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1.1 Review

We will first begin with a review of the facts that we already now about this
problem.

Firstly, a semistandard Young tableau 7" is a Young tableau A = (A1, ..., Ap)
with positive integer entries which strictly increase in columns and weakly in-
crease in rows.

Secondly, we will define a Schur function : a Schur function is a polynomial
sy is defined as

s,\:ZxT:inlxg"---xff', (1)
T T
where the summation is over all semistandard Young tableau T" of shape A; the
exponents tq,...,t, represent the weight of the tableau, in other words the t;
counts the number of occurences of ¢ in T'.

Thirdly, a reverse plane partition is Young tableau with positive integer

entries which increase weakly both in rows and columns.

Forthly,we introduce the dual-stable Grothendieck polynomials, defined as

o= wr =y af--al (2)
T T

where the summation is over all reverse plane partitions T of shape \; the
exponents t1,...,t, represent the weight of the reverse plane partition, in other
words the ¢; counts the number of columns containing ¢ in 7.

We will note henceforth A = (A1,...,\,) the conjugate of A, a tableau with
A; boxes on the i — th column for all 7.

We now introduce the Jacobi-Trudi formulas, or also known as the Giambelli formulas,

expressing the schur functions in terms of elementary symmetric polynomials,



e;, by having the formula

sx = deti<ij<n(es; iy ;) ®)
or
6X1 €X1+1 ' 6X1+n71
5y = ' Y . (4)
X —nt1 X

Definition. An elegant filling (EF) of the skew shape A/p is a filling of A/u
with the following conditions:

(1) the numbers weakly increase in rows and strictly increase in columns;
and

(2) the numbers in the row ¢ are in [1,¢ — 1]. The number of EFs of A/u is

denoted by f4'. In the case where y is not included in A we set f} = 0.

Theorem 1 (Lahm, Pylyavskyy [1]). Let A be a partition. Then

gx = fosﬂ (5)

nCA
1.2 Equivalent Relations

Now, we will prove some equivalences using the Jacobi-Trudi formulas.
Note, A = (my,...,m,) with m; > ... > m, and also the symmetric poly-

nomial wx = Wy, ,....m,)r defined by
(:Zi:%)eml +.o (81171)61 v (zi:i)emr‘ﬂ'—l +...+ (Bnlil)er

(rDemp—rti+ -+ @ Neamr - (2 TDem, + -+ (57 e

(6)
or by writing the abbreviated formula, we have

o det(((m:_})emi—“‘j +.oF (6""1)61'—”1) 1<i,j<r)' @)

Note the linear vector V,, = (e €441 ... €z4r—1) where e, = 0 if 2 <0 and

60:1.



Therefore equation (6) is becoming
G )Vons 4+ 7N
0 — ; . ®)
i | e i )
We can split the determinant by using the n — linearity of the determinant

like

Ry + Ry Ry Ry
R R Rs
. = . + . (9)
R, R, R,
therefore we get
i—1
(,Zi-i—l—Q)Vkl Vk:
1
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i—1
n=>( X S ED DY ) (R
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7'_1 k‘r
(Zi-‘,—'r'—?)vkr
(10)
Vo
We would like to compute now the coefficient of where oy > ... > «,
Va.
and also2 —i<a; <m; —1+1,V1<i<r.
Actually we can suppose that a; > ... > a,, because if there are 7,j such
Ve,
that o; = «; then : = 0, therefore we can do the previous supposition.
Va,
Vo
Therefore the coefficient of will be
Va.
Vaa(l) VOél
m,—l ' _ e(a) :
Z O‘0( )i— 2 . Z H Oéa( Vi 2 . <11)
oeS, i=1 Vaa(r) oeS, Var
Vs
(-D<|
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and by noting (;n,(_b)l-;-z—z) = Qo (i), it Tesults that ZGGST(—l)e(”) | P

Qg (i)ti—2
Y oes, (DT, dioiy = det((aij)lﬁidﬁr) = det((&@fﬂz)lg,jy)
which yields that

Val
(1) = det (M h<iger) | (12)
Ve
and we will also note o = det((;’?;i172)197j9) where u = (aq,...,q, +
r—1T.
Va1
Also, by using Theorem 1, we get that can be written as the Schur
Var

polynomial $(4, ... a,+r—1)7 = S,. Therefore the coefficient of s, is in fact exactly
aX, hence wy = ZMEB al's, for some set B of plane partitions.
We will now prove that u € B if and only if i C X or the equivalent 7z C .
Proof.
"= " Ifpu = (ar,...,0qp +r — 1T | with oy +i > ;41 +1i + 1, thus
; > a1+ 1land 2—i < oa; <my —i+ 1, therefore 1 < a; +i—1<m; = A,
N

My
for all 1 <4 <7, hence u C A

V<=7 It C Athentake oy =; —i+1,Vi,andso2—¢ < a; <m; —i+1
and oy =p;, —t+1>m0,_ 1 —i+1=a;-1+1, s0 a; > o1, therefore p € B.
This proves that
wy = Z als,. (13)
HCA
Lemma:
The two following statements are equivalent:
a).For any plane partition A, we have wy = gy;

b).For any u C A, we have f}' = det((%_:;_,_i_l)lgi,jgr) ,where A\ = (A1, ..., \,)
and i = (@, ..., ,) (we need that 7z has r columns, if not f{ = 0).

Proof: ” = " If gx = 3,y f\ = X,ca@) = wy, and also knowing
that the Schur functions form a basis in the space of symmetric polynomials,

: W Ni—1
therefore it results that f{ = o = det((ﬁj —j+i—1)1§i,j§r>-

4

) =



7 <" Tt is clear from (13) and Theorem 1.

We also get a consequence from the lemma: det((b;7j+i71)1§i,jgr) > 0,

where aq,...,a,,b1,...b, are integers and a; > ... >a,, >0,by > ... > b, > 0.

Now we will state the main conjecture of my REU project:

Conjecture. For any plane partition A we have wy = gy.

We will prove this conjecture for some special cases.

1.3 Proof of the conjecture in some special cases

Note (i) = column with ¢ boxes and (4,j) = two column plane partition with

the first column having ¢ boxes and the second one having j columns.

1.3.1 One column case

Case I : one column case, A = (r). From Theorem 1, g,y = Y7, f((:;s(l) We
will prove that f((g = (77}), and by the lemma we get our result.

Let a;y1, ajy2,..., a, the numbers filled in the elegant filling of the skew-
shape (r)/(4), the j-th box containing a;;. By the definition of the elegant filling
we have that 1 < a;41 < aj42 <--- < a, (condition 1) and all a; € [1, j —1]
for all j = i+ 1, r (condition 2). But actually this is equivalent to pick any
r — ¢ distinct numbers in the interval [1,7 — 1], as by simply doing that both
conditions will be satisfied. The number of ways of picking r — ¢ numbers from
1 to r is obviously ("=}) = ({7}), therefore getting that f((:; = (77]), and the
conclusion follows.

We can prove this result through other method also:

Note SET™ = (M)eptm+- -+ (5 )ex, where k,m > 0 and we can easily prove
that SF 7 — Syt = SFH!. By induction we get Syt = (§21)(—1)*-D=(k=Dg, ot

.+ (lg_l)(fl)k’lfog(m_s_l), therefore by plugging in & = 1 we get S"™! =

Gm+1) = (m)ems1 + ...+ (§")er, hence g,y = (“Der+ ...+ (T Her.



1.3.2 Two columns case

Case IT : A\ = (r,s) with r > s.

By using the lemma, we need to prove
D (G2 ‘
D)

76 = ‘ o= =(HED = G2HE™ (14)

rs) (Z
with ¢ >3, s> 4, r > 1.

We will prove this in multiple steps.

Stepl. If j = 0 then obviously f((;g =0, i.e. there is no elegant filling.
Suppose that j = 1. For the second skew-column (s)/(j) there is only one
possibility to have an elegant filling, i.e. starting up to down with 1 till s — 1.
Then every elegant filling of the first column taken separately, will provide
an elegant filling of the skew-shape (r,s)/(, j), therefore the number of elegant
fillings of (r,s)/(i,1) is equal to the number of elegant fillings of (r)/(¢), which
we computed in the previous case to be (::11), therefore we proved that f((;;)) =
(:__11) Thus, from now on we can suppose that j > 2.
Step2. Suppose that s — 1 <4, then (57') = 0. As there will be no rows with
two boxes, any elegant filling of the first skew-column (r)/(i) together with
any elegant filling of the skew-column (s)/(j) will make a good elegant filling
of (r,s)/(i,7), therefore the number is equal to f((;g)) = f(:,gf((g)) = GG

From now on we can suppose that s — 1 > 1.

Step3.

Definition. A non — elegant filling (NEF) of a skew-shape (r,s)/(i,J)
with two columns such that:

1). strictly increases in columns

2). there exists at least one row containing two boxes which are strictly
decreasing in row

3). every number on the ¢ — th row is between 1 and ¢ — 1.

We denote the number of non — elegant fillings with ngii))



Definition. A semi — elegant filling (SEF) of a skew-shape (r,s)/(i,j)
with two columns such that:

1). the numbers strictly increase in columns

2). every number on the i — th row is between 1 and i — 1.

We denote the number of semi — elegant filling with SET‘?) We can see that
in fact these conditions means that every column separately is filled in an elegant
way. Hence, we can actually compute the number of semi — elegant fillings,
this being sgijs)) = (ZHEoD-

We can obviously see that a semi — elegant filling can be either a non —
elegant filling or an elegant filling, therefore we get that f((; i) +n g;js)) sgijs))
If we suppose that f(”) = (i~ 1)(; D - G~ 1)( 3) then this will give us that

Eri)) G~ 1)(J 5)- This means that we need to prove now that the number of

NEFs is (71)(;23).

Main Theorem. The number of the NEF's of the skew-shape (r,s)/(i,7) is
GG

Proof:

1). First we prove if s — 1 = i. We consider a NEF for the skew-shape
(r,s)/(s —1,7), and let by, ..., by, aj41,...,as with b; being the | — th number
on the first skew-column and a; being the [ — th number on the second skew-
column. Being a NEF gives us that aj11 < ... < as, am € [1, m — 1] for all
m=j+1,8bs<...<b., b €[l, —1]foralll =357, and also a; < by < s—1.
But the latter condition gives us that in fact as < s — 2, therefore a,,, < m — 2
for all m = j+ 1,s, making the numbers a;41 < ... < a5 < by < ... < b,
an elegant filling of a skew-shape (r)/(j — 1). Therefore this implies ngijs)) =
f((g)_l) = (;:é) = (;:;)(ffl), hence the conclusion.

2). Now we suppose that s > i+ 2.

Note N{ = { all the NEFs of the shape A/p } and Ef = { all the EF's of
the shape A\/p } , with g C A

We will construct a bijection between N(T g and E((]) D« E((Srl).



i). We define the bijection h. Take A € N((:i)) Note z;1, ..., x, the numbers

in the first column and y;41,...ys the numbers in the second one. Let k =
min {l | x; >y, i+1<1<s} (k exists because A is a NEF).

We have that g < 2, <k —1, hence y; <1 —2 for all | = j + 1, k. Because
Tm € [I,m—1] forall m € i +1,7], y; € 1,1 — 2] for all [ € [j + 1,s] and
also yj41 < ... <yp <z < ... <2, we get that y 11, ..., Y%, Tk, Thg1,. .., T
can be an elegant filling for a skew-shape (r)/(j — 1) which belongs to Efi;l).
We note this filling by Ba. Also, because x,, € [1,m — 1] C [1,m] for all
m=i+1,k—1landy € [l,l-1]and also 41 < ... < Tp_1 < Ypr1 < --- < Ys,
we get that x;41,...,2Z5k—1,Yk+1,.--,Ys can be an elegant filling for a skew-
shape (s)/(i + 1) which belongs to E((gl). We note this filling with C4.

Now, we will define the bijection in the following way : h : N((:i)) —
EJY x B and h(A) = (Ba,Ca) € BY, Y x BT,

ii). We will prove that h is well defined. Suppose that there is an A in
N((::g and h(A) = (Ba,Ca) = (B, (") which implies that z,, = z,, for all
m =i+ 1,rand y; =y for all | = 5+ 1,s, hence B4 = B/, and C4 = C
which proves that h is well defined.

iii). At this step we will prove that h is indeed a bijection. As it is clear

that the sets N(ig and E(jfl) X E( N

( " (i) are finite, it is sufficient to prove that

h is surjective.

Take any B € E(Z_l) and C € E'T. We note the numbers in B to be

(r) (s)

Bj, ., Br with B € [1,1 — 1] for all l = j,7 and 3; < ... < 3,, and we also note
the numbers in C to be aj;yo,...,as with a,,, € [I,m — 1] for all m =i+ 2,
and q;40 < ... < Q.

Suppose that there exists k such that k+1 = min{l| 8j—2 < ay, | € [i+2,s]}.

We have that oy < g2 < Br <k —1, hence oy € [1,1 — 2] for all [ =i+ 2, k.

We define two sequences ;4 1,...,2Z, and y;11,...,¥Ys in the following way:

xp=aquy foralll=1+1,k—1and x; =0 foralll=k,r (15)

and

yi=Pi—1 foralll=j7+1Lkandy =a; foralll=k+1,s. (16)



We take a skew-shape (r,)/(4,7) and we fill it out with 2;41,...,2; on the
first column and with y;11,...,ys on the second column and we note this filling
Ap.c. We have that z;11 < ... <z, and y;41 < ... < ¥Ys, T, € [I,m — 1]
forall me [i +1,r], yy € [1,l — 1] for all I € [j + 1,s] and on the k — th row
we have z, > ys, all these conditions prove that Ap ¢ is a N (Zi ? . Now, we can
immediately observe that (B, C') is the image through h of Ap ¢ (just apply the
algorithm defined in i). ).

Now, suppose that there is no k such that k+1 = min{l| fj—2 < ay, | € [i+
2, s|}. Hence f;—2 > oy, Vi+2 <1 < s. This implies that a; € [1,1—3] C [1,1-2]

for all I = ¢+ 2,s. We define two sequences x;11,...,%, and y;j41,...,Ys in the

following way:

=01 foralll=i+1,s—1and x; = for alll = (17)

and

=pi-1 foralll=j+1,s. (18)

we take the skew-shape (r, s)/(4, j) and we fill it out with z;1, ..., 2, on the first
column and with y;41,...,ys on the second one and we note this filing Ajac.
We have that 2,41 < ... <z, and yj41 < ... <vys, 21 € [1,1 —=2] C [1,1 —1] for
alll e i+ 1,7,y €[1,l—2] C[l,l —1] for all I € [j + 1,s] and on the k — th
row we have zp > yi, all these conditions prove that AIB,C isa N, ((ig ; . Again, we
see immediately that, in this case also, (B, C) is the image through h of Ab,o

Hence, the conclusion. Therefore, h is surjective, thus also bijective. h is
indeed a bijection between N (rs ’J and E (j Dy plity , which implies that the car-

(s)

dinals of N((Z’g and E((i) D o E(@;‘l) are equal so |N 7j)| _ |E(j_1)‘ % \E((i+1)| _

POV = (7)Y, hence {7 = (173)(¢7Y), therefore £7) = (=) (571)—
GG
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