /∈ R ∪Q.

We have four cases for the position of x, relative to a, b, u, v. If a, x, b are in clockwise order, then
we get a contradiction of our construction of {a, b}. If b, x, u are in clockwise order, then a, b, x, u
either contradicts that (P ;Q) is a circular pair or that (P ;Q) is weakly separated from J(R;S).
The case in which v, x, a are in clockwise order is similar. Finally, if u, x, v are in clockwise order,
then either a, b, u, x or a, b, x, v contradicts that either (P ;Q) is weakly separated from J(R;S) or
that J(P ;Q) is weakly separated from (R;S).

The other cases follow similarly.

We can now finish the proof of Proposition 6.3.9. By Lemma 6.3.10, the elements of C ′ are
pairwise weakly separated, and we also have E′ =

⋃
(P ;Q)∈C′ E(P ;Q). Thus, by the inductive

hypothesis, |C ′| ≤ |E′| = |E| − 1. However, it is easy to see from Lemma 6.3.11 that |C ′| ≥ |C| − 1,
so the induction is complete.

Now, Proposition 6.3.7 follows easily by taking E = {{i, j} | 1 ≤ i < j ≤ n} in Proposition
6.3.9. Proposition 6.3.9 also has another natural corollary:

Corollary 6.3.12. For any set S of pairwise weakly separated circular pairs, there is an injective
map e : S → {{i, j} | 1 ≤ i < j ≤ n} such that e(P ;Q) ∈ E(P ;Q) for each (P ;Q) ∈ S.

Proof. Proposition 6.3.9 gives exactly the condition required to apply Hall’s marriage theorem.
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A Proofs of Lemmas 4.2.5 and 4.2.6

Recall the definitions of Dn, En, Xn from §4.2. We will prove Lemmas 4.2.5 and 4.2.6, that
Dn/Xn ∼

√
e− 1 and En/Xn ∼ 0, respectively.

Proof of Lemma 4.2.5. We may as well consider Dn − 1 =
∑n−2

j=1

(
n
j

)
Xn−j . Using the notation

Qi = Xi/Xi−1, as in the proof of Lemma 4.2.2, we have∑n−2
j=1

(
n
j

)
Xn−j

Xn
=

n−2∑
j=1

1

j!
· n(n− 1) · · · (n− j + 1)

QnQn−1 · · ·Qn−j+1

=
n−2∑
j=1

1

2jj!
· 2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1

=

n−2∑
j=1

1

2jj!
+

n−2∑
j−1

1

2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1
− 1

)
.

As n→∞, first summand above converges to
√
e−1, so it is left to check that the second summand

converges to zero.
Note that, by Lemma 4.2.2,

2n(2n− 2) · · · (2n− 2j + 1)

QnQn−1 · · ·Qn−j+2
> 1.

Now,

0 <

n−2∑
j=1

1

2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1
− 1

)

<
n−5∑
j=1

1

2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1
− 1

)

+Kn

[
1

2n−4(n− 4)!
+

1

2n−3(n− 3)!
+

1

2n−2(n− 2)!

]
,

for some positive constant K, because

2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1

< 2n · 2n− 2

Qn
· 2n− 4

Qn−1
· · · 2n− 2j + 2

Qn−j+2
· 1

Qn−j+1

< Kn,

as by Lemma 4.2.2, all but a fixed number of the fractions are less than 1, and those which are not
are constant. It is then easy to see that the term

Kn

[
1

2n−4(n− 4)!
+

1

2n−3(n− 3)!
+

1

2n−2(n− 2)!

]
goes to zero as n→∞. Now, applying Lemma 4.2.2 again (noting that the indices are all at least
6),

n−5∑
j=1

1

2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1
− 1

)
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<

n−5∑
j=1

1

2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

(2n− 1)(2n− 3) · · · (2n− 2j + 1)
− 1

)

<
n−5∑
j=1

1

2jj!
·
(

2n

2n− 2j + 1
− 1

)

<

n−5∑
j=1

1

2jj!
· 2j − 1

2n− 2j + 1

<
n−5∑
j=1

1

2j−1(j − 1)!
· 1

2n− 2j + 1
.

It is enough to show that the above sum goes to zero as n → ∞. To do this, we split it in to two
sums:

n−5∑
j=1

1

2j−1(j − 1)!
· 1

2n− 2j + 1

=
∑

1≤j<n/2

1

2j−1(j − 1)!
· 1

2n− 2j + 1
+

∑
n/2≤j≤n−5

1

2j−1(j − 1)!
· 1

2n− 2j + 1

<
∑

1≤j<n/2

1

2j−1(j − 1)!
· 1

n
+

∑
n/2≤j≤n−5

1

2j−1(j − 1)!

<

√
e

n
+

∑
n/2≤j≤n−5

1

2j−1(j − 1)!
.

The first summand clearly tends to zero as n→∞. The rest of the sum must tend to zero as well,
as it is the tail of a convergent sum, so the proof is complete.

Proof of Lemma 4.2.6. First, note that by Corollary 4.2.4, Xi is within a (positive) constant factor
of (2i− 1)!! for each i. Thus, to prove that En/Xn ∼ 0, we may as well prove that

n
n−2∑
j=2

(2j − 1)!!(2n− 2j − 1)!!

(2n− 1)!!
∼ 0.

It is straightforward to check that the largest terms of the sum are when j = 2, n − 2, and these
terms are of inverse quadratic order. Thus,

n

n−2∑
j=2

(2j − 1)!!(2n− 2j − 1)!!

(2n− 1)!!
< nO(n−2) = O(n−1),

and the conclusion follows.

B Proof of Theorem 5.1.7 in the BSP case

We now finish the proof of Theorem 5.1.7. Recall that S0 is an electrical positroid for which
no circular planar graph G has π(G) = S0, and that S0 is chosen to be maximal among electrical
positroids with this property. By assumption, S0 has the (i, i + 1)-BEP for each i, and does not
have the 1-BSP. Furthermore, recall the construction of S1 from the end of §5.2. Then, we have:
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Lemma B.1. S1 is an electrical positroid, and has the 1-BSP.

Proof. Straightforward.

By assumption, S1 = π(G1), for some circular planar graph G1, which has a boundary spike
at 1. Let G0 be graph obtained after contracting the boundary spike in G1. We will prove that
π(G0) = S0, which will yield the desired contradiction. The proof is similar to the case handled in
§5.2.

Recall the notation from Definition 5.2.17, where we let Ak,` denote the sequence ak, . . . , a`.

Definition B.2. A circular pair (P ;Q) = (A1,n;B1,n) is said to be incomplete if (P ;Q) /∈ S but
(P ;Q′) = (A1,n; 1, B2,n) ∈ S and (P ′;Q) = (1, A1,n;B1,n) ∈ S. If, on the other hand, (P ;Q) ∈ S in
addition to (P ;Q′) and (P ′;Q), (P ;Q) is said to be complete.

We also define the set P of primary circular pairs as in §5.2, where we take circular pairs of
the form (P ;Q) = (A1,n;B1,n) with the property that (A1,n; 1, B2,n), (1, A2,n, B2,n) ∈ S. It is easy
to see that the analogue of Lemma 5.2.9 holds when (P ;Q) is incomplete. Then, because S0 has
all BEPs, the primary circular pairs (A1,n;B1,n) will all have a1 = 2, b1 = n. We now prove a series
of lemmas, mirroring those in 5.2.

Lemma B.3. For an incomplete circular pair (P ;Q) = (A1,n, B1,n), any electrical positroid Z
satisfying S0 ∪ {(P ;Q)} ⊂ Z ⊂ S1 con (P + a;Q+ b) with a > a|P |, b < b|P | when (P + a;Q+ b) is
incomplete.

Proof. First by Axiom 1a in Z, (P ;Q) ∈ Z and (P + a− a1;Q+ b− b1) ∈ Z implies that we either
have our claim, or we have (P + a − a1;Q) ∈ Z and (P ;Q + b − b1) ∈ Z. We first apply Axiom
2a to 1, a1, a; b1 on the circular pair (P + a + 1, Q + b). We have (P + 1 + a − a1;Q + b) ∈ S by
definition, and we also have (P ;Q + b− b1) ∈ Z, so this implies that we either have our claim, or
we have (P + 1;Q+ b) ∈ Z. The latter then implies that (P ;Q+ b− b1) ∈ S. A similar argument
for Axiom 2a on a1; 1, b1, b gives either our claim or that (P + a − a1;Q) ∈ S. Then, Axiom 2a
implies that (P ;Q) ∈ S, a contradiction. Thus, we have our claim.

Lemma B.4. For any incomplete circular pair (P ;Q), there exists a circular pair (P ′;Q′) ∈ P
such that any electrical positroid Z satisfying S0 ∪ {(P ;Q)} ⊂ Z ⊂ S1 contains (P ;Q).

Proof. Proceed by induction on i, where i is such that the first i connections (see Definition 5.2.18)
of (P ;Q) are the same as those of a primary circular pair. The base case may be handled similarly
as in the proof of Lemma 5.2.19. Now, let (R;T ) = (A1,n;B1,n) be the primary circular pair such
that if (P ;Q) = (C1,m;D1,m), then ai ≤ ci, bi ≤ di for all i; (R;T ) exists by an identical argument
as in the proof of Lemma 5.2.19. Call (R;T ) the primary circular pair associated to (P ;Q).

Recalling that a1 = 2, b1 = n, we first need to show that (2, A2,i+1, Ci+2,m; 1, B2,i+1, Di+2,m) ∈
S. The same result replacing (2, 1) with (1, n) would follow from an identical argument. By the
definition of the (1, 2)-BEP, we need to show that (A2,i+1, Ci+2,m;B2,i+1, Di+2,m) ∈ S. In the case
that i > 2, we do so by applying Lemmas 5.2.9 and Lemma 5.2.13. In the case that i = 0, we may
apply the Subset Axiom. Finally, in the case that i = 1, we may apply Lemma 5.2.11.

We now claim that, if (A;B) = (A1,i+1, Ci+2,m;B1,i+1, Di+2,m) ∈ Z, then (P ′;Q′) ∈ Z. The
lemma will then follow, because (A;B) and (P ;Q) are easily seen to have the same primary asso-
ciated circular pair. If i > 0, the proof of the claim is identical to that of 5.2.19, so assume that
i = 0. In this case, we have (a1, C2,m; b1, D2,m), (C1,m; 1, D2,m) ∈ Z. If a1 6= c1, Axiom 1b implies
that we have (C1,m; b1, D2,m) ∈ Z. Then, as (1, C2,m;D1,m) ∈ Z, we are done by Axiom 1b.
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Lemma B.5. There is exactly one circular pair in P that does not lie in S0, which we call the
S0-primary circular pair.

Proof. The argument is the same to that of Lemma 5.2.20.

Lemma B.6. For any incomplete circular pair (P ;Q), any electrical positroid Z satisfying S0 ∪
{(P ;Q)} ⊂ Z ⊂ S1 contains the S0-primary circular pair.

Proof. Proceed by retrograde induction on i, where i is such that the first i connections of (P ;Q)
are the same as those of the S0-primary circular pair. If i > 0, we can argue exactly as in the proof
of Lemma 5.2.21. Thus, assume that i = 0.

Let (R;T ) = (A1,n;B1,n) be the S0-primary circular pair. By Lemma B.5, (P ;Q) = (C1,m;D1,m)
has the property that ai ≤ ci, bi ≤ di for all i. Also, by how the construction of S1, for any circular
pair (C,D), (C+1;D+n) ∈ S0 ⇔ (C+1;D+n) ∈ S1 and (C+2;D+1) ∈ S0 ⇔ (C+2;D+1) ∈ S1.
Therefore, it follows that (P +1;Q+n), (P +2;Q+1) /∈ Z. Then, by Axiom 1a, (2, C2,m;D1,m ∈ Z,
and another application of Axiom 1a yields (2, C2,m;n,D2,m) ∈ Z, completing the proof.

Lemma B.7. For any two incomplete circular pairs (P ;Q) and (P ′;Q′) any electrical positroid Z
containing S and contained in S′ with (P ;Q) must contain (P ′;Q′).

Proof. By Lemma B.4, Z contains the primary circular pair. The claim then follows by Lemma
B.6.

Lemma B.8. Let T = S0 ∩ S′0. Then, T is an electrical positroid.

Proof. The proof follows the same outline as that of Lemma 5.2.23; here, we verify that T satisfies
each electrical positroid axiom. By construction, S0 and S′0 only differ in the circular pairs (P ;Q)
for which (P − a1 + 1;Q), (P ;Q − b1 + 1) ∈ S0 ∩ S′0. In particular, 1 6= P,Q. T is easily seen to
satisfy the electrical positroid axioms other than 1a and 2a.

We first consider Axiom 1a: suppose that (P −a;Q−c), (P − b;Q−d) ∈ T ; we show that either
(P −a;Q−d), (P − b;Q− c) ∈ T or (P ;Q), (P −a− b;Q− c−d) ∈ T . We have the following cases:

• a, c 6= 1. Suppose that (P − a;Q− d) ∈ S′0. Then, either (P − a;Q− d) ∈ S0 or (P − a;Q−
b1− d+ 1) ∈ S0. Axiom 1b applied to (P ;Q− d+ 1) with a, b, 1, b1 gives (P − a;Q− d) ∈ S0.
Similarly, the roles of S′0 and S0 may be swapped, and we may apply the same argument with
(P − b;Q− c). Thus, either S0 and S′0 both contain (P − a;Q− d) and (P − b;Q− c) or both
do not, in which case they both contain (P ;Q) and (P − a− b;Q− c− d).

• a = 1, b 6= a2. Suppose that (P −a;Q−d) ∈ S′0 and (P −b;Q−c) ∈ S′0. Then, (P −b;Q−c) ∈
S0. If (P −a;Q−d) ∈ S0, we are done. Otherwise, if (P −a;Q−d) /∈ S0, as S0 is an electrical
positroid, we find (P ;Q) ∈ S0 and (P−a−b;Q−c−d) ∈ S0. Then, we must have (P ;Q) ∈ S′0,
in which case we are done, or either (P−1−b;Q−c−d) ∈ S′0 or (P−a2−b;Q−c−d) ∈ S′0. In
the latter case, Axiom 2b applied to (p;Q−d) with 1, a2, b, c gives that (P−1−b;Q−c−d) ∈ S′0.
Thus, S0 and S′0 contain (P −a− b;Q− c−d) and (P ;Q), so we are done in this case as well.

• The cases a = 1, b = a2, c 6= b1 and a = 1, b = a2, c = b1 are handled by similar logic; the
details are omitted. The case c = 1 is symmetric with a = 1.

We now consider Axiom 2a: suppose that (P −b;Q), (P −a−c;Q−d) ∈ T ; we show that either
(P −a;Q), (P − b− c;Q−d) ∈ S or (P − c;Q), (P −a− b;Q−d) ∈ T . We have the following cases:
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• a, d 6= 1, d 6= b1. If (P − a;Q) ∈ S′0, then either (P − a;Q) ∈ S0 or (P − a;Q− b1 + 1) ∈ S0.
Then, an application of Axiom 1b to (P ;Q + 1) with a, b, 1, b1 yields that (P − a;Q) ∈ S0.
The same argument holds if (P − a;Q) ∈ S0 to show that (P − a;Q) ∈ S′0 does as well. Now,
suppose (P − b−c;Q−d) ∈ S′0. Then, either (P − b−c;Q−d) ∈ S0, which case we are done,
or (P −a1− b− c+ 1;Q−d) ∈ S0. Then, the Subset Axiom, (P −a1− b− c;Q− b1−d) ∈ S0.
Applying Axiom 1c to (P − b;Q) with (a1, c, b1, d) then yields that (P − b − c;Q − d) ∈ S0,
as desired. The same argument holds if we swap the roles of S0 and S′0.

• a 6= 1, d = b1. If (P − a;Q) ∈ S′0, by the same argument as with the case a, d 6= 1, d 6= b1, we
have (P − a;Q) ∈ S0. If (P − b− c;Q− d) ∈ S′0 as well, then either (P − b− c;Q− d) ∈ S0,
in which case we are done, or (P + 1− a1 − b− c;Q− d) ∈ S0. In the latter case, because S0
is an electrical positroid, (P − c;Q) ∈ S0. Then, applying Axiom 2b to (P + 1 − c;Q) with
(1, a1, b, d) gives that (P − b− c;Q− d) ∈ S0, so we are done.

• The cases a = 1 and d = 1 are handled with similar logic; the details are omitted.

We have exhausted all cases, so the proof of the lemma is complete.

Now, by Lemma B.7, we have S0 = S′0, so the proof of Theorem 5.1.7 is complete.

C Mutation at limiting minors in LMn

Recall that, to complete the proof of Theorem 6.2.17, we need an additional technical result,
which we state and prove here.

Proposition C.1. From the initial cluster of LMn, mutating at a non-frozen limiting solid circular
pair (P ;Q) gives a new cluster variable which is a polynomial in the entries of M , and relatively
prime to (P ;Q).

Proof. Consider the limiting solid circular pair (P ;Q) of size k. Fix the ground set

(I; J) =
(n

2
,
n

2
+ 1, . . . ,

n

2
+ k; 2, 1, n, n− 1, . . . , n− k + 1

)
,

so that ∆ denotes the determinant of the submatrix of M with rows indexed by I and columns
indexed by J . Furthermore, let

b =
n

2
+ k − 1, c =

n

2
+ k, d = 2, e = 1, f = n− k + 2, g = n− k + 1.

Then, the cluster variable associated to the vertex (P ;Q) is ∆c,dg, and its corresponding exchange
polynomial in the initial seed of LMn is

∆∅,d ·∆c,fg ·∆bc,deg + ∆∅,g ·∆c,de ·∆bc,dfg.

The new cluster variable from mutating at (P ;Q) is

∆∅,d ·∆c,fg ·∆bc,deg + ∆∅,g ·∆c,de ·∆bc,dfg

∆c,dg
= ∆b,de ·∆c,fg −∆b,fg ·∆c,de,

where the last equality may be checked directly. We wish to show that ∆c,fg − ∆b,fg · ∆c,de is
relatively prime to ∆c,dg, which is irreducible, so it is enough to check that ∆c,dg does not divide
Π = ∆b,de ·∆c,fg −∆b,fg ·∆c,de.
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Let us outline the argument. If it is the case that ∆c,dg divides Π, then each term in the
expansion of Π must be divisible by a monomial in the expansion of ∆c,dg. However, we claim
that this cannot be true. Indeed, any monomial in the expansion of ∆c,dg contains exactly one
factor of a variable xbz in the row of M corresponding to b, and the column of M corresponding
to z 6= 2, n − k + 1. However, it is easily checked that there are terms of Π, after expanding and
collecting like terms, containing variables Xbz with z = 2, so the claim is established.
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