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Abstract. We study the basis of the ring of symmetric functions by constructing random
ring homomorphisms from the ring of symmetric functions to finite fields Fq. In particular,
we aim to answer the question: what is the probability of some Schur function mapping
to zero as we map each elementary symmetric function to Fq uniformly at random. In
this paper, We show that this probability is always at least 1/q and is asymptotically 1/q.
Moreover, we give a complete classification of all shapes that can achieve probability 1/q.
In addition, we further research some conditional probabilities and the probabilities of some
Schur functions mapping to other values in Fq.

1. Introduction

1.1. Motivation and Problem Statement.
A symmetric polynomial is defined to be a polynomial which stays unchanged by any

permutation of its variables. This definition can be adapted to generic functions, but we are
only concerned about polynomial functions as little theory has been established on symmetric
non-polynomial functions. The study of symmetric functions has never stopped as it has
extremely wide applications to many areas of math.

Let Λ denote the algebra of symmetric functions over Z, the ring of integers. The structure
of Λ, as a Z-module, is generally well-understood by some of its famous bases: the monomial
symmetric functions {mλ}, the elementary symmetric functions {eλ}, the complete homoge-
neous symmetric functions {hλ} and the Schur functions {sλ} [1], where these functions are
indexed by partitions λ. And as a Z-algebra, the elementary symmetric functions {ei}i∈Z≥1

and the complete homogeneous symmetric functions {hi}i∈Z≥1
are both bases of Λ. We will

give definitions to these functions in Section 1.2. Transforming from one basis to another
carries a lot of combinatorial meanings, as shown in [1].

As a standard method to understand a complicated structure, we will try to study the
relations between these standard bases by forming ring homomorphisms from Λ to Fq, the
finite field of order q. In particular, we pose the following question.

Question. If we take a random ring homomorhpism Λ → Fq by picking the image of
{hi}i∈Z≥1

(or {ei}i∈Z≥1
) uniformly at random, what is the probability that sλ 7→ 0, for some

certain partition shape λ?

The Jacobi-Trudi identity (Theorem 1.8) [1] gives us a way to write sλ as a determinant
of hi’s (ei’s). As a result, our problem is essentially equivalent to studying certain random
matrices over the finite field Fq. The literature of random matrices is vast on its own.

In this paper, we show that the specific matrices we are looking at, which we call “Jacobi-
Trudi matrices”, have very nice properties in terms of the probability that the determinants
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go to zero. In particular, we show that the probability of sλ mapping to zero is at least 1/q
(Theorem 3.1) and is asymptotically 1/q as q → ∞ (Theorem 3.5). Moreover, we give a
complete classification of all shapes λ such that the probability of its Jacobi-Trudi matrix
being singular is 1/q (Theorem 5.8). In fact, they are hooks (Definition 1.3), rectangles
(Definition 1.5) and staircases (Definition 1.6). In addition, we look at some conditional
probability of these shapes (Section 6) and the probability that sλ maps to other values in
Fq (Section 7).

1.2. Review of Basic Definitions.
We review some of the related definitions and theorems. Readers can refer to [1] for details.
A (polynomial) function f(x1, · · · , xm) is called symmetric if for any σ ∈ Sm, we have

f(x1, · · · , xm) = f(xσ(1), · · · , xσ(m)).

Definition 1.1. For any positive integer k, the elementary symmetric function ek is defined
as

ek(x1, · · · , xn) =
∑

i1<···<in

xi1 · · ·xik

Definition 1.2. For any positive integer k, the complete homogeneous symmetric function
hk is defined as

hk(x1, · · · , xn) =
∑

i1≤···≤in

xi1 · · ·xik

For example, e2(x1, x2) = x1x2, while h2(x1, x2) = x21 + x1x2 + x22.
The elementary symmetric functions are symmetric functions and they form an algebraic

basis for Λ, the algebra of symmetric functions, and so do the complete homogeneous sym-
metric functions.

A partition λ of a positive integer n is a sequence of positive integers (λ1, λ2, · · · , λk) where

λ1 ≥ λ2 ≥ · · · ≥ λk and
∑k

i=1 λk = n. For each i, the integer λi is called the ith part of λ. We
call n the size of λ, and denote by |λ| = n. We call k the length of λ, and denote by l(λ) = k.
For simplicity, we use the notation bn as an abbreviation for the partition (b, · · · , b)︸ ︷︷ ︸

n many b’s

.

We give some partitions of certain forms special names:

Definition 1.3. A hook shape is a partition λ of the form λ = (a, 1m).

Definition 1.4. A fattened hook is a partition λ of the form λ = (an, bm).

Definition 1.5. A rectangle is a partition λ of the form λ = (bm).

Definition 1.6. A staircase is a partition λ of the form λ = (k, k − 1, . . . , 1).

For any partition λ = (λ1, λ2, · · · , λk) of n we can associate a Young diagram, which is a
collection of left-justified boxes with λi many boxes in the ith row from the top for each i.
By abuse of notation we will also call this Young diagram λ.

For any partition λ of n, if we look at its Young diagram and write down the number of
boxes in each column from left to right, then we obtain a new partition λ′ of n. We call it
the transpose of λ.
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For example, for λ = (4, 2, 1), the corresponding Young diagram is

,

and its transpose is λ′ = (3, 2, 1, 1).
A semi-standard Young tableau of shape λ and size n is a filling of the boxes of λ with

positive integers such that the entries weakly increase across rows and strictly increase down
columns. To each of the semi-standard Young tableaux T of shape λ and size n we may
associate a monomial xT given by

xT =
∏
i∈N+

xmi
i ,

where mi is the number of times the integer i appears as an entry in T .
To illustrate, take λ = (4, 2, 1). Then a semi-standard Young tableau of shape λ is given

by

T = 1 1 2 4

4 6

5

,

and the corresponding monomial is xT = x21x2x
2
4x5x6.

With these, we can define the Schur function as follows.

Definition 1.7. The Schur function sλ is defined as

sλ =
∑
T

xT ,

where the sum is across all semi-standard Young tableaux of shape λ.

It is well-known that the Schur functions are symmetric functions and they form a linear
basis for the algebra of symmetric functions.

We have the following Jacobi-Trudi identity that connects Schur functions with elementary
symmetric functions and complete homogeneous symmetric functions.

Theorem 1.8 (Jacobi-Trudi Identity). For any partition λ = (λ1, · · · , λk) and its transpose
λ′, we have

sλ = det (hλi−i+j)
k
i,j=1,

sλ′ = det (eλi−i+j)
k
i,j=1,

where we define h0 = e0 = 1 and hm = em = 0 for m < 0.

2. Preliminaries

2.1. Definition of Certain Matrices.
We begin by giving some terminology on matrices and polynomials.
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Definition 2.1. Let A = (aij) be a square matrix of size n, for each 1 ≤ k ≤ 2n − 1,
define the kth diagonal to be the collection of all entries aij with i − j = n − k. We call
the nth diagonal the main diagonal. Similarly, we define the the kth antidiagonal of A to be
the collection of all entries aij with i + j = k + 1. We call the nth antidiagonal the main
antidiagonal.

Definition 2.2. Let x1, x2, · · · , xm be free variables. For a polynomial in the form xk−fk−1
where fk−1 is a polynomial in x1, · · · , xk−1, we call k the label of this polynomial. For a
nonzero constant, we define its label to be 0. We leave the label of 0 undefined.

It is handy to generalize the kind of square matrices arising from Jacobi-Trudi identities
for Schur functions. In particular, we define three types of square matrices, namely, general
Schur matrix, reduce general Schur matrix, and special Schur matrix, each containing the
next.

Definition 2.3. An n× n matrix M = (Mij)
n
i,j=1 is called a general Schur matrix of size

n with m variables x1, · · · , xm if it satisfies the following conditions:

(a) For each 1 ≤ i ≤ n, the ith row is in the form (0, · · · , 0︸ ︷︷ ︸
di many 0’s

,Mi(di+1), · · · ,Min︸ ︷︷ ︸
nonzero entries

), and the

number of zeros are weakly increasing across rows, i.e., we have 0 ≤ d1 ≤ · · · ≤ dn ≤ n.
(b) Every nonzero entry is either a nonzero constant in Fq or a polynomial in the form xk−f

where k ∈ [m] and f is a polynomial in x1, · · · , xk−1 with coefficients in Fq.
(c) The labels of the nonzero entries are strictly increasing across rows and strictly decreasing

down columns. So in particular, the label of the upper right entry is the largest.

Example 2.4. For example, this is a general Schur matrix M of size 6 with 13 free variables
x1, · · · , xm: 

x4 x5 x6 − x1x3 x8 − x25 x10 x13 + 4
x2 x3 x5 − x3 x7 − x25 x9 x12 − x11 + 3
0 x2 − x1 x4 x5 x8 − x1 − x2 x11
0 3 x3 − 3x1x2 x4 x7 x10 − x7x9
0 0 x2 − x1 x3 − x2 x6 − 4x2 + 4 2x9
0 0 0 x1 x2 − 2 x8


If we strengthen the condition a bit such that we don’t allow nonzero constants as entries,

then we obtain a reduced general Schur matrix:

Definition 2.5. Let M be a general Schur matrix of size n with m free variables x1, · · · , xm.
It is called a reduced general Schur matrix if it has the additional property that no entry
is a nonzero constant.

Definition 2.6. A reduced general Schur matrix of size n with m free variables x1, · · · , xm
is called a special Schur matrix if

(a) none of its entries is 0;
(b) none of its entries has a nonzero constant term;
(c) for any 2× 2 submatrix of it, the sum of labels of the two entries on the main diagonal

equals the sum of labels of the two entries on the main antidiagonal.
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Example 2.7. Here is an example of a special Schur matrix of size 4:


x5 x6 x8 − x25 x9 − x3x6
x4 x5 − x2 x7 x8
x2 x3 x4 x5
x1 x2 x3 x4


2.2. Definition of Certain Operations.

Now we define two operations ψ and ϕ that are going to be useful later. Intuitively, ψ
can be thought of as doing row and column reductions in the flavor of Gaussian elimination,
whereas ϕ can be viewed as making assignments and applying ψ together step by step.

Definition 2.8. Let M be a general Schur matrix of size n with m variables. Define an
operation ψ that takes general Schur matrices to reduced general Schur matrices:

(a) If M has no nonzero constants as entries, then ψ(M) = M .
(b) If M has k ≥ 1 many nonzero constant entries, then from top to bottom, for each of

these k entries we use it as a pivot to turn all the other entries in its column into zero by
subtracting multiple of its row from each of the rows above. Then we further use these
nonzero constants to turn all the other entries in the their rows into zero by column
operations. After that we delete the rows and columns with these nonzero constants and
obtain a reduced general Schur matrix M ′. Define ψ(M) = M ′ in this case.

In this way, ψ(M) is either an empty matrix, or a nonempty reduced general Schur matrix
of size at most n with at most m variables. Notice that as long as there is one row or column
of M that doesn’t have a nonzero constant, then ψ(M) will be nonempty, in which case the
determinant of ψ(M) equals a nonzero constant times the determinant of M . So if we assign
the variables to numbers in Fq randomly, we have P (detM 7→ 0) = P (detψ(M) 7→ 0).

We now give two examples to illustrate the operation ψ.

Example 2.9. Here is an example of how ψ works:

M1 =


0 2x2 x4 x5
0 1 4x3 x4
0 0 x1 x3 − x2
0 0 0 x2


use nonzero constants to do row and column operations−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→


0 0 x4 − 8x2x3 x5 − 2x2x4
0 1 0 0
0 0 x1 x3 − x2
0 0 0 x2


delete the rows and columns with nonzero constants−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

0 x4 − 8x2x3 x5 − 2x2x4
0 x1 x3 − x2
0 0 x2

 = ψ(M1)
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Let M2 be a Jacobi-Trudi matrix corresponding to λ = (4, 4, 2, 2). Then we have

M2 =


h4 h5 h6 h7
h3 h4 h5 h6
1 h1 h2 h3
0 1 h1 h2


ψ−→
[
h6 − h1h5 − h2h4 + h21h4 h7 − h2h5 − h3h4 + h1h2h4
h5 + h21h3 − h2h3 − h1h4 h6 − h2h4 − h23 + h1h2h3

]
= ψ(M2)

Remark 2.10. For any Schur function, its Jacobi-Trudi matrix M is a general Schur matrix.
If we apply ψ to it, then we obtain a reduced general Schur matrix ψ(M). Further, notice
that by the Jacobi-Trudi identity, any 0 in M must appear in a row with a 1 in it, and this
row is deleted when we apply ψ. Therefore, ψ(M) does not have any 0’s and hence satisfies
property (a) for special Schur matrices. In addition, notice that M satisfies property (b) and
(c) for special Schur matrices, and a simple induction shows that ψ(M) also satisfies these
properties. Hence ψ(M) is actually a special Schur matrix.

Definition 2.11. Let M be a reduced general Schur matrix of size n with m variables.
Define recursively an operation ϕ that takes general Schur matrices and a set of assignments
to reduced general Schur matrices:

(a) ϕ(∅; any assignment) = ∅, where ∅ denotes the empty matrix.
(b) ϕ(M ;x1 = a1) = ψ(M(x1 = a1)), where M(x1 = a) denotes the matrix obtained from

M by assigning value a1 to x1.
(c) ϕ(M ;x1 = a1, · · · , xi = ai) = ϕ(ϕ(M ;x1 = a1, · · · , xi−1 = ai−1);xi = ai) for i ≥ 2.

In this way, ϕ(M ;x1 = a1, · · · , xi = ai) is either empty or a reduced general Schur matrix.

Notice that if M ′ = ϕ(M ;x1 = a1, · · · , xi = ai) is empty, then P (detM 7→ 0|x1 =
a1, · · · , xi = ai) = 0. If instead M ′ is nonempty, then by how ψ works we have P (detM 7→
0|x1 = a1, · · · , xi = ai) = P (detM ′ 7→ 0). Also notice that as long as M has one row or
column such that its entries all have labels strictly larger than i, then M ′ will be nonempty,
which can be easily shown by induction. These two observations will be useful in many
proofs below.

3. General Results

3.1. Lower bound on the probability.

Theorem 3.1. Let matrix M be a reduced general Schur matrix of size n with m free variables
x1, · · · , xm. Then assigning the variables to numbers in Fq randomly, we have P (detM 7→
0) ≥ 1/q.

Proof. By induction on the number of variables m.
Base case. If the number of variables is 0, then for any n > 0 the matrix M is the zero

matrix, and the conclusion trivially holds.
If the number of variables is 1, then by the constraints we know all entries except the

(1, n)th entry is 0. Hence P (detM 7→ 0) equals 1/q if n = 1 and equals 1 if n ≥ 2. In any
case, P (detM 7→ 0) ≥ 1/q.

Induction step. Suppose for any m < k, where k ≥ 2, we have P (detM 7→ 0) ≥ 1/q for
any matrix M with k many free variables.
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Then for m = k, for a matrix M with k free variables, consider the smallest label among
the entries. Let it be some i ≥ 1. If there are n many entries with label i, then by definition
of reduced general Schur matrix we know M is forced to be an upper triangular matrix and
all the entries on the main diagonal have label i. Then for any assignment of the variables
other than xi, we have at least one way to assign xi so that at least one of the diagonal entries
equals 0, which makes the determinant equal 0. In this case we have P (detM 7→ 0) ≥ 1/q.

If instead there are at most (n−1) many entries with label i, then for any list of constants
a1, · · · , ai, M ′ = ϕ(M ;x1 = a1, · · · , xi = ai) is a reduced general Schur matrix of size at least
1 with at most k− i variables. By the induction hypothesis, we have P (detM ′ 7→ 0) ≥ 1/q.
Since P (detM ′ 7→ 0) = P (detM 7→ 0|x1 = a1, · · · , xi = ai), combining all the conditional
probabilities from the different assignments we get P (detM 7→ 0) ≥ 1/q.

Hence we have that P (detM 7→ 0) ≥ 1/q, as desired. �

Corollary 3.2. P (sλ 7→ 0) ≥ 1/q for all shape λ.

Proof. Let M be the matrix for sλ. It is a general Schur matrix. Since M has at most n−1
many 1’s, ψ(M) is a nonempty reduced general Schur matrix. Apply the previous theorem
we obtain P (detM 7→ 0) = P (detψ(M) 7→ 0) ≥ 1/q. �

This corollary gives us the lower bound on the probability P (detM 7→ 0), which is 1/q. In
the following sections, we will investigate which shapes will have exactly the probability 1/q,
and give a complete characterization of them. Further, we will show that the probability is
asymptotically 1/q for all shapes when q approaches infinity.

3.2. Asymptotic Bound.
In this section we show the asymptotic bound of P (detM 7→ 0) is 1/q as q approaches

infinity. To do that, we first find an upper bound for the probability that a reduced general
Schur matrix is singular.

Lemma 3.3. For a reduced general Schur matrix M of size n with 0’s strictly below the
main diagonal, we have P (detM 7→ 0) ≤ n/q.

Proof. By induction on size n.
Base case. When n = 1, M consists of a single entry in the form xj − fj−1 for some

positive integer j, and P (detM 7→ 0) = P (xj = fj−1) = 1/q ≤ n/q.
Induction step. Suppose the lemma holds for all k ≤ n. Then for n, let the smallest label

among all the entries on the main diagonal be i. It suffices to show each of the conditional
probabilities from assigning x1, · · · , xi−1 is at most n/q.

Assign x1, · · · , xi−1 by some values a1, · · · , ai−1. Consider M ′ = ϕ(M ;x1 = a1, · · · , xi−1 =
ai−1) with size k. We know k ≥ 1 since all the entries in the last column of M have label at
least i, and 0’s are still strictly below the main diagonal in M ′. If k < n, by the induction
hypothesis we know that P (detM ′ 7→ 0) ≤ k/q ≤ n/q.

Hence we only need to consider the case when k = n. This means we deleted no rows
or columns when applying ϕ. Let the number of diagonal entries with label i be l. Notice
the diagonal entries with label i are all in the form xi − a for some constant a, and let the
number of different a’s be r ≤ l. We can assign xi to be one of these r numbers, and the
probability of detM ′ = 0 in this sub-case is always no greater than 1. If we instead assign
xi to be none of these r numbers, then we obtain l many nonzero constants on the main
diagonal. Applying ψ we obtain a reduced general Schur matrix of size at most n − l, and
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the conditional probability in this sub-case is at most (n− l)/q by our induction hypothesis.
Combining the two sub-cases, we get

P (detM 7→ 0|x1 = a1, · · · , xi−1 = ai−1) = P (detM ′ 7→ 0)

≤ r

q
· 1 +

q − r
q
· n− l

q

=
n

q
− l − r

q
− r(n− l)

q2

≤ n

q

�

Lemma 3.4. Let M be a reduced general Schur matrix of size n ≥ 2 with 0’s strictly below
the (n − 1)th diagonal. Let N be the (n − 1) × (n − 1) submatrix on its lower left corner.
Then P (detM 7→ 0 & detN 7→ 0) ≤ n(n− 1)/q2.

Proof. By induction on n.
Base case. When n = 2, denote M by (Mij)

2
i,j=1. detN = M21 has a 1/q probability to

be 0. Given detN = 0, we have detM = M11M22. Each of M11 and M22 has a conditional
probability of 1/q to be zero, so combining gives at most 2/q to make detM = 0. Hence

P (detM 7→ 0 & detN 7→ 0) ≤ 1/q · 2/q = n(n− 1)/q2.

Induction step. Suppose the lemma holds for all 2 ≤ k < n. Then for n, let the smallest
among all the labels of the entries on the (n− 1)th diagonal be i. It suffices to show each of
the conditional probabilities from assigning x1, · · · , xi−1 is at most n(n− 1)/q.

Assign x1, · · · , xi−1 by some values a1, · · · , ai−1. Consider the square matrixM ′ = ϕ(M ;x1 =
a1, · · · , xi−1 = ai−1) of size k. Notice k ≥ 2, and 0’s are still strictly below the (k − 1)th

diagonal. Since the determinants of M ′ and its (k− 1)× (k− 1) submatrix at the lower left
corner N ′ are just some nonzero constant times the determinants of M and N , respectively,
the conditional probability in this case equals P (detM ′ 7→ 0 & detN ′ 7→ 0). If k < n, then
by the induction hypothesis, the conditional probability is at most k(k−1)/q2 ≤ n(n−1)/q2.

We are only left with the case when k = n. Let the number of entries on the (n − 1)th

diagonal with label i be l ≤ n − 1. Each of these l entries is in the form xi − a for some
constant a, and let the number of different a’s be r ≤ l. We can assign xi to be one of
these r numbers, and by the previous lemma the conditional probability of detM = 0 in this
sub-case is at most n/q. If we instead assign xi to be none of these r numbers, then we get
l many nonzero constants on the (n− 1)th diagonal of M ′. Applying ψ we obtain a reduced
general Schur matrix of size at most n− l, and in this sub-case the condition probability is
at most (n− l)(n− l− 1)/q2 by our induction hypothesis. Combining the two sub-cases, we
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get

P (detM 7→ 0 & detN 7→ 0|x1 = a1, · · · , xi−1 = ai−1)

≤r
q

n

q
+
q − r
q
· (n− l)(n− l − 1)

q2

=
n(n− 1)

q2
− n(l − r)

q2
− l(n− 1− l)

q2
− r[l2 − (2n+ 1)l + n(n− 1)]

q3

≤n(n− 1)

q2
− r[(n− 1)2 − (2n− 1)(n− 1) + n(n− 1)]

q3

≤n(n− 1)

q2

�

Theorem 3.5. For any shape λ, we have P (sλ 7→ 0) = 1/q +O(1/q2).

Proof. We show equivalently that q · P (sλ 7→ 0)→ 1 as q →∞.
Let M be the Jacobi-Trudi matrix for sλ and let M ′ = ψ(M). We have P (sλ 7→ 0) =

P (detM ′ 7→ 0).
If M ′ has size 1, then P (sλ 7→ 0) = 1/q and we automatically have the result.
If M ′ has size n ≥ 2, denote the label of the upper right entry of M ′ by k and the

(n− 1)× (n− 1) submatrix on its lower right corner by N ′. If detN ′ 6= 0. Expansion across
the first row gives detM ′ = (−1)n+1 detN ′hk + P (h1, · · · , hk−1) where P (h1, · · · , hk−1) is a
polynomial not involving hk. Thus for any assignment of h1, · · · , hk−1, we have precisely one
way to assign hk to achieve detM ′ = 0. Hence P (detM ′ 7→ 0| detN ′ 67→ 0) = 1/q.

We thus have

P (detM ′ 7→ 0) = P (detM ′ 7→ 0| detN ′ 7→ 0)P (detN ′ 7→ 0)

+ P (detM ′ 7→ 0| detN ′ 67→ 0)P (detN ′ 67→ 0)

= P (detM ′ 7→ 0 & detN ′ 7→ 0) + 1/q · P (detN ′ 67→ 0)

≤ n(n− 1)/q2 + 1/q · 1
= 1/q + n(n− 1)/q2

where the inequality follows from the previous lemma.
Since by Theorem 3.2, P (sλ 7→ 0) ≥ 1/q, we have that

1 = q · 1/q ≤ q · P (sλ 7→ 0) ≤ q · [1/q + n(n− 1)/q2] = 1 + n(n− 1)/q.

Taking q →∞ gives us the desired result. �

3.3. General Form of the Probability.
For any partition shape λ, the probability P (sλ 7→ 0) is given by the number of assign-

ments that maps sλ to 0 over the total number of assignments, where the total number of
assignments is always a power of q. The nice results in the following sections may mislead the
reader into assuming that for a given Jacobi-Trudi matrix, the number of singular matrices
is always counted by a polynomial in q and the probability is thus always a rational function
in q. However, as the next proposition points out, a counterexample shows that this is not
always the case.
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Proposition 3.6. For λ = (4, 4, 2, 2), we have

P (sλ 7→ 0) =

{
q4+(q−1)(q2−q)

q5
if q ≡ 0 mod 2

q4+(q−1)(q2−q+1)
q5

if q ≡ 1 mod 2

Proof. By Jacobi-Trudi, we have

sλ =

∣∣∣∣∣∣∣∣
h4 h5 h6 h7
h3 h4 h5 h6
1 h1 h2 h3
0 1 h1 h2

∣∣∣∣∣∣∣∣ .
Denote this Jacobi-Trudi matrix by M . We count the number of assignments of the

variables such that M is singular.
Apply ψ to M gives

ψ(M) =

[
h6 − h1h5 − h2h4 + h21h4 h7 − h2h5 − h3h4 + h1h2h4
h5 + h21h3 − h2h3 − h1h4 h6 − h2h4 − h23 + h1h2h3

]
=

[
h6 − a h7 − b
h5 − c h6 − d

]
The question now turns to count how many assignments will make ψ(M) singular. We

have detψ(M) = (h6 − a)(h6 − d) − (h7 − b)(h5 − c). If h5 6= c, then a 6= 0, so once we
have chosen other variables, there is exactly one choice of h7 to make the matrix singular.
Choosing the variables in order gives q4 · (q − 1) · q · 1 = q6 − q5 many singular matrices in
this case.

If instead h5 = c, then detψ(M) = (h6 − a)(h6 − d). detψ(M) = 0 gives either h6 = a or
h6 = d. The equality h5 = c gives a − d = 2h1h2h3 − h31h3 − h23. Depending on whether q
has characteristic 2, we have two cases:
q has characteristic 2. Then a− d = −h3(h3 + h31).
If a − d = 0, then we have exactly one choice h6 = a = d to make the matrix singular

once we have chosen other variables. In this sub-case either both h1 and h − 3 are zero
or h1 nonzero and h − 3 equals 0 or −x31, resulting in a total of 1 + (q − 1) · 2 = 2q − 1
choices of h1 and h3. Hence choosing the x1, x3 pair, and x2, x4, x5, x7, x6 in order gives
q · (2q − 1) · q · 1 · q · 1 = 2q4 − q3 many singular matrices.

If a−d 6= 0, then we have two choices of h6, namely, a and d, to make the matrix singular.
In this sub-case we have a total of q2 − (2q − 1) = q2 − 2q + 1 choices of h1 and h3. Hence
choosing the x1, x3 pair, and x2, x4, x5, x7, x6 in order gives q · (q2 − 2q + 1) · q · 1 · q · 2 =
2q5 − 4q4 + 2q3 many singular matrices.

Adding these two gives 2q5 − 2q4 + q3 many singular matrices in this case.
q doesn’t have characteristic 2. Then a− d = −h3[h3 − h1(2h2 − h21)].
If a−d = 0, then we have exactly one choice of h6 to make the matrix singular. Discussion

on h1, h2, h3 gives a total of 2q2− 2q+ 1 choices of them to make a− d = 0. Hence choosing
the x1, x2, x3 triple, and x4, x5, x7, x6 in order gives (2q2− 2q+ 1) · q · 1 · q · 1 = 2q4− 2q3 + q2

many singular matrices.
If a − d 6= 0, then we have two choices of h6 to make the matrix singular. In this

sub-case we have a total of q3 − (2q2 − 2q + 1) = q3 − 2q2 + 2q − 1 choices of h1, h2, h3
to make a − d 6= 0. Hence choosing the x1, x2, x3 triple, and x4, x5, x7, x6 in order gives
(q3 − 2q2 + 2q − 1) · q · 1 · q · 2 = 2q5 − 4q4 + 4q3 − 2q2 many singular matrices.

Adding these two gives 2q5 − 2q4 + 2q3 − q2 many singular matrices in this case.
10



Therefore, if q has characteristic 2, then we have a total of q6 − q5 + 2q5 − 2q4 + q3 many
singular matrices; if q doesn’t have characteristic 2, then we instead get q6 − q5 + 2q5 −
2q4 + 2q3− q2 many of them. Dividing these two polynomials by q7 respectively gives us the
desired probabilities in the two cases. �

We call a function g : Z → C a quasi-polynomial if there exists an integer N > 0 and
polynomials g0, g1, · · · , gN−1 such that g(n) = gi(n) if n ≡ i mod N .

Remark 3.7. We have two other counterexamples. For λ1 = (4, 4, 3, 3), the data are given
below

λ1 = (4, 4, 3, 3)
q 2 3 4 5 7 8 9 11

f(q) 82 891 4852 18145 132013 290872 583929 1918081
P 41/26 11/34 1213/46 3629/56 18859/76 36359/86 89/94 174371/116

We have a quasi-polynomial as the numerator for P (sλ1 7→ 0) which fits the data we have:

P (sλ1 7→ 0) =


q5+(q−1)q3

q6
= q2+q−1

q3
if q ≡ 0 mod 3

q5+(q−1)(q3−1)
q6

if q ≡ 1 mod 3
q5+(q−1)(q3+1)

q6
if q ≡ 2 mod 3

Another counterexample is λ2 = (4, 4, 3, 2). The numerical data are

λ2 = (4, 4, 3, 2)
q 2 3 4 5 7 8 9 11

f(q) 84 909 5008 18425 133525 293952 588465 1928861
P 21/25 101/35 313/45 737/55 2725/75 4593/85 7265/95 15941/115

We also have a quasi-polynomial as the numerator for P (sλ2 7→ 0) which fits the data above:

P (sλ2 7→ 0) =

{
q4+(q−1)(q2+q−1)

q5
if q ≡ 0 mod 2

q4+(q−1)(q2+q−2)
q5

if q ≡ 1 mod 2

We can show that every partition with less than 4 parts yields a rational function for the
probability. We can also show that of all partitions of 4 parts, these three examples we give
here are the smallest in terms of the first part of the partition to make the probability not
a rational function in q.

Based on these, we have the following conjecture:

Conjecture 3.8. For a partition λ, P (sλ 7→ 0) is always in the form f(q)/qk, where k is
some positive integer and f(q) is a quasi-polynomial depending on the residue class of q
modulo some integer.

3.4. Conjecture on the Upper Bound.
For any given k, we consider a special case such that the partition λ = (λ1, . . . , λk) has its

rows being far apart, i.e., λi − λi+1 ≥ k − 1 for each i < k and λk ≥ k. In this case, there is
no constant or repeated variable in the Jacobi-Trudi matrix, hence we are just counting the
number of singular matrices in the general linear group GLk(Fq).
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Proposition 3.9. Let λ = (λ1, . . . , λk), where λi − λi+1 ≥ k − 1 and λk ≥ k. Then

P (sλ 7→ 0) = 1− GLk(Fq)
qk2

=
1

qk2

(
qk

2 −
k−1∏
j=0

(qk − qj)

)
.

All the other conditions being equal, if we have λk < k instead, then

P (sλ 7→ 0) = 1− GLk−1(Fq)
q(k−1)2

=
1

q(k−1)2

(
q(k−1)

2 −
k−2∏
j=0

(qk−1 − qj)

)

Proof. We have

sλ =

∣∣∣∣∣∣∣∣∣
hλ1 hλ1+1 · · · hλ1+k−1
hλ2−1 hλ2 · · · hλ2+k−2
...

. . .
...

hλk−k+1 · · · hλk

∣∣∣∣∣∣∣∣∣ .

The condition λi−λi+1 ≥ k−1 ensures that the hj are all distinct, and the condition λk ≥ k
ensures that no entry in the above determinant is constant. The number of choices of the
hj such that the above determinant is zero is thus equal to the number of singular k × k
matrices over Fq, which is

qk
2 − |GLk(Fq)| = qk

2 −
k−1∏
j=0

(qk − qj).

The result follows.
Suppose now we have λk < k instead. We will count the number of invertible matrices of

the given form. Since we have λk−1− λk ≥ k− 1, λk−1 ≥ λk + k− 1 ≥ 1 + k− 1 ≥ k. Hence
the first k − 1 rows only have hj’s in them, while the last row has λk many hj’s, 1 one, and
k − 1 − λk zeros. Since row k has a nonzero entry thus cannot be the zero vector, we may
choose the λk many noncosntant entries in row k freely. Thus there are qλk number of ways
to choose row k. We can choose the other rows from bottom to top successively, and for row
k − i where 1 ≤< k, there are qk − qi ways to choose so that row k − i is not in the span
of the rows previously chosen. So we have in total qλk

∏k−1
i=1 (qk − qi) many ways to get an

invertible matrix. There are (k − 1)k + λk many hj’s, so there are in total q(k−1)k+λk many
12



matrices. Therefore

P (sλ 7→ 0) = 1− qλk
∏k−1

i=1 (qk − qi)
q(k−1)k+λk

=
1

qk2−k

(
qk

2−k −
k−1∏
i=1

(qk − qi)

)

=
1

qk2−k

(
qk

2−k − qk−1
k−2∏
i=0

(qk−1 − qi)

)

=
1

q(k−1)2

(
q(k−1)

2 −
k−2∏
i=0

(qk−1 − qi)

)

= 1− |GLk−1(Fq)|
q(k−1)2

�

Conceivably, if we have repeated variables or 1’s in the Jacobi-Trudi matrix, then it would
be harder to make some of the rows to be linearly dependent, which in turns decreases
probability that the Schur function is mapped to zero. This suggests that for a partition
λ with k parts, 1 − GLk(Fq)/qk

2
provides an upper bound for the probability P (sλ 7→ 0).

Numerical calculations so far seems to support this. Hence we have the following conjecture.

Conjecture 3.10 (Upper Bound). For any partition λ with k parts, we have P (sλ 7→ 0) ≤
1−GLk(Fq)/qk

2
.

4. Hooks, Rectangles and Staircases

In this section, we show that three kind of shapes, namely, hooks, rectangles and staircases,
have the probability being exactly 1/q.

4.1. Hooks.

Proposition 4.1. Let Λ := {λ(k)}k∈N be a collection of hook shapes such that |λ(k)| = k for
all k. Then the distributions of values of the collection {sλ(k)}k is uniform and independent
of each other.

Proof. Let λ = (a, 1b) be a hook. Note that n := a+ b = |λ|. By Jacobi-Trudi, we have

sλ =

∣∣∣∣∣∣∣∣∣
ha ha+1 · · · hn
1 h1 · · · hn−1

0
. . .

. . .
...

0 0 1 h1

∣∣∣∣∣∣∣∣∣
Using the cofactor expansion about the first row, we see that

sλ = (−1)nhn + f(h1, . . . , hn−1),

for some polynomial f . For any fixed assignment of {h1, . . . , hn−1}, the values of sλ are
uniformly distributed. Hence the distribution of sλ is itself uniform.
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For independence, observe that sλ(k) is uniformly distributed for every set of values
{h1, . . . , hk−1, hk+1, . . .}. So the variables sλk are independent of one another. �

Corollary 4.2. Let f : {en}n∈N → Fq and g : {hn}n∈N → Fq be arbitrary. Consider the
unique extension of f and g to homomorphisms from the algebra of symmetric functions to
Fq. Then

P
(
f(sλ) = a

)
= P

(
g(sλ) = a

)
for all a ∈ Fq.

Corollary 4.3. Let H be a collection of hooks satisfying the condition of Proposition 4.1.
Then {sλ}λ∈H forms an algebraic basis of the space of symmetric functions.

Proof. We use without proof that {hn}n≤N form an algebraic basis of the space of symmetric
functions of degree ≤ N . Write H = {λn}n∈N with |λn| = n.

We prove by induction on N that {sλn}n≤N is algebraically equivalent to {hn}n≤N . The
case N = 1 is trivial, since λ1 is necessarily a single block. Hence sλ1 = h1.

Now suppose that {sλn}n≤N is algebraically equivalent to {hn}n≤N . Recall from Proposi-
tion 4.1 that

sλn+1 = (−1)n+1hn+1 + f(hn, . . . , h1),

for some polynomial f . By hypothesis, we may write f(hn, . . . , h1) = g(sλ1 , . . . , sλn) for some
polynomial g. Plugging this in above, we may write hn+1 as a polynomial in {sλ1 , . . . , sλn+1}.
Directly by Jacobi-Trudi, sλn+1 can be obtained as a polynomial in {h1, . . . , hn+1}. So the
two are algebraically equivalent.

Hence since {hn}n∈N forms an algebraic basis for the space of symmetric functions, so too
does {sλ}λ∈H. �

4.2. Rectangles.
Let λ = (an) be a rectangle shape, where a, n ≥ 1. We will first deal with the case where

a ≥ n and then we will see that the case a < n will follow from the exact same argument.
Assume that λ = an with a ≥ n ≥ 1, then the Jacobi-Trudi matrix corresponding to it, after
renaming the variables, can be written as A = (xj−i+n)1≤i,j≤n.

Lemma 4.4. Let A = (xj−i+n)1≤i,j≤n be a square matrix of size n, where x1, . . . , x2n−1 are
variables. Then ϕ(A;x1 = a1, . . . , xr = ar), for any a1, . . . , ar ∈ Fq, is either empty; or a
matrix of size n′ ≥ 1 such that all its first n′ diagonals contain only zeroes; or a matrix of
size n′ ≥ 1 with 0 ≤ k ≤ 2n′ such that all entries in the ith diagonal are 0 for i < k, all
entries in the kth diagonal are exactly the same and all entries in the ith diagonal have label
2n− 2n′ + i.

Notice that if the lower left corner of ϕ(A;x1 = a1, . . . , xr = ar) has positive label, then
the lemma is trivially correct with k = 0.

Intuitively, this lemma is saying that no matter how we assign variables and do row and
column operations, the matrix is behaving nicely. It is the core for the rectangle case and
will be extensively used for the rest of the paper.
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Example 4.5. An example related to Lemma 4.4.

A =


x4 x5 x6 x7
x3 x4 x5 x6
x2 x3 x4 x5
x1 x2 x3 x4

 ϕ(x1=1)−−−−→

x5 − x2x4 x6 − x3x4 x7 − x24
x4 − x2x3 x5 − x23 x6 − x3x4
x3 − x22 x4 − x2x3 x5 − x2x4


ϕ(x2=2)−−−−→

x5 − 2x4 x6 − x3x4 x7 − x24
x4 − 2x3 x5 − x23 x6 − x3x4
x3 − 4 x4 − 2x3 x5 − 2x4

 ϕ(x3=4)−−−−→

x5 − 2x4 x6 − 4x4 x7 − x24
x4 − 8 x5 − 16 x6 − 4x4

0 x4 − 8 x5 − 2x4


ϕ(x4=8)−−−−→

x5 − 16 x6 − 32 x7 − 64
0 x5 − 16 x6 − 32
0 0 x5 − 16


Notice that in this example, we clearly see that each intermediate matrix satisfies the con-
dition mentioned in Lemma 4.4. In other words, these matrices have zeroes in the first few
diagonals and exactly same entries on the next nonzero diagonal.

To prove Lemma 4.4, we need to know exactly how each entry changes after some row and
column operations. And here comes the next definition and lemma.

Definition 4.6. Suppose that A is a matrix of size n. Define A[S, T ] to be the k × k
submatrix of A by selecting the ith row and jth column of A for all i ∈ S and j ∈ T where
S and T are subsets of [n] of carnality k.

Lemma 4.7. The determinant of A[S, T ] does not change if we perform row and column
operations that only involve subtracting by rows in S and by columns in T .

Proof. Looking at A[S, T ] as a matrix by itself will give us the desired result. �

Now we are ready to state the proof for Lemma 4.4.
Proof.[Proof for Lemma 4.4] We will use proof by induction on r.

When r = 0, the lemma is trivially correct.
Assume that the lemma is correct for r − 1 and consider the matrix B = ϕ(A;x1 =

a1, . . . , xr−1 = ar−1). If B is empty, then by assigning any ar ∈ Fq to xr, we will also get an
empty matrix so the inductive step holds trivially. Similarly, if all entries in B below or on
the main diagonal are zero, the inductive step will also hold. Also, if the smallest positive
label of entries in B is strictly greater than r, assigning ar to xr won’t change any labels so
the inductive step holds. If the labels of the main diagonal entries are r, since these entries
are the same, we can assume that they are xr − b for some b ∈ Fq. Then after we apply
ϕ(xr = ar), if ar 6= b, the matrix will become empty after ψ and if ar = b, the matrix will
have only zeroes on the main diagonal and the diagonals below the main diagonal.

Now we deal with the main case. Suppose that the first nonzero diagonal of B has
entries xr − b by induction hypothesis. And suppose that the next diagonal contains xr+1 −
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f1, . . . , xr+1 − f` where fi’s are polynomials in xr.

B =



...
xr+1 − f1
xr − b xr+1 − f2

0 xr − b
· · ·

... 0
· · · · · ·

0
· · · 0 xr − b

· · ·
0 0 · · · 0 xr − b xr+1 − f` · · ·


If we assign ar 6= b to xr and do ψ to this matrix, we will use the ar − b’s to cancel out
the corresponding rows and columns. The remaining matrix after applying ϕ(B;xr = ar)
contains no constant so the lemma holds. Therefore, the only case we need to consider is
that ar = b. It suffices to show that when xr = b, xr+1 − fi is the same for each i.

Let m = n− n′, where n′ is the size of B. According to the definition of ϕ and induction
hypothesis, we can use row and column operations involving only subtracting by the last m

rows and the first m columns to get from A′ := A(x1 = a1, . . . , xr = b) to

[
0 B′

M 0

]
, where

B′ = B(xr = b) and M can be written as blocks of nonzero multiples of identity matrices
from lower left to upper right. Specifically,

(1) M =


cwIw

· · ·
c2I2

c1I1

 ,
where ci ∈ F×q . We know that the size of M is m. Let d = detM 6= 0.

Suppose that the first k diagonals of B′ are all zeroes and the (k+ 1)th diagonal of B′ has
entries of label r + 1 where k ≤ n−m. In other words, B′i,j = 0 for all i, j ∈ Z≥1 such that

i− j ≥ n−m− k. And then we want to show that all entries on the (k + 1)th diagonal are
the same.

Let S = {n−m+1, n−m+2, . . . , n−1, n} and T = {1, 2, . . . ,m}. They are both subsets
of [n] of cardinality m. Lemma 4.7 shows that the determinant of A′[S, T ] does not change

after row and column operations from A′ to

[
0 B′

M 0

]
. So detA′[S, T ] = detM = d 6= 0.

Since detA′[S, T ] 6= 0, {(at, at+1, . . . , at+m−1)
T : t = 1, . . . ,m} forms a linear basis of Fmq .

There exists a row vector v ∈ Fmq such that v · A[S, T ] = (am+1, am+2, . . . , a2m).

We know that for any j = 1, . . . , k − 1, detA′
[
S ∪ {n −m}, T ∪ {m + j}

]
= 0. For this

(m + 1)× (m + 1) submatrix, if we subtract the first row by v · A′
[
S, T ∪ {m + 1}

]
, which

is a linear combination of the last m rows, the first row becomes 0 for the first m entries
and a2m+j − v · (am+j, am+j−1, · · · , a2m+j−1) for the last entry. Since this (m+ 1)× (m+ 1)
submatrix has zero determinant, we have

detA′[S, T ]
(
a2m+j − v · (am+j, am+j−1, · · · , a2m+j−1)

T
)

= 0.
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As detA′[S, T ] = d 6= 0, we know a2m+j = v·(am+j, am+j−1, · · · , a2m+j−1) for j = 1, . . . , k−1.
To encode this piece of information in matrix form, let us define an m×m matrix

V :=

 0 Im−1

v


where the “0” here represents an (m− 1)× 1 array with all zeroes. Consequently, we have

V · (at, at+1, . . . , at+m−1)
T = (at+1, at+2, . . . , at+m)T for all 1 ≤ t ≤ m+ k − 1.

A simple inductive argument will give us, for all t+ h ≤ m+ k,

(2) V h · (at, at+1, . . . , at+m−1)
T = (at+h, at+h+1, . . . , at+h+m−1)

T .

At the same time, for all t+ h ≤ m+ k − 1, t ≥ 1, h ≥ 0, we have

(3) v · V h · (at, at+1, . . . , at+m−1)
T = v · (at+h, at+h+1, . . . , at+h+m−1)

T = at+h+m.

Now we have enough tools to deal with B′i,j for i − j = n −m − k − 1. For convenience
of notation, we will fix i + j = k + 1 (i.e., change n −m − i to i) and deal with B′n−m−i,j.

Consider A′
[
S ∪ {n −m − i + 1}, T ∪ {m + j}

]
. For this (m + 1) × (m + 1) submatrix, to

calculate its determinant, we subtract the first row by (vV i−1) · A′
[
S, T ∪ {m + j}

]
, which

is a linear combination of its last m rows. Then, the first m entries of its first row become 0
because of Equation (3) with h = i−1 and t = 1, . . . ,m, noticing that m+ i−1 ≤ m+k−1.
The last entry of the first row is

x2m+k−1 − v · V i−1 · (am+j, am+j−1, . . . , a2m+j−1)
T

=x2m+k−1 − v · V i−1 · V m+j−1 · (a1, a2, . . . , am)T

=x2m+k−1 − v · V m+k−1 · (a1, a2, . . . , am)T
(4)

The first equality comes from Equation (2) with t = 1 and h = m+ j − 1 ≤ m+ k − 1.
With this, it is clear that

detA′
[
S ∪ {n−m− i}, T ∪ {m+ j}

]
= detA′[S, T ] ·

(
x2m+k−1 − v · V m+k−1 · (a1, a2, . . . , am)T

)
=d
(
x2m+k−1 − v · V m+k−1 · (a1, a2, . . . , am)T

)
.

Then, according to the form of M and B′ and Lemma 4.7,

B′n−m−i,j =
detA′

[
S ∪ {n−m− i}, T ∪ {m+ j}

]
detM

=x2m+k−1 − v · V m+k−1 · (a1, a2, . . . , am),

which is an expression that is only dependent on i+ j.
A simple index counting shows that r + 1 = 2m + k − 1. And thus, the inductive step is

complete as desired. �

Corollary 4.8. For any rectangular shape λ, P (sλ 7→ 0) = 1/q.

Proof. We will use an inductive style argument to show this. Let A be the Jacobi-Trudi
matrix corresponding to shape λ = bn. First assume b ≥ n ≥ 1. We claim that if B =
ϕ(A;x1 = a1, . . . , xr = ar) is not empty and if it’s entries in the main diagonal and entries
below the main diagonal are not all 0, then P (detB 7→ 0) = 1/q.
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We will induct on the number of free variables, i.e. 2n−1−r. According to Lemma 4.4, if
B is not empty and if entries on and below the main diagonal are not all zero, suppose that
B has size n′. There exists k ≤ n′ such that all entries in diagonal i are zero, for all i < k
and all entries in diagonal k are the same and are in the form of xt− ft−1 for some t > 0 and
ft−1 being a polynomial depends only on x1, . . . , xt−1. If k = n′, then detB = (xt − ft−1)n

′

and clearly detB = 0 iff xt = ft−1, giving a probability of 1/q as desired. If k < n′, then

P (detB 7→ 0) =
1

q

∑
c∈Fq

P
(
ϕ(A;x1 = a1, . . . , xr = ar, xr+1 = c) 7→ 0

)
.

We can use induction hypothesis on each term on the right because (1) we have less free
variables; (2) the matrix ϕ(A;x1 = a1, . . . , xr = ar, xr+1 = c) is not empty since at most
k < n′ rows and columns will be removed due to row and column operations from B; (3) the
matrix either has size smaller than B with no zeroes or has size equal to B with only the
first k − 1 or k + 1 ≤ n′ being 0. Thus, P (detB 7→ 0) = 1

q
(q · 1

q
) = 1/q.

Therefore, the inductive step is completed.
If b < n, let A be the Jacobi-Trudi matrix corresponds to it. It is evident that there

exists a rectangle shape λ′ = tt with Jacobi-Trudi matrix A′ such that A′(x1 = 0, . . . , xk−1 =
0, xk = 1) equals A with a change of variable. Therefore, P (detA 7→ 0) = 1/q by the claim
above. �

4.3. Staircases.
Now we turn our attention to the staircase shapes, λ = (k, k − 1, · · · , 1).

Theorem 4.9. Let λ = (k, k − 1, . . . , 1) be a staircase, then

P (sλ 7→ 0) = 1/q.

Proof. By Jacobi-Trudi,

sλ =

∣∣∣∣∣∣∣∣∣∣∣

hk · · · h2k−4 h2k−3 h2k−2 h2k−1
...

. . .
...

0 · · · h2 h3 h4 h5
0 · · · 1 h1 h2 h3
0 · · · 0 0 1 h1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)l

· · · h2k−4 h2k−2 · · · h2k−3 h2k−1
...

. . .
...

...
. . .

...
· · · h2 h4 · · · h3 h5
· · · 1 h2 · · · h1 h3
· · · 0 1 · · · 0 h1

.

where the second equality follows from rearranging the columns.
Notice that in the new matrix, all the variables on the left side are distinct from all

the variables on the right side. Renaming the variables on the left side by xi’s and the
variables on the right side by yi’s, we find the above determinant is just a special case of the
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determinant of the following kind of square matrices of size m+ n

xn · · · xm+n−3 xm+n−2 xm+n−1 ym+1 · · · ym+n−2 ym+n−1 ym+n

xn−1 xm+n−4 xm+n−3 xm+n−2 ym ym+n−3 ym+n−2 ym+n−1
...

. . .
...

...
. . .

...
0 a x1 x2 0 y1 y2 y3
0 0 a x1 0 0 y1 y2
0 · · · 0 0 a 0 · · · 0 0 y1


where the left side has m columns and the right side has n columns, and constant a 6= 0.

Denote the probability that such a matrix M is singular to be p(m,n). We claim that for
all m ≥ 0, n > 0, we have p(m,n) = 1/q. We prove this claim by induction on m.

Base case. If m = 0, then the matrix degenerates to an upper triangular matrix with n
many x1’s on its main diagonal. The determinant is xn1 and the probability it is zero is just
1/q. Hence p(0, n) = 1/q for all n > 0.

Induction step. Assume for all 0 < k < m, for all n > 0, p(k, n) = 1/q. Then consider
p(m,n). We have two possible cases: n ≤ m and n > m.

First notice that if n ≤ m, then for each 1 ≤ i ≤ n, we can subtract the ith column
(counted from the right) in the right side by y1/a times the ith column (counted from the
right) in the left side, and obtain a determinant in the form

xn · · · xm+n−2 xm+n−1 · · · ym+n−1 − y1xm+n−2

a
ym+n − y1xm+n−1

a
xn−1 xm+n−3 xm+n−2 ym+n−2 − y1xm+n−3

a
ym+n−1 − y1xm+n−2

a
...

. . .
...

. . .
...

0 x1 x2 y2 − y1x1
a

y3 − y1x2
a

0 a x1 0 y2 − y1x1
a

0 · · · 0 a · · · 0 0

= (−1)na ·

xn · · · xm+n−2 · · · y′m+n−2 y′m+n−1
xn−1 xm+n−3 y′m+n−3 y′m+n−2
...

. . .
. . .

...
0 x1 y′1 y′2
0 a 0 y′1

by expanding across the last row and renaming the variables. We are allowed to rename the
yi’s as their values are independent of each other. In this way we obtain a smaller matrix of
the same kind with m− 1 columns on the left side and n columns on the right side. So for
m ≥ n, p(m,n) = p(m− 1, n) = 1/q by the induction hypothesis.

We are left with the case when n > m.
If y1 = 0, then the last row of M will just be (0, · · · , a, 0, · · · , 0) with a in the mth entry

and 0 in the remaining entries. Expand across the last row and we obtain (−1)na times a
smaller determinant of this kind with m− 1 columns on the left side and n columns on the
right side. Since a is nonzero, we have P (detM = 0|y1 = 0) = p(m − 1, n) = 1/q by the
induction hypothesis.

If y1 6= 0, then let b = y1. Using a similar argument as in the case n ≤ m, interchanging
the role of m and n and letting b play the role of a, we obtain that the conditional probability
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that M is singular is given by P (detM = 0|y1 6= 0) = p(m,n− 1) = · · · = p(m,m). Then it
is reduced to the case when n ≤ m and P (detM = 0|y1 6= 0) = 1/q.

So in the case when n > m, we have p(m,n) = P (detM = 0|y1 = 0)P (y1 = 0)+P (detM =
0|y1 6= 0)P (y1 6= 0) = 1/q · 1/q + (q − 1)/q · 1/q = 1/q.

Since in both cases we have p(m,n) = 1/q, we conclude that p(m,n) = 1/q for all m,n.
In particular, we have P (sλ 7→ 0) = p(bk

2
c, dk

2
e) = 1/q. �

5. Classification of 1/q

In this section we prove that the partition shapes with probability 1/q are exactly hooks,
rectangles, and staircases.

For that purpose, we first state and prove a series of lemmas concerning when a reduced
general Schur matrix has probability P (detM 7→ 0) > 1/q as we assign the variables to
numbers in Fq randomly. The key idea here is to view the probability P (detM 7→ 0) as an
average of different conditional probabilities coming from partial assignments of variables.
By Theorem 3.1, each of these conditional probability is at least 1/q, so our task is reduced
to finding a particular conditional probability that is strictly larger than 1/q.

Lemma 5.1. Let the matrix M be a reduced general Schur matrix of size n with m free
variables x1, · · · , xm. If either of the upper left or lower right entries is zero or the upper left
and lower right entries have different labels, then P (detM 7→ 0) > 1/q.

Proof. First notice by the definition of general Schur matrix, if an entry is 0, then all the
entries below it or to the right of it must be 0 as well. In particular, if either of the upper
left or lower right entries is zero, then it means either the first column or the last row is the
zero vector and we automatically have P (detM = 0) = 1 > 1/q. So we can assume that
neither of these two entries is zero.

Without loss of generality let the label of the upper left entry be the smaller of the two, and
denote it by k. We have P (detM 7→ 0) = 1

qk

∑
(a1,··· ,ak)∈Fk

q
P (detM 7→ 0|x1 = a1, · · · , xk =

ak). Notice for any a1, · · · , ak, the matrix M ′ = ϕ(M ;x1 = a1, · · · , xk = ak) is nonempty and
thus a reduced general Schur matrix, since the labels of the entries in the last column of M
are all strictly greater than k. Hence P (detM 7→ 0|x1 = a1, · · · , xk = ak) = P (detM ′ 7→ 0),
which is at least 1/q by Theorem 3.1. Therefore, to achieve P (detM 7→ 0) > 1/q, we only
need one conditional probability to be strictly larger than 1/q.

Now we can choose values b1, · · · , bk for x1, · · · , xk in order such that under this assignment
all the entries in the first column become 0. Then the first column is just the zero column
and the conditional probability P (detM 7→ 0|x1 = b1, · · · , xk = bk) = 1, as desired. �

Lemma 5.2. We can strengthen the condition in the previous lemma to be “if the labels of
the entries in first column from bottom to top are not exactly the same as the labels of the
entries in the last row from left to right,” then P (detM 7→ 0) > 1/q.

Proof. We may assume the the upper left entry and the lower right entry are both nonzero
and have the same label l, otherwise from the previous lemma we immediately have the
desired result. Look at the labels of the nonzero entries in the first column from bottom to top
and nonzero entries in the last row from left to right. Compare them in order and find the first
one that is different. Without loss of generality let the entry from the first column have the
smaller label and denote it by k < n. We have P (detM 7→ 0) = 1

qk

∑
(a1,··· ,ak)∈Fk

q
P (detM 7→
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0|x1 = a1, · · · , xk = ak). For any a1, · · · , ak, the matrix M ′ = ϕ(M ;x1 = a1, · · · , xk = ak) is
nonempty and thus a reduced general Schur matrix, since the labels of the entries in the last
column of M are all strictly greater than k. Again, we only need some of the conditional
probabilities to be strictly larger than 1/q.

Now assign x1, · · ·xk−1 by values b1, · · · , bk−1 in order so that all the entries in the first
column below the one with label k are zero. If in this process any entry in the last row
becomes a nonzero constant, then because of how ψ works, the last row of M is deleted
in the precess of calculating M ′

1 = ϕ(M ;x1 = a1, · · · , xk−1 = ak−1). Hence the lower right
entry in M ′

1 comes from some entry in the last column of M that lies strictly above the
lower right entry, and thus have label strictly larger than l. In comparison, the upper left
entry of M ′

1 still have label l since we never delete the first column. Since the labels of
the upper left and lower right entries no longer match, applying the previous lemma we
know P (detM ′

1 7→ 0) > 1/q, which gives
∑

bk∈Fq
P (detM 7→ 0|x1 = b1, · · · , xk = bk) =

P (detM 7→ 0|x1 = b1, · · · , xk−1 = bk−1) = P (detM ′
1 7→ 0) > 1/q.

If instead there is no nonzero constant in the first row, then we just assign some value
bk to xk to make the entry in the first column with label k to be nonzero. Then look at
M ′

2 = ϕ(M ;x1 = a1, · · · , xk−1 = ak−1). Now the upper left entry in M ′
2 has some label

strictly larger than l while the lower right entry of M ′
2 still have label l. Applying the

previous lemma we know P (detM 7→ 0|x1 = b1, · · · , xk = bk) = P (detM ′
2 7→ 0) > 1/q. �

Lemma 5.3. Let the square matrix M of size n be a reduced general Schur matrix of size n
with m free variables x1, · · · , xm. Let all the entries on the main diagonal be nonzero and let
the label of the upper left and the lower right entry be the same and be no greater than the
label of any other entries on the main diagonal. Then if some diagonal entry actually has a
strictly larger label, we have P (detM 7→ 0) > 1/q.

Proof. Denote the label of the the upper left entry by k. For any assignment of x1 =
a1, · · · , xk−1 = ak−1, the matrix M ′ = ϕ(M ;x1 = a1, · · · , xk−1 = ak−1) is nonempty and
thus a reduced general Schur matrix, since the labels of the entries in the last column of
M are all strictly greater than k − 1. Hence P (detM 7→ 0|x1 = a1, · · · , xk−1 = ak−1) =
P (detM ′ 7→ 0) ≥ 1/q by Theorem 3.1. Again, we only need one conditional probability to
be larger than 1/q.

Assign values b1, · · · , bk−1 to x1, · · · , xk−1 in order so that all entries in the first column
expect the first one becomes zero. If in this process we have some nonzero constant in the
last row, then by the proof of the previous lemma we already have P (detM 7→ 0) > 1/q.
Hence we can assume without loss of generality that all except the last entry in the last row
also become zero. Let M ′ = ϕ(M ;x1 = a1, · · · , xk−1 = ak−1). Notice in M ′ the labels of
the upper left and lower right entries are still k while labels of the other diagonal entries get
larger or stay the same compared to M . So the new matrix M ′ still satisfy the assumption
in the lemma.

Then consider the upper left entry of M ′ and assign xk. If xk equals to some value such
that the upper left entry becomes zero (this has probability 1/q), then we has a zero column
and the determinant is automatically zero. If the upper left entry is not zero (this has
probability (q − 1)/q), then we apply ψ to obtain a reduced general Schur matrix M ′′ of
smaller size. Notice that since there are some entries on the diagonal with label strictly
larger than k, the number of nonzero constants in M ′ must be strictly smaller than the
its size, so M ′′ is nonempty. By Theorem 3.1, P (detM ′′ 7→ 0) ≥ 1/q. Combining, we get
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the conditional probability is P (detM 7→ 0|x1 = b1, · · · , xk = bk) = P (detM ′ 7→ 0) =
1/q · 1 + (q − 1)/q · P (detM ′′ 7→ 0) ≥ 1/q + (q − 1)/q · 1/q > 1/q. �

Next we turn our attention to special Schur matrices and state and prove some necessary
conditions for a special Schur matrix M to have P (detM 7→ 0) = 1/q. The idea is to use
proof of contradiction and find one conditional probability strictly larger than 1/q.

Lemma 5.4. For a special Schur matrix M of size n, if we have P (detM 7→ 0) = 1/q, then
the entries on the main diagonal all have the same label.

Proof. If not, let the largest among all the labels of main diagonal entries be k. Assign 0 to
x1, · · · , xk−1. Then every entry below the diagonal is 0. And since the main diagonal entries
have different labels, some of them have become 0 as well. So under this assignment the
conditional probability that the determinant is zero is 1. Hence we have P (detM 7→ 0) >
1/q, a contradiction. �

Lemma 5.5. For a special Schur matrix M of size n, if we have P (detM 7→ 0) = 1/q, then
for each diagonal below the main diagonal, the label of the entries in the first column and
the last column are the smallest.

Proof. If not, let i < n be the smallest integer such that on the ith diagonal, the label of the
two entries Mn−i+1,1 and Mn,i is not the smallest. (These two entries have the same label
by previous lemmas.) Let k be the smallest of all the labels on this diagonal. Then entries
above the ith diagonal, Mn−i+1,1 and Mn,i all have labels strictly larger than k. Hence the
number of entries in M with label k is at most i − 2 ≤ n − 3. Let M ′ = ϕ(M ;x1 = · · · =
xk−1 = 0, xk = 1). Notice in the application of ϕ rows and columns are only deleted after xk
is assigned. Since in M the number of entries with label k is at most n − 3, the size of M ′

is at least 3. The previous lemma gives that all the entries on the main diagonal of M have
the same label. Now the upper left entry and the lower right entry of M ′ still have the same
label as they come from the corresponding entries of M , but some other entries on the main
diagonal have strictly larger labels as some columns are shifted to the left. By Lemma 5.3,
we have P (detM 7→ 0) > 1/q, a contradiction. �

Lemma 5.6. For a special Schur matrix M of size n, if P (detM 7→ 0) = 1/q, then all the
entries on the (n− 1)th diagonal have the same label.

Proof. Assume not. Denote the largest label among the entries on the (n − 1)th diagonal
by k. Since m2,1 and mn,n−1 have the smallest label on the (n− 1)th diagonal and the labels
of the main diagonal entries are all equal and strictly larger than k, there are at most n− 3
entries in M with label k. Let M ′ = ϕ(M ;x1 = · · · = xk−1 = 0, xk = 1). Notice the size M ′

is at least 3 and in M ′ the labels of upper left and lower right entries are equal as in M , while
the labels of some other main diagonal entries are increased. So on the main diagonal, the
labels of the upper left and the lower right entries are the smallest and some other entries
have strictly larger labels. By Lemma 5.3, we have P (detM 7→ 0) > 1/q, a contraction. �

Corollary 5.7. Let M be a special Schur matrix of size n. If we have P (detM 7→ 0) = 1/q,
then on each diagonal, the labels of the entries are equal. Further, the labels of each diagonal
form an arithmetic progression.

Proof. Use Lemma 5.4 and 5.6 and induct from the main diagonal down to the the 1st

diagonal and up to the (2n − 1)th diagonal. Use the fact that by definition, for any 2 × 2
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submatrix of a special Schur matrix, the sum of labels of the two entries on the diagonal
equals the sum of labels of the two entries on the antidiagonal. �

With these lemmas at hand, we can narrow our attention down to Jacobi-Trudi matrices.
For the rest of this section, let M be the Jacobi-Trudi matrix of a partition shape λ =
(λ1, λ2, ..., λn). We introduce the following main theorem which characterizes all the possible
shapes λ that have probability 1/q.

Theorem 5.8 (Characterization of 1/q). The shapes where we have the probability of 1/q
are exactly hooks, rectangles and staircases.

We divide the proof of this theorem into several cases.
Case 1: M does not contain any constants. This implies that every entries in M is a

variable. Therefore M is a special Schur matrix by the properties of Jacobi-Trudi matrix.
Then by Corollary 5.7, the labels of the entries on the main diagonal are equal, which implies
that λ1 = λ2 = · · · = λn. Then λ is a rectangle shape.

Case 2: M contains some constants. In this case we first state some special cases of M ,
and then generalize all the possible shapes that has probability P (detM 7→ 0) exactly 1/q.

Lemma 5.9. If M contains some constants, ψ(M) is at least λn-by-λn.

Proof. Since M contains some constants, the last row must have some constants. Hence it
must have at least λn columns. Since the last λn columns does not contain any constants,
they will not be canceled by the operation ψ. Hence ψ(M) is at least λn-by-λn. �

Remark 5.10. ψ(M) is exactly λn-by-λn if and only if every other columns of M contains
nonzero constant, i.e., every other columns will be canceled by ψ.

Lemma 5.11. If λn ≥ 2 and P (detM 7→ 0) = 1/q, then we have λ = (λm1 , λ
n−m
n ) where

1 ≤ m ≤ n.

Proof. Let M ′ = ψ(M), and denote the size of M ′ as m. By Corollary 5.7, the labels of
each diagonal of M ′ form an arithmetic progression. We denote the common difference as
k. Since λn ≥ 2, we have Mnn = hλn , M(n−1)n = hλn−1, and they are both non-constant.
Therefore, the entries M ′

(m−1)m and M ′
mm come from the last two columns of M , and the

difference between their labels is 1. We hence have k = 1, which means in each row of M ′,
the labels form a consecutive sequence. Hence we must have that the 1’s in the original
matrix M are in the leftmost n −m rows, otherwise the difference between some adjacent
entries in the same row of M ′ is at least 2. And by definition we already know the 1’s are in
the bottom n−m rows of M . We can thus divide M into four blocks and write it as

hλ1 hλ1+1 · · · ha ha+1 · · ·
... hλ2 · · · ha−1 ha · · ·

. . .
...

. . .

1 h1 h2 · · ·
. . .

0 1 h1 · · ·
...

. . .
...

...
0 · · · 0 1 · · · hλn−1 hλn


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Notice that all the 1’s in M must appear consecutively along the diagonal in the lower
left block of M , and M ′ comes from the block M [[m], {n − m + 1, · · · , n}] on the upper
right corner of M . Since n − m is the number of 1’s, we have λ1 = λ2 = · · · = λm and
λm+1 = λm+2 = ... = λn, which gives the desired result. �

What the previous lemma tells us is that for a partition λ with the last part at least 2, if
we have P (sλ 7→ 0) = 1/q, then λ must be a rectangle or a fattened hook. The next lemma
further narrows the possibility and shows λ can only be a rectangle.

Lemma 5.12. Let M be the Jacobi-Trudi matrix corresponding to a partition shape λ =
(ap, bm) where p,m ∈ Z+ and a > b ≥ 2. Then P (detM 7→ 0) > 1/q.

Proof. By Corollary 3.2, we only need to find one partial assignment such that the condi-
tional probability is larger than 1/q.

Let k = a− b ≥ 1. We can draw the partition shape λ as follows.

Figure 1. Partition Shape of λ

We can see from the figure that if k < m, we can take the transpose of λ and calculate its
Jacobi-Trudi matrix N . By Corollary 4.2, P (detM 7→ 0) = P (detN 7→ 0). Hence we can
assume k ≥ m without loss of generality.

Now we have

M =



ha · · ·
...

. . .
...

hk+2 · · · hm+k hm+k+1 hm+k+2 · · ·
hk+1 hk+2 · · · hm+k hm+k+1 hm+k+2 · · ·

1 h1 h2 · · · hm−1 hm hm+1 hm+2 · · ·
0 1 h1 · · · hm−2 hm−1 hm hm+1 · · ·
...

. . .
...

...
...

0 · · · 0 1 h1 h2 · · · hb


(5)

This gives

ψ(M) =


...

hm+k+2 − sm+k+1 . .
.

hm+k+1 − rm+k hm+k+2 − tm+k+1 · · ·


where r is a polynomial of h1 through hm+k with no constant term while s, t are polynomials

of h1 through hm+k+1 with no constant terms.
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We assign h1 = h2 = · · · = hm = hm+k+1 = 0 and hm+1 = hk+1 = 1. Since k+ 1 > m, this
assignment is legal, which means no single variables is assigned two different values. Under
this assignment, we have

M =



ha · · ·
...

. . .
...

hk+2 · · · hm+k 0 hm+k+2 · · ·
1 hk+2 · · · hm+k 0 hm+k+2 · · ·
1 0 0 · · · 0 0 1 hm+2 · · ·
0 1 0 · · · 0 0 0 1 · · ·
...

. . .
...

...
...

0 · · · 0 1 0 0 · · · hb



We can now see that in ψ(M), we have hm+k+1 − rm+k = 0, sm+k+1 = 0 while tm+k+1 =
hm+1hk+1 = 1 6= 0. Therefore by Lemma 5.2 we have P (detM 7→ 0) > 1/q. �

Proof.[Proof of Theorem 5.8] By Corollary 3.2, for any shape except hooks, rectangles and
staircases, we only need to show that there exists one partial assignment such that the
conditional probability is larger than 1/q.

We perform ψ on M and denote M ′ = ψ(M). By Remark 2.10, M’ is a special Schur
matrix. By Corollary 5.7, the labels of each diagonal of M ′ form an arithmetic progression,
otherwise P (detM 7→ 0) > 1/q.

We denote the common difference of the labels of two consecutive entries to be k.
Subcase 1: k = 0. This means that ψ(M) is a 1-by-1 matrix and does not contain any

common differences. By Lemma 5.9, λn = 1. By Remark 5.10, every other columns of M
contains 1. This implies that λ2 = λ3 = · · · = λn = 1. Hence λ is a hook.

Subcase 2: k = 1. Then in order to maintain the probability 1/q, we claim that ψ(M)
must be λn-by-λn. This holds because if ψ(M) contains another column, in M this column
must be at least one column away from the last λn columns, since the last (λn+1)th column
contains 1. In this case, the labels in ψ(M) cannot form an arithmetic progression. By
Corollary 5.7, P (detM 7→ 0) > 1/q. Since ψ(M) is at least 2-by-2, λn ≥ 2. By Lemma 5.11
and 5.12 we have P (detM 7→ 0) > 1/q unless λ is a rectangle.

Subcase 3: k ≥ 2.
In Subcase 2 and proof of Lemma 5.11 we have shown that k = 1 if and only if λn ≥ 2.

Hence in this subcase λn = 1, which implies Mn(n−1) = 1. By the fact that k is the common
difference of the labels of two consecutive entries in M , there must be k−1 columns between
any two remaining columns in M . This means that between any two columns with no
nonzero constants, there are k− 1 columns that has nonzero constants. By properties of the
partition shape the constant 1’s must appear consecutively starting from the bottom to the
top along some diagonal. Therefore, let ψ(M) has size b, we can write the lower right corner
of M in the following form:
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Mlr =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 e1 · · · ek−2 ek−1 · · ·
0 0 1 · · · ek−2 · · ·

. . .

1 e1 · · ·
0 1 · · ·

. . .

1 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where Mlr is an (kb)-by-(k− 1)b matrix. Since we have included all the columns that will

not be removed by the operation ψ in Mlr, the rest columns must have constant 1, and must
appear on the left of M . Assume there are p such columns, hence similar to equation 5 in
Lemma 5.12 we can write M in the following form:

M =



...
. . .

er+k+1 · · · er+p+k er+p+k+1 · · ·
er+1 · · · er+p er+p+1 · · · er+p+k+1 · · ·

1 e1 · · · ep−1 ep ep+1 · · · ep+k · · ·

0 1 e1
... ep−1 ep · · ·

...
...

. . .
...

...
0 · · · 0 1 e1 e2 · · · ek ek+1 · · ·

0 Mlr


where r is the difference between the two rows. We can assume p ≥ 1 because if p = 0,

we let p = k − 1 and still preserve the shape of M .
In terms of the partition shape, in Mlr we notice that there are k − 1 parts of length 1,

since λn = 1 and there are k − 1 consecutive 1s on the diagonal left to the main diagonal.
Since there is only one column with no nonzero constants between two sets of consecutive
1s, in λ we have k−1 2s, 3s, etc. Also notice that starting from the row with er+1 to the top,
the difference in labels between two consecutive rows is exactly k, the difference between λi
and λi+1 is k − 1. Then we can draw the partition shape λ as shown in Figure 5.

k-1

...

...

...

r

p

k-1

...

k-1

Figure 2. Partition Shape of λ
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From the figure, we can see that if r < p, we can take the transpose of λ and use Corol-
lary 4.2 to get the same probability. Therefore we assume without loss of generality that
r ≥ p, which means we can assume r ≥ 1.

Then ψ(M)= ∣∣∣∣∣∣∣∣
...

er+p+k − gr+p+k−1 . .
.

er+p − fr+p−1 er+p+k − hr+p+k−1 · · ·

∣∣∣∣∣∣∣∣
where fi, gi, hi are polynomials of e1 through ei.
If p 6= k − 1, p + 1 6= k, so p + 1 must be included in [1, p + k]\{k} since k ≥ 2.

Also, r + k 6= r + p + 1 and r + k > r + 1 ≥ p + 1 by the assumption. Then we assign
e1 = e2 = · · · = ep = er+p+1 = 0, while assign ep+1 = er+k = 1. The inequalities 1 < 2 <
· · · < p < p + 1 ≤ r + k and p 6= k − 1 ensures that no two different values are assigned in
a single entry. Under this assignment, in ψ(M), gr+p+k−1 = 0, while hr+p+k−1 ≥ 1 since it
contains the term c · ep+1er+k−1, where c is a nonzero constant. Therefore by Lemma 5.6 we
have P (det(M) 7→ 0) > 1/q.

If p = k − 1, we assign x1 = x2 = · · · = xp = xr+p+1 = 0, while assign xk+1 = xr+p = 1.
We know that p < r+ p < r+ p+ 1, so we only need to consider if k+ 1 is the same as some
entries that have been assigned 0. Since p = k−1, k−p = 1 ≤ r, hence p < k+1 ≤ r+p+1
and the equality is achieved if and only if r = 1. If r = 1, since we have r ≥ p we have p = 1,
k = 2, so λ is a staircase, which has P (det(M) 7→ 0) = 1/q. If r ≥ 2, by previous argument
no two different values are assigned in a single entry. By similar argument we show that in
ψ(M), gr+p+k−1 = 0, while hr+p+k−1 ≥ 1. Combining two cases gives us the desired result.

�

6. Independence Results for families with P = 1/q

In Section 4.1, we saw that Schur functions of hook shapes are as independent as possible.
In this section, we investigate the independence of vanishing of the other two shapes with
probability of vanishing 1

q
, namely rectangles and staircases.

6.1. Rectangles.

Theorem 6.1. Let c ∈ N be arbitrary. Then the events {sk` 7→ 0 | k − ` = c} are set-wise
independent.

Proof. We show the result in the case c = 0; for other values of c, the result follows in the
same way.

We first reduce to showing the following result: Let k ∈ N be arbitrary and C a collection
of conditions {Ci}i=1,...,k−1, where Ci is either sii 7→ 0 or sii 67→ 0 for each i. Then

P (skk 7→ 0 | C) =
1

q
.

Assuming this result, we show that P (saa 7→ 0 | sbb 7→ 0) = 1
q

for a 6= b. By Corollary 4.2,

we may assume WLOG that b < a. We have

P (saa 7→ 0 | sbb 7→ 0) =
P (saa 7→ 0 & sbb 7→ 0)

P (sbb 7→ 0)
= q · P (saa 7→ 0 & sbb 7→ 0),
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so it suffices to show that P (saa 7→ 0 & sbb 7→ 0) = 1
q2

. We have

P (saa 7→ 0 & sbb 7→ 0)

= P (saa 7→ 0 & sbb 7→ 0 & s(a−1)a−1 7→ 0) + P (saa 7→ 0 & sbb 7→ 0 & s(a−1)a−1 67→ 0)

= · · ·

=
∑
C∈C

P (saa 7→ 0 & sbb 7→ 0 & C),

where C is the collection of conditions
⋃

1≤i≤b
i 6=a,b

Ci. Therefore we reduce to showing that each

summand is 1
qa

.

Indeed, we can write

P (saa 7→ 0 & sbb 7→ 0 & C) =
P (saa 7→ 0 | sbb 7→ 0 & C)

P (sbb 7→ 0 & C)
=

1

qP (sbb 7→ 0 & C)

by our assumed result. Therefore, induction on a gives that P (sbb 7→ 0 & C) = 1
qa−1 , which

gives our desired result.
We are now left with showing the result claimed at the beginning. We claim this follows

immediately from Corollary 3.2. Indeed, write

P (skk 7→ 0) = P1P (skk 7→ 0 | s11 7→ 0) + (1− P1)P (skk 7→ 0 | s11 67→ 0).

Expanding each term similarly, we see inductively that we can write

P (skk 7→ 0) =
∑

C={Ci}i=1,...k−1

aCP (skk 7→ 0 | C),

where
∑

C aC = 1. Because LHS is 1
q

and each summand probability is ≥ 1
q

by the proof of

Corollary 3.2, each must be precisely 1
q
. This completes the proof. �

Using the same argument on the collection {sk` | k + ` = c} gives the following.

Theorem 6.2. Let c ∈ N be arbitrary. Then the events {sk` 7→ 0 | k + ` = c} are set-wise
independent.

Remark 6.3. The events sλ 7→ 0 are not generally even independent, however, as the fol-
lowing example shows.

Example 6.4. Let λ = 22 and µ = 32. We show that P (sλ 7→ 0 | sµ 7→ 0) 6= 1
q
. For this, it

suffices to show that P (sλ 7→ 0 & sµ 7→ 0) 6= 1
q2

.

We have

sλ =

∣∣∣∣ h2 h3
h1 h2

∣∣∣∣
sµ =

∣∣∣∣ h3 h4
h2 h3

∣∣∣∣
We do casework on whether h2 = 0 and/or h1 = 0.

Case 1: h2 = h1 = 0. Then we must have h3 = 0. This gives q cases.
Case 2: h2 = 0 and h1 6= 0. Then we must have h3 = 0, giving q(q − 1) possibilities.
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Case 3: h2 6= 0. Then h3 =
h22
h1

and h4 =
s32
s21

, giving q(q − 1) cases.

Altogether, we have 2q2 − q instances our of q4 where sλ 7→ 0 and sµ 7→ 0. Hence the two
events are not independent.

6.2. Staircases. We now turn our attention to staircases. Throughout this section, let
λk = (k, k − 1, . . . , 1) be the k-staircase partition.

Theorem 6.5. For all k ∈ N with k ≥ 3, we have

P (sλk 7→ 0 | sλk−2
7→ 0) =

1

q
.

Proof. By Jacobi-Trudi, we have

sλk =

∣∣∣∣∣∣∣∣∣∣∣

hk · · · h2k−4 h2k−3 h2k−2 h2k−1
...

. . .
...

0 · · · h2 h3 h4 h5
0 · · · 1 h1 h2 h3
0 · · · 0 0 1 h1

∣∣∣∣∣∣∣∣∣∣∣
.

Note that sλk−2
can be obtained from this matrix by removing the first and last rows, along

with the last two columns. Hence expanding the determinant about the first row and then
last row, we see the determinant will contain a term of the form

h2k−1sλk−2
,

from the (1, n)- and then (n − 1, n − 1)-cofactor. Further, this is the only term in which
h2k−1 appears. So

P (sλk 7→ 0 | sλk−2
67→ 0) =

1

q
.

From Theorem 4.9, we have

1

q
= P (sλk 7→ 0) = P (sλk−2

7→ 0)P (sλk 7→ 0 | sλk−2
7→ 0)

+ P (sλk−2
67→ 0)P (sλk 7→ 0 | sλk−2

67→ 0)

=
1

q
· 1

q
+
q − 1

q
P (sλk 7→ 0 | sλk−2

7→ 0).

Solving this, we obtain the desired implication. �

Corollary 6.6. For all k ∈ N, the results sλk 7→ 0 is independent of sλk+2
7→ 0.

Proof. We have

P (sλk 7→ 0 & sλk−2
7→ 0) = P (sλk−2

7→ 0)P (sλk 7→ 0 | sλk−2
7→ 0) =

1

q2

by Theorem 6.5 and Theorem 4.9. Swapping the roles of k and k− 2 above and again using
Theorem 4.9, we obtain the desired result. �

Corollary 6.7. For all k ∈ N, the events sλk 7→ 0 is independent of sλ1 = s1 = h1 = e1 7→ 0.

Proof. The proof of Theorem 4.9 showed that P (sλk 7→ 0 | h1 7→ 0) = P (sλk 7→ 0 | h1) = 1
q
.

Hence sλk 7→ 0 is independent of h1 7→ 0. The reverse follows along the same lines as
Corollary 6.6. �
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Conjecture 6.8. The families {sλk | k odd} and {sλk | k even} are set-wise independent.

7. Distribution of Other Values

We now broaden our focus to consider not only P (sλ 7→ 0), but P (sλ 7→ a) for any a in
Fq, particularly in the case where λ is a rectangle.

7.1. General Results.

Proposition 7.1. Let λ be a partition with |λ| = n. Then P (sλ → a) = P (sλ → xna) for
any a, x ∈ Fq with x 6= 0

Proof. sλ is a homogeneous polynomial of degree n, and each ei is a homogeneous polynomial
of degree i, so if some assignment e1 = a1, ..., en = an gives sλ = a, then the assignment
e1 = xa1, e2 = x2a2, ..., en = xnan gives sλ = xna. Since x is nonzero, this creates a
bijection between assignments of the ei such that sλ = a and assignments of the ei such that
sλ = xna. �

Corollary 7.2. Let λ be a partition with |λ| = n, and let q be a prime power with gcd(n, q−
1) = 1. Then P (sλ → a) = P (sλ → b) for any nonzero a, b ∈ Fq.

Proof. Since gcd(n, q − 1) = 1, {xn|x ∈ F×q } = F×q , so the result follows directly from
Proposition 7.1 . �

7.2. Rectangles.

Lemma 7.3. Let b be a nonzero element of Fq and let a ≥ n, then

P (san 7→ b) =
∑

(c1,c2,...,ck)∈C(n)

(q − 1)k−1

qn
gb(gcd(c1, c2, ..., ck, q − 1))

where C(n) is the set of all compositions (i.e. ordered partitions) of n, and

gb(d) =

{
0 d - q−1

ord(b)

d d| q−1
ord(b)

Proof. Recall the map ϕ, based on ψ defined in section 2, which takes a general Schur
matrix and a set of assignments to a reduced general Schur matrix. For this proof we use a
modified version of both ϕ and ψ, that we will denote ϕ̃ and ψ̃. While ϕ and ψ reduce the
size of the matrix, ϕ̃ and ψ̃ will keep the size constant.

Definition 7.4. Let M be a general Schur matrix with m free variables. Define an operation
ψ̃ that takes general Schur matrices with m free variables to matrices over Fq[x1, x2, ..., xk]:
(a) If M has no nonzero constants as entries, then ψ(M) = M .
(b) If M has k ≥ 1 many nonzero constant entries, then from top to bottom, for each of

these k entries we use it as a pivot to turn all the other entries in its column into zero
by subtracting multiple of the row it is in from each of the rows above. Then we further
use these nonzero constants to turn all the other entries in the their rows into zero by
column operations, giving a new matrix M ′. Unlike ψ, we do not delete these rows and
columns. Define ψ̃(M) = M ′ in this case.
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ψ̃ only performs determinant-preserving row and column operations on the matrix, so det(M) =

det ψ̃(M)

Example 7.5. An example application of ψ̃

M =


0 2x2 x4 x5
0 1 4x3 x4
0 0 x1 x3 − x2
0 0 0 x2


use nonzero constants to do row and column operations−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→


0 0 x4 − 8x2x3 x5 − 2x2x4
0 1 0 0
0 0 x1 x3 − x2
0 0 0 x2

 = ψ̃(M)

We define ϕ̃ analogously to ϕ, replacing ψ in the definition with ψ̃.

Definition 7.6. Let M be a reduced general Schur matrix of size n with m variables. Define
an operation ϕ̃ recursively:

(a) ϕ̃(∅) = ∅.
(b) ϕ̃(M ;x1 = a1) = ψ̃(M(x1 = a1)), where M(x1 = a) denotes the matrix obtained from

M by assigning value a1 to x1.
(c) ϕ̃(M ;x1 = a1, · · · , xi = ai) = ϕ̃(ϕ̃(M ;x1 = a1, · · · , xi−1 = ai−1);xi = ai).

Lemma 7.7. Let λ = (an) be a rectangular partition, and let A = (xj−i+n)1≤i,j≤n be the
Jacobi-Trudi matrix corresponding sλ. Then ϕ̃(A;x1, x2, ..., xr) is a block anti-diagonal ma-
trix, where the top right block is ϕ(A;x1, x2, ..., xr) and all others are either scalar multiples
of the identity or the zero matrix.

Example 7.8.

A =


x4 x5 x6 x7
x3 x4 x5 x6
x2 x3 x4 x5
x1 x2 x3 x4



ϕ̃(A;x1 = 0, x2 = 0, x3 = 2) =


0 0 x6 − x3x5−x24

2
x7 − x4x5

0 0 x5 − x3x4 x6 − x3x5−x24
2

2 0 0 0
0 2 0 0


ϕ(A;x1 = 0, x2 = 0, x3 = 2) =

[
x6 − x3x5−x24

2
x7 − x4x5

x5 − x3x4 x6 − x3x5−x24
2

]
Proof. We proceed by induction on r.

Base Case. ϕ̃(A;x1 = a1) is either equal to ϕ(A;x1 = a1) or can be decomposed into a
1x1 nonzero block and a block equal to ϕ(A;x1 = a1).

Inductive Step. Assume ϕ̃(A;x1 = a1, x2 = a2, ..., xr−1 = ar−1) is of the desired form.
Then ϕ̃(A;x1 = a1, ..., xr = ar) = ϕ̃(ϕ̃(A;x1 = a1, ...xr−1 = ar−1);xr = ar) will only change
the final block of ϕ̃(A;x1 = a1, x2 = a2, ..., xr−1 = ar−1) that is equal to ϕ(A;x1 = a1, x2 =
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a2, ..., xr−1 = ar−1), since it is the only block in which new nonzero constants can appear.
Thus it suffices to show that ϕ̃(ϕ(A;x1 = a1, x2 = a2, ..., xr−1 = ar−1);xr = ar) is of the
desired form.

By Lemma 5.1, ϕ(A;x1 = a1, x2 = a2, ..., xr−1 = ar−1) has all entries the same on its
lowest nonzero diagonal. The new assignment xr = ar can set only these entries to some
nonzero constant, since only they have the smallest label. If xr = ar does set these entries
to some nonzero constant and these entries are below the main diagonal, then ϕ̃(ϕ(A;x1 =
a1, ..., xr−1 = ar−1);xr = ar) is block-antidiagonal with two blocks, where the lower left block
is a scalar multiple of the identity, and the upper right block is ϕ(A;x1 = a1, ..., xr = ar).
If these entries are set to some nonzero constant and are above the main diagonal, then
ϕ̃(ϕ(A;x1 = a1, ..., xr−1 = ar−1);xr = ar) is block-antidiagonal with two blocks, a block of
zeros in the bottom left and a scalar multiple of the identity in the top right. If these entries
are not sent to 0, then ϕ̃(ϕ(A;x1 = a1, ..., xr−1 = ar−1);xr = ar) = ϕ(A;x1 = a1, ..., xr = ar).
All possibilities are of the desired form. �

If the determinant of A under some particular assingment x1 = a1, x2 = a2, ..., x2n−1 =
a2n−1 is nonzero, then each block in ϕ̃(A;x1 = a1, ..., x2n−1 = a2n−1) must have nonzero
determinant. Thus each block must be a scalar multiple of the identity, since ϕ of A with
a full assignment of x1 through x2n−1 must either be empty or only contain 0s. The sizes of
these blocks therefore must sum to n.

Definition 7.9. Let A = (xj−i+n)1≤i,j≤n be a matrix corresponding to some rectangular
Schur function, and let x1 = a1, x2 = a2, ...x2n−1 = a2n−1 be an assignment of the xi such
that A is nonsingular. Define the block structure of A under assignment (a1, a2, ..., a2n−1) to
be the sequence of the sizes of blocks of ϕ̃(A;x1 = a1, x2 = a2, ...x2n−1 = a2n−1). Denote this
by B(A;x1 = a1, x2 = a2, ...x2n−1 = a2n−1) = (c1, c2, ..., ck)

We now consider the probability that for some fixedA and (c1, .., cK), B(A;x1 = a1, ..., x2n−1 =
a2n−1) = (c1, ..., ck). Within a block of size ci, the ci − 1 diagonals below the main diagonal
had to be set to 0, and the main diagonal had to be set to something nonzero. The values
of the diagonals above the main diagonal could be anything. Therefore,

P (B(A;x1 = a1, ..., x2n−1 = a2n−1) = (c1, ..., ck)) =

(
1

q

)n−k (
q − 1

q

)k
=

(q − 1)k

qn

The determinant of a matrix of this form is ±yc21 yc22 · · · y
ck
k , where the yi are the values on

the diagonal of the ith block. From the definition of ϕ̃ and the structure of A we can see
that these yi are all independent and uniformly distributed across the nonzero values of Fq.
Also note that if the determinant is −yc21 yc22 · · · y

ck
k , then some ci must be odd, and replacing

yi with −yi lets us ignore the sign.
We now want to calculate the probability that yc11 y

c2
2 · · · y

ck
k = b. If c1 = c2 = ... = ck, then

this is just the probability that for some nonzero y ∈ Fq, yc1 = b, so

P (yc11 y
c2
2 · · · y

ck
k = b) =

gb(gcd(q − 1, c1))

q − 1

If some ci > cj, then yc11 y
c2
2 · · · y

ck
k = yc11 y

c2
2 · · · y

ci−cj
i · · · ycj−1

j−1 (yiyj)
cjy

cj+1

j+1 · · · y
ck
k
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yiyj is still uniformly distributed and independent of yh when h 6= j, so

P (yc11 y
c2
2 · · · y

ci−cj
i · · · ycj−1

j−1 (yiyj)
cjy

cj+1

j+1 · · · y
ck
k = b) = P (yc11 y

c2
2 · · · y

ci−cj
i · · · ycj−1

j−1 y
cj
j y

cj+1

j+1 · · · y
ck
k = b)

We can then use the Euclidean algorithm to get that

P (yc11 y
c2
2 · · · y

ck
k = b) = P (yd1y

d
2 · · · ydk = b) =

gb(gcd(q − 1, d))

q − 1

where d = gcd(c1, c2, ..., ck).
Therefore we have

P (San 7→ b & B(A;x1 = a1, ..., x2n−1 = a2n−1) = (c1, ..., ck)) =
(q − 1)k−1

qn
gb(gcd(q−1, c1, ..., ck))

Summing over all compositions gives the lemma. �

Theorem 7.10. Let b be a nonzero element of Fq, and let a ≥ n.
Then

P (San 7→ b) =
∑

d| gcd(q−1,n)

fb(d)

qn(d−1)/d+1

where

fb(d) =
∑
e|d

µ(e)gb(
d

e
)

is the Möbius inverse of gb.

Proof. By the previous lemma, we have

P (San 7→ b) =
∑

(c1,c2,...,ck)∈C(n)

(q − 1)k−1

qn
gb(gcd(c1, c2, ..., ck, q − 1))

Note that the summand only depends on gcd(c1, c2, ..., ck, q − 1) and k, so we can rewrite
the sum as

P (San 7→ b) =
∑

d| gcd(n,q−1)
1≤k≤n/d

N(d, k)
(q − 1)k−1

qn
fb(d)

where N(d, k) counts the number of compositions (c1, ..., ck) of n with k parts such that d
divides gcd(c1, c2, ..., ck, q − 1) and ∑

e|d

fb(e) = gb(d)

or equivalently, by Möbius inversion,

fb(d) =
∑
e|d

µ(e)gb(
d

e
)
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This switch from gb to fb is necessary because some compositions are counted by multiple
N(d, k).
N(d, k) is easy to compute, we can consider a k-part composition of n as a choice of k− 1

break points along a line of length n. To satisfy the gcd requirement we only have n/d− 1

places where these break points can be, thus N(d, k) =
(
a/d−1
k−1

)
.

We can then simplify the sum using the binomial formula:

P (San 7→ b) =
∑

d| gcd(n,q−1)
1≤k≤n/d

(
n/d− 1

k − 1

)
(q − 1)k−1

qn
fb(d) =

∑
d| gcd(n,q−1)

qn/d−1

qn
fb(d)

This completes the proof. �

Corollary 7.11. Let b be an element of Fq of multiplicative order q − 1, and let a ≥ n.
Then

P (San 7→ b) =
∑

d| gcd(q−1,n)

µ(d)

qn(d−1)/d+1

and

P (San 7→ 1) =
∑

d| gcd(q−1,n)

ϕ(d)

qn(d−1)/d+1

where µ is the Möbius function and ϕ is Euler’s totient function.

Proof. These are both immediate consequences of the preceding theorem, when gb is par-
ticularly nice, and therefore fb is easy to compute. �

8. Miscellaneous Shapes

In this section, we look at miscellaneous shapes λ and calculate P (sλ 7→ 0). In general,
this probability is hard to compute for a random shape, so we mainly focus on generalizations
of the special shapes that we have investigated in previous sections.

8.1. Shapes of probability (q2 + q − 1)/q3.
We first investigate shapes with probability (q2 + q − 1)/q3 which is the next simplest

probability after 1/q. Notice that (q2 +q−1)/q3 is not the next smallest probability, though;
the probability (q4 + (q − 1)(q2 − q))/q5 from Proposition 3.6 is strictly smaller.

For a partition λ = (a, b) with only two parts where a > b > 1, it is not hard to see we
have P (sλ 7→ 0) = (q2 + q − 1)/q3. Similarly, looking at partitions with three parts, we can
also find shapes with this probability.

Proposition 8.1. Let λ = (a, a− 1, a− 2) for some a ≥ 5. Then

P (sλ 7→ 0) =
q2 + q − 1

q3
.
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Proof. By Jacobi-Trudi, we have

sλ =

∣∣∣∣∣∣
ha ha+1 ha+2

ha−2 ha−1 ha
ha−4 ha−3 ha−2

∣∣∣∣∣∣ .
We count the number of maps {ha−4, ha−3, . . . , ha+2} → F7

q so that this matrix is invertible.
From this point onward, we treat the hi’s as elements of Fq.

We first pick the entries in the first column, where we distinguish whether ha−2 and ha are
0. In both cases, we focus on making the third column linearly independent from the first.
We have four cases.

Case 1: ha−2, ha 6= 0.
For any choice of ha, there is precisely one c ∈ F×q such that c · ha−2 = ha. Hence we

may choose ha−1 and ha+2 in q2 − 1 ways. Since there are then q3 − q2 ways to pick the
second column, and we had (q − 1)2 ways of picking ha−2 and ha, this choice accounts for
(q2 − 1)(q − 1)2(q3 − q2).

Case 2: ha−2 = 0 but ha 6= 0.
In this case, the first and third columns are linearly independent regardless of our choice of
ha+2 and ha−1. Hence we see there are 1 · (q − 1)q2(q3 − q2) = q2(q − 1)(q3 − q2) invertible
matrices obtained this way.

Case 3: ha−2 = ha = 0.
In this case, we must choose ha−1, ha+2 6= 0 to maintain linear independence of the first and
third columns. Hence we obtain 12 · (q − 1)2(q3 − q2) invertible matrices in this way.

Case 4: ha−2 6= 0, but ha = 0.
In this case, we again automatically obtain linear independence of the first and third column.
Hence there are 1 · (q− 1)q2(q3− q2) = q2(q− 1)(q3− q2) invertible matrices obtained in this
way.

Putting this all together and dividing by q7 gives us P (sλ 67→ 0). Subtraction from 1 gives
the desired result. �

It turns out that two generalized hook shapes also have this probability.

Proposition 8.2. Let λ = (a, b, 1m), where b ≥ 2 and a 6= b + m. Then P (sλ 7→ 0) =
(q2 + q − 1)/q3.

Proof. By Jacobi-Trudi Identity, we have

sλ =

∣∣∣∣∣∣∣∣∣∣∣

ha ha+1 ha+2 · · · ha+m+1

hb−1 hb hb+1 · · · hb+m
0 1 h1 · · · hm
...

. . .
. . .

. . .
...

0 · · · 0 1 h1

∣∣∣∣∣∣∣∣∣∣∣
.

Let n be the number of distinct hi’s appearing in the above determinant. Depending on ha
and hb−1, we have three cases.

Case 1: hb−1 6= 0. Noting that the cofactor matrix formed by removing the first row and
last column is upper triangular with diagonal entries hb−1, 1, . . . , 1, we see that expanding
along the last column gives

±hb−1ha+m+1 + P (h1, . . . , ha+m),
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where P is a polynomial. Since hb−1 6= 0, for sλ to be zero the value of ha+m+1 is uniquely
determined by the choices of the other hi’s, giving us a total of qn−2(q − 1) choices.

Case 2: hb−1 = ha = 0. Then sλ = 0 and the remaining hi’s may be chosen arbitrarily,
which gives qn−2 ways.

Case 3: hb−1 = 0 and ha 6= 0. Expanding along the first column gives

sλ = ha

∣∣∣∣∣∣∣∣∣
hb hb+1 · · · hb+m
1 h1 · · · hm

0
. . .

. . .
...

0 0 1 h1

∣∣∣∣∣∣∣∣∣ .
Noting that the cofactor matrix formed by removing the first row and last column is upper
triangular with 1’s on the diagonal, we see that expanding along the last column gives

sλ = ±ha(hb+m + P (h1, . . . , hb+m−1)).

Since ha 6= 0 and a 6= b+m, the value of hb+m is uniquely determined by the choices of the
other hi’s, giving us a total of qn−3(q − 1) choices.

Adding up the number of choices from each case and dividing by qn gives the desired
probability. �

Notice that we cannot drop the condition a 6= b + m in the previous proposition. For
example, the shape λ = (4, 3, 1), has probability (q3 + q2 − 2q + 1)/q4.

Proposition 8.3. For a more general type of hook λ = (am, 1n) where a,m > 1, we have
P (sλ 7→ 0) = (q2 + q − 1)/q3.

Proof.
Using Jacobi-Trudi, we have

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xa xa+1 · · · xa+m−1 xa+m xa+m+1 · · · xa+m+n−1

xa−1 xa · · ·
...

...
. . .

...
xa−m+1 · · · xa−1 xa xa+1 xa+2 · · · xa+n

0 · · · 0 1 x1 x2 · · · xn
0 0 · · · 0 1 x1 · · · xn−1

... · · · 0
. . .

. . .
...

0 · · · 0 · · · 1 x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Then we perform ψ on M , and get

ψ(M) =

∣∣∣∣∣∣∣∣∣∣∣∣

xa xa+1 · · · xa+m−2 xa+m+n−1 − fk
xa−1 xa · · ·

...
...

. . .
...

xa−m+2 xa−m+3 · · · xa xa+n+1 − f2
xa−m+1 xa−m+2 · · · xa−1 xa+n − f1

∣∣∣∣∣∣∣∣∣∣∣∣
where fi(1 ≤ i ≤ k) are polynomials of x1 through xn.
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Notice that this shape is similar to the rectangle shape we proved in Section 5. We consider
the submatrix at the lower left corner of M , and we denote it by

M ′ =

∣∣∣∣∣∣∣∣∣∣
xa−1 xa · · · xa+m−3

xa−2 xa−1 · · ·
...

...
. . .

xa−m+1 xa−m+2 · · · xa−1

∣∣∣∣∣∣∣∣∣∣
which is a rectangle shape. By Corollary 4.8, P (detM ′ = 0) = 1/q. Also, if detM ′ 6= 0,

by Lemma 4.4 and equation 1 we can write

(6) M ′ =


cwIw

· · ·
c2I2

c1I1

 .
Therefore, detM = ± detψ(M) = ±c1c2 · · · cw(xa+m+n−1 − fk), and it is zero if and only

if xa+m+n−1 = fk, which has probability 1/q.
If instead detM ′ = 0, we use similar argument as in the proof of Lemma 4.4 to write

(7) M =


B

cpIp

· · ·
c2I2

c1I1


where matrix B is a square matrix of size m ≥ 2. Moreover, B is of the form

(8) B =


cp+1 · · ·

0 cp+1

... 0
. . .

...
0 cp+1

· · · 0 t


since M is of rectangle form except the last column, which implies that t does not nec-

essarily equal cp+1. Then, detM = 0 if and only if detB = 0, which is equivalent to either
cp+1 = 0 or t = 0. Therefore,

P (detB = 0) = 1− (
q − 1

q
)2 =

2q − 1

q2
.

To sum over two different cases,
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P (detM = 0) =P (detM ′ = 0)P (detM = 0| detM ′ = 0)

+ P (detM ′ 6= 0)P (detM = 0| detM ′ 6= 0)

=
1

q
· 2q − 1

q2
+
q − 1

q
· 1

q

=
q2 + q − 1

q3

�

Remark 8.4. This is not always true for a fattened hook λ = (am, bn) where b ≥ 2. In fact,
it seems the probability for a fattened hook can be very complicated, and Proposition 3.6
gives an example.

We also work on generalization of staircases. Based on numerical data for n up to 7, we
have the following conjecture.

Conjecture 8.5. For a 2-staircase λ = (2n, 2n − 2, · · · , 4, 2), we have P (sλ 7→ 0) =
(q2 + q − 1)/q3.

8.2. Relaxing the condition for the “far-apart” shapes.
Proposition 3.9 computes the probability for shape where all the rows are far apart, in

which case we have no constants or repeated variable in the Jacobi-Trudi matrix. If we relax
the condition so that we have one repeated variable, then we obtain the following proposition.

Proposition 8.6. Let λ = (λ1, . . . , λk), where λj−λj+1 = k−2 for some j < k, λi−λi+1 ≥
k − 1 for all i < k, i 6= j and λk ≥ k. Then

P (sλ 7→ 0) =
1

qk2−2k+2

(
qk

2−2k+2 − (q2k−2 − qk−1 − qk−2 + 1)
k−3∏
i=0

(qk−2 − qi)

)
.

Proof. By Jacobi-Trudi, we have

sλ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hλ1 hλ1+1 · · · hλi+k−1
hλ2−1 hλ2 · · · hλ2+k−2
...

. . .
...

hλj−j+1 hλj · · · hλj+k−j
hλj+1−j hλj+1

· · · hλj+1+k−(j+1)

...
. . .

...
hλk−k+1 · · · hλk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By the condition λj − λj+1 = k − 2, we have λj − j + 1 = λj+1 + k − (j + 1), so the two
entries hλj−j+1 and hλj+1+k−(j+1) equal. At the same time, the condition λi − λi+1 ≥ k − 1
for all i < k, i 6= j ensures that all the other hl’s are distinct and different from hλj−j+1, and
the condition λk ≥ k ensures that no entry in the above determinant is a constant. Hence
the only repeated entry is hλj−j+1, and we have k2 − 1 different variables to choose.

We count the number of choices of the hl’s such that the above matrix is invertible.
To start with, consider the first and the last columns and the choices that make them
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linearly independent. Denote the two columns by c1 = (x1, x2, · · · , xj, xj+1 · · · , xk)t and
ck = (y1, y2, · · · , yj, xj, yj+2, · · · , yk)t respectively, where we use xl’s and yl’s instead of hl’s
for simplicity. As we have shown, xl’s and yl’s are all distinct. We need c1 and ck to be
linearly independent, and depending on whether xj and xj+1 are zero or not, there are four
cases:

Case 1: xj = 0 and xj+1 = 0. Then the two columns become

c1 =



x1
...

xj−1
0
0

xj+2

...
xk


, ck =



y1
...

yj−1
yj
0
yj+2

...
yk


For c1 and ck to be linearly independent, we just need c1 to be a nonzero vector and ck not
a scalar multiple of it. We have qk−2 − 1 choices for c1, and we have qk−1 − q choices of ck
since there are qk−1 ways to choose ck randomly and q many of them will be a multiple of
c1. Hence in total we have (qk−2 − 1) · (qk−1 − q) choices in this case.

Case 2: xj = 0 and xj+1 6= 0. Then the two columns become

c1 =



x1
...

xj−1
0

xj+1

xj+2

...
xk


, ck =



y1
...

yj−1
yj
0
yj+2

...
yk


We can easily see that ck is not a multiple of ck, and as long as ck is not the zero vector c1
is not a multiple of c1. Hence in this case the two columns are linearly independent if and
only if ck is not the zero vector. Now we have q− 1 choices for xj+1 to be nonzero, q choices
for each of the other k − 2 many xl’s, and qk−1 − 1 for ck to not be the zero vector. Hence
in total we obtain (q − 1) · qk−2 · (qk−1 − 1) many choices in this case.

Case 3: xj 6= 0 and xj+1 = 0. Then the two columns are just

c1 =



x1
...
xj
0

xj+2

...
xk


, ck =



y1
...
yj
xj
yj+2

...
yk


39



Since xj 6= 0, neither of the two columns is the zero vector and ck i cannot be a multiples
of c1 as every multiple of c1 has the (j + 1)th entry to be zero. Hence all such c1 and c2 are
linearly independent. We have q − 1 choices for xj to be nonzero and we have q choices for
each of the remaining 2k−3 many xl’s and yl’s. In total we have (q−1) · q2k−3 many choices
in this case.

Case 4: xj 6= 0 and xj+1 6= 0.
Then neither of the two columns can be the zero vector, and we just need to make sure ck is
not a scalar multiple of c1. We have q− 1 choices of both xj and xj+1, and we have q choices
for each of the remaining k − 2 many xl’s, resulting in (q − 1)2 · qk−2 many choices for c1.
Once we have chosen c1, the only way for ck to be a multiple of c1 is to be

xj
xj+1

times of c1,

and all the other choices of ck are linearly independent from c1. Hence there are (qk−1 − 1)
choices of ck. In total we get (q − 1)2 · qk−2 · (qk−1 − 1) many choices in this case.

Summing over the four cases, we see that the total number of choices of independent c1
and ck are q(q2k−2 − qk−1 − qk−2 + 1).

To choose the remaining k − 2 many columns, notice that their entries are all distinct
variables. For each 2 ≤ i < k, we can choose the ith column so that it is not in the span of
the previous i− 1 columns and the last column, and there are qk− qi many ways to do that.

Hence multiplying all these choices we have that there are (q2k−2 − qk−1 − qk−2 + 1) ·∏k−1
i=2 (qk − qi) many invertible matrices. We know there are qk

2−1 many possible matrices in
total, so the probability that the matrix is singular (i.e., the determinant sλ is zero) is

P (sλ 7→ 0) = 1− q(q2k−2 − qk−1 − qk−2 + 1) ·
∏k−1

i=2 (qk − qi)
qk2−1

=
1

qk2−2

(
qk

2−2 − (q2k−2 − qk−1 − qk−2 + 1)
k−1∏
i=2

(qk − qi)

)

=
1

qk2−2k+2

(
qk

2−2k+2 − (q2k−2 − qk−1 − qk−2 + 1)
k−3∏
i=0

(qk−2 − qi)

)

=
1

q(k+2)(k−1)/2

(
q(k+2)(k−1)/2 − (q2k−2 − qk−1 − qk−2 + 1)

k−2∏
i=1

(qi − 1)

)

�

Acknowledgments. This research was carried out as part of the 2016 REU program at
the School of Mathematics at University of Minnesota, Twin Cities, and was supported by
NSF RTG grant DMS-1148634 and by NSF grant DMS-1351590. The authors would like
to thank Ben Strasser and Joel Lewis for their comments and suggestions. The authors are
especially grateful to Rebecca Patrias for her mentorship, support, and valuable advice.

References

[1] Richard P. Stanley. Enumerative Combinatorics, Vol. 2. Number 62 in Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1999.

40



Department of Mathematics, University of Idaho, Moscow, ID 83844
E-mail address: anzi4123@vandals.uidaho.edu

Department of Mathematics, Cornell University, Ithaca, NY 14853
E-mail address: sc2586@cornell.edu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
E-mail address: gaoyibo@mit.edu

Mathematics Department, Reed College, Portland, OR 97202
E-mail address: jessekim1995@gmail.com

Department of Mathematics, Statistics, and Computer Science, Macalester College, St
Paul, MN 55105

E-mail address: zli@macalester.edu

41

mailto:anzi4123@vandals.uidaho.edu
mailto:sc2586@cornell.edu
mailto:gaoyibo@mit.edu
mailto:jessekim1995@gmail.com
mailto:zli@macalester.edu

	1. Introduction
	1.1. Motivation and Problem Statement
	1.2. Review of Basic Definitions

	2. Preliminaries
	2.1. Definition of Certain Matrices
	2.2. Definition of Certain Operations

	3. General Results
	3.1. Lower bound on the probability
	3.2. Asymptotic Bound
	3.3. General Form of the Probability
	3.4. Conjecture on the Upper Bound

	4. Hooks, Rectangles and Staircases
	4.1. Hooks
	4.2. Rectangles
	4.3. Staircases

	5. Classification of 1/q
	6. Independence Results for families with P = 1/q
	6.1. Rectangles
	6.2. Staircases

	7. Distribution of Other Values
	7.1. General Results
	7.2. Rectangles

	8. Miscellaneous Shapes
	8.1. Shapes of probability (q2+q-1)/q3
	8.2. Relaxing the condition for the ``far-apart" shapes

	References

