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Abstract. We give a combinatorial interpretation for the super Catalan num-

ber S(m,m + s) for s ≤ 3 using lattice paths and make an attempt at a com-
binatorial interpretation for s = 4. We also examine the integrality of some

factorial ratios.

1. Introduction

The Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
, (1)

are known to be integers and have many combinatorial interpretations.
In 1874, E. Catalan [1] observed that the numbers

S(m,n) =
(2m)!(2n)!

m!n!(m+ n)!
, (2)

are also integers. Gessel [2] later referred to these numbers as the super Catalan
numbers since S(1, n)/2 gives the Catalan number Cn. Gessel and Xin [3] presented
combinatorial interpretations for S(n, 2) and S(n, 3), but in general it remains an
intriguing open problem to find a combinatorial interpretation of the super Catalan
numbers. In this paper, we give a combinatorial interpretation for S(m,m+ s) for
s ≤ 3.

2. A New Super Catalan Identity

We first derive another identity for the super Catalan numbers from the well-
known Von Szily identity ([2, Section 6])

S(m,n) =
∑
k

(−1)k
(

2n

n− k

)(
2m

m+ k

)
. (3)

We provide both a combinatorial and an algebraic proof for this new identity.

Proposition 2.1. For m, s ≥ 0, the following identity for the super Catalan num-
bers holds:

S(m,m+ s) =
∑
k

(−1)k
(

2m

m− k

)(
2s

s+ 2k

)
. (4)

Combinatorial Proof. We first interpret (3) in terms of lattice paths. We assume
without loss of generality that m ≤ n and note that for any k,

(
2n
n−k
)(

2m
m+k

)
counts

the number of lattice paths from (0, 0) to (m + n,m + n) going though the point
(m+ k,m− k) with unit right and up steps.

1
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We now define a sign-reversing involution φ on the lattice paths⋃
k

((0, 0)→ (m+ k,m− k)→ (m+ n,m+ n))

with the sign determined by the parity of k such that the number of fixed paths
under this involution is the super Catalan number. We let P = (s1, s2, . . . , s2m+2n),
an ordered set, be a path from the point (0, 0) to (m+n,m+n) where each si = R
or U depending on whether it is a right step or an up step. We then find (if it
exists) the least i, 1 ≤ i ≤ 2m, such that si 6= s2m+i and switch these two steps. In
other words, we have the map φ(P ) = P ′ = (s′1, s

′
2, . . . , s

′
2m+2n) such that

s′j =


s2m+i, j = i

si, j = 2m+ i

sj , otherwise.

For such a path, since k is the number of right steps in the first 2m steps minus
m, P and P ′ will have k’s of opposite parity so φ is a sign-reversing involution. We
notice that all the lattice paths with sk 6= s2m+k for some 1 ≤ k ≤ 2m are cancelled
under the involution φ. Therefore, the paths fixed under the involution are those
from the point (0, 0) to (m− k,m+ k) to (m+ n,m+ n) such that si = s2m+i for
all 1 ≤ i ≤ 2m. For any k, we have

(
2m
m−k

)(
2n−2m
n−m+2k

)
such paths since by symmetry

there are
(

2m
m−k

)
ways to choose the first 4m steps and

(
2n−2m
n−m+2k

)
ways to choose

the last 2n− 2m steps. Accounting for the parity of the k’s, we then have that

S(m,n) =
∑
k

(−1)k
(

2m

m− k

)(
2n− 2m

n−m+ 2k

)
.

Letting s = n−m then gives us (4) as desired.
�

Algebraic Proof. Equating the coefficients of xm+n in

(1 + x)2n(1− x)2m = (1− x2)2m(1 + x)2n−2m,

we have that∑
j

(−1)m+j

(
2n

n− j

)(
2m

m+ j

)
=
∑
k

(−1)k
(

2m

k

)(
2n− 2m

m+ n− 2k

)
.

Applying Von Szily’s identity (3) on the left hand side and replacing k by m − k
on the right hand side, we get that

(−1)mS(n,m) =
∑
k

(−1)m−k
(

2m

m− k

)(
2n− 2m

n−m+ 2k

)
.

The result follows by letting s = n−m. �

3. A Combinatorial Interpretation of S(m,m+ s) for s ≤ 3

3.1. The Main Theorem. In this subsection, we use the identity in Proposition
2.1 to provide a combinatorial interpretation for S(m,m + s) for s ≤ 3. To state
our result, we first need to define four line segments, see Figure 1:
`1 connects (0, 1) and (m− 1/2,m+ 1/2),
`2 connects (1, 0) and (m+ 1/2,m− 1/2),
`3 connects (m− 1,m+ 1) and (m+ s− 1,m+ s+ 1), and
`4 connects (m+ 1,m− 1) and (m+ s+ 1,m+ s− 1).
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(0, 0)

(m,m)

(m+ s,m+ s)

`1

`2

`3

`4

Figure 1. `1 through `4 for the m = 4, s = 3 case.

Theorem 3.1. For s ≤ 3, S(m,m + s) counts the number of paths from (0, 0) to
(m+ s,m+ s) passing through (m,m) that do not intersect both lines `1 and `4 or
both `2 and `3.

Proof. From (4), we have that for s ≤ 3,

S(m,m+ s) =

(
2m

m

)(
2s

s

)
−
(

2m

m− 1

)(
2s

s+ 2

)
−
(

2m

m+ 1

)(
2s

s− 2

)
.

We notice that
(
2m
m

)(
2s
s

)
counts the number of paths from the point (0, 0) to (m,m)

to (m + s,m + s) and denote this set of paths by Path0. Similarly,
(

2m
m−1

)(
2s
s+2

)
counts the number of paths from (0, 0) to (m− 1,m+ 1) to (m+ s+ 1,m+ s− 1)
and

(
2m
m+1

)(
2s
s−2
)

counts the number of paths from (0, 0) to (m + 1,m − 1) to the

point (m+ s− 1,m+ s+ 1). We denote these sets of paths by Path−1 and Path1,
respectively.

We define an injection from Path−1 ∪Path1 to Path0. To do so, first notice that
any path P ∈ Path−1 must intersect `1. We can find the last such intersection
and reflect the tail of P ’s (0, 0) to (m − 1,m + 1) segment over `1. This will give
us a segment from (0, 0) to (m,m). We then translate the last 2s steps of P so
that they start at (m,m) and end at (m + s + 2,m + s − 2). This segment must
then intersect `4. We can find the last such intersection and reflect the tail of this
segment over `4. Combining the two new segments, we now have a path in Path0,
see Figure 2 for an example. Notice that this map has a well-defined inverse. We
define a similar map for paths in Path1, but reflect over lines `2 and `3 instead of
`1 and `4.

We notice that paths in Path−1 cancel exactly with the paths in Path0 that
intersect both lines `1 and `4. Similarly, we find that paths in Path1 cancel out
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Figure 2. A mapping from Path−1 to Path0 for m = 4, s = 3.

exactly with the paths in Path0 that intersect both lines `2 and `3. Moreover,
any path in Path0 does not intersect both `3 and `4 since s ≤ 3. This guarantees
that the paths in Path0 that Path−1 and Path1 cancel do not overlap. Therefore,
S(m,m + s) counts the number of paths in Path0 that do not intersect both lines
`1 and `4 or both `2 and `3.

�

3.2. Enumeration of the Paths in Theorem 3.1. From (2), we can find explicit
expressions for the super Catalan numbers when s is small. In this subsection, we
count the paths remaining under the injection defined in Theorem 3.1 and show
how they match with these explicit expressions.

For s = 0, we have that

S(m,m) =
(2m)!(2m!)

m!m!(m+m)!
=

(
2m

m

)
,

where the central binomial coefficient counts the paths from (0, 0) to (m,m). These
are exactly the paths specified in Theorem 3.1 for s = 0.

For s = 1, we have that

S(m,m+ 1) =
(2m)!(2m+ 2)!

m!(m+ 1)!(2m+ 1)!
= 2

(
2m

m

)
,

which counts the number of paths from (0, 0) to (m + 1,m + 1) going through
(m,m). Since no paths from (m,m) to (m+ 1,m+ 1) intersect `3 or `4, these are
also exactly the paths specified in Theorem 3.1.

For s = 2,

S(m,m+ 2) =
(2m)!(2m+ 4)!

m!(m+ 2)!(2m+ 2)!
= 2(2m+ 3)Cm.

By Theorem 3.1, the paths remaining in Path0 under the injection either intersect
only one of `1 and `2 or intersect both `1 and `2. We first count those that only
intersect `1. There are Cm ways to choose the first 2m steps since this segment of
the path must stay below the line y = x. Then, there are 5 possible paths from
(m,m) to (m+2,m+2) that do not intersect `4. Hence, we have totally 5Cm paths
from (0, 0) to (m,m) to (m + 2,m + 2) that intersect only `1. By symmetry, we
have 5Cm paths that only intersect `2.
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We now count the paths that intersect both `1 and `2. Consider the segment
from (0, 0) to (m,m). We notice that to get the number of paths that intersect
both `1 and `2, we subtract the number of paths that intersect only `1 or `2 from
the total number of paths from (0, 0) to (m,m). We have(

2m

m

)
− 2Cm =

(
2m

m

)
− 2

m+ 1

(
2m

m

)
= (m− 1)Cm

such paths. Since there are 4 paths from (m,m) to (m + 2,m + 2) that do not
intersect `3 or `4, we have 4(m−1)Cm paths that intersect both `1 and `2. Therefore,
the total number of paths is

2 · 5Cm + 4(m− 1)Cm = 2(2m+ 3)Cm,

as desired.
Finally, for s = 3, we have that

S(m,m+ 3) =
(2m)!(2m+ 6)!

m!(m+ 3)!(2m+ 3)!
= 4(2m+ 5)Cm.

Applying a similar method as in the s = 2 case, we can count 2 · 14Cm paths that
only cross `1 or `2 and 8(m− 1)Cm paths that cross both `1 and `2. It is clear that

2 · 14Cm + 8(m− 1)Cm = 4(2m+ 5)Cm.

3.3. A Note on the q-analog. Warnaar and Zudilin [6] proved that the q-super
Catalan numbers

[S(n,m)] =
[2n]![2m]!

[n]![m]![n+m]!

are polynomials with positive coefficients, where the q-integer

[n] = 1 + q + · · ·+ qn−1 =
1− qn

1− q
.

Using our lattice paths interpretation, it is not hard to see why this is the case for
s = n−m ≤ 3.

For s = 0, S(m,m) =
(
2m
m

)
has the q-analog

[S(m,m)] =

[
2m

m

]
.

It is well-known that
[
2m
m

]
counts the number of unit squares in an m × m box

above the lattice paths that remain under our injection in Theorem 3.1.
For s = 1, S(m,m+ 1) = 2

(
2m
m

)
has the q-analog

[S(m,m+ 1)] = (1 + qm+1)

[
2m

m

]
.

For s = 2,

S(m,m+ 2) = 2(5Cm + 2(m− 1)Cm) = 2(2m+ 3)Cm
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has the q-analog

[S(m,m+ 2)] =
[2m]![2m+ 4]!

[m]![m+ 2]![2m+ 2]!

=
[2m+ 4]

[m+ 2]
[2m+ 3][Cm]

= (1 + qm+2)([2m− 2] + q2m−2[5])[Cm]

= (1 + qm+2)((1 + qm−1)[m− 1] + q2m−2[5])[Cm],

where the q-analog of Cm,

[Cm] =
1

[m+ 1]

[
2m

m

]
,

counts the major index of the length 2m words in the alphabet −1, 1, and for any
given Catalan path, up and right steps correspond to 1 and −1, respectively (see
exercise 6.34 in [5]).

Similarly, for s = 3,

S(m,m+ 3) = 2 · 2(2m+ 5)Cm

has the q-analog

[S(m,m+ 3)] =
[2m]![2m+ 6]!

[m]![m+ 3]![2m+ 3]!

=
[2m+ 6]

[m+ 3]

[2m+ 4]

[m+ 2]
[2m+ 5][Cm]

= (1 + qm+3)(1 + qm+2)[2m+ 5][Cm]

= (1 + qm+3)(1 + qm+2)([2m− 2] + q2m−2[7])[Cm]

= (1 + qm+3)(1 + qm+2)((1 + qm−1)[m− 1] + q2m−2[7])[Cm].

4. An Attempt at s = 4

In general, the methods used for finding a combinatorial interpretation for the
super Catalan numbers S(m,m+ s) for s ≤ 3 in Section 3 do not generalize nicely
to higher s. In this section, we examine the case of s = 4.

We first define the following lines in addition to `1, `2, `3, `4 as defined in Section
3. These lines are pictured in Figure 3.
`5 connects (m− 1/2,m+ 1/2) and (m+ s− 1/2,m+ s+ 1/2),
`6 connects (m,m) and (m+ s,m+ s), and
`7 connects (m+ 1/2,m− 1/2) and (m+ s+ 1/2,m+ s− 1/2).

Theorem 4.1. For s = 4, S(m,m + s) counts the number of paths from (0, 0) to
(m,m) to (m + s,m + s) that do not touch both lines `1 and `4 or `2 and `3 such
that if they have an intersection of `1 before an intersection of `2, they do not also
remain between lines `5 and `6 or between `6 and `7.

Proof. For s = 4, we notice that (4) gives us five terms corresponding to k,−2 ≤
k ≤ 2. Interpreting these terms with lattice paths, we again have that for any
i,−2 ≤ i ≤ 2, the k = i term counts the number of paths in Pathi where Pathi is
defined as the set of lattice paths from (0, 0) to (m+i,m−i) to (m+s−i,m+s+i).
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`1

`2

`5
`6

`7

`3

`4

Figure 3. `1 through `7 for m = 4, s = 4.

We again map paths in Path1 and Path−1 to Path0 using the mapping defined in the
proof of Theorem 3.1. Under this mapping however, we have double cancellation
of paths that intersect all four lines `1, `2, `3, and `4. Therefore,

|Path0| − |Path1| − |Path−1| =|{Paths that do not intersect both `1, `4 or `2, `3}|
− |{Paths that intersect `1, `2, `3, and `4}|.

We may also map the terms in Path2 and Path−2 into the set Path0. We first
define `8 to be the line segment from (0, 3) to (m− 3/2,m+ 3/2) and `9 to be the
line segment from (3, 0) to (m + 3/2,m − 3/2). Then all paths in Path−2 must
intersect `8. We find the last such intersection and reflect the tail end of these
first 2m steps over line `8. Now we have a segment that intersects `8 and ends at
(m − 1,m + 1). This segment must also intersect `1 before its last intersection of
`8. We find the last such intersection of `1 and reflect the tail end of the segment
over `1. This then gives us a segment from (0, 0) to (m,m) that has an intersection
of `2 somewhere before an intersection of `1.

We note that this is also an invertible operation. Also, we transform the last 2s
steps of the path to the segment from (m,m) to (m+ s,m+ s) that intersects first
`3 and then `4, see Figure 4 for an example.

By symmetry, we can map the paths in Path2 to the paths in Path0 that have
an intersection of `1 before an intersection of `2 and also hit lines `4 and `3 in that
order. Hence, the paths in Path−2 and Path2 are mapped to exactly the paths in
Path0 that hit all four lines `1, `2, `3, `4, but at some point hit `1 before hitting `2.
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`1

`2

`3

`4`8

`9

Figure 4. A transformation from Path−2 to Path0 for m = 4, s =
4.

Adding this to our count for |Path0| − |Path1| − |Path−1|, we have

S(m,m+ 4) =|{Paths that do not intersect both `1, `4 or `2, `3}|
− |{Paths that intersect `1, `2, `3, and `4, but never `1 before `2}|.

But if we define the sets S1 and S2 where

S1 = {Paths that intersect `1, `2, `3, and `4, but not `1 before `2}

and

S2 = {Paths that intersect `1 and `2, not `1 before `2

that stay between `5 and `6 or `6 and `7},

we can find a bijection between the two sets as follows. For paths in S1, we map
the last 2s steps of paths that intersect first `4 and then `3 to those that remain
between `5 and `6, and the last 2s steps of paths that intersect first `3 and then `4
to those that remain between `6 and `7.

Hence, we can find that S(m,m+ 4) counts the number of paths from (0, 0) to
(m,m) to (m+ s,m+ s) that do not touch both lines `1 and `4 or `2 and `3 such
that if they have an intersection of `1 before an intersection of `2, they do not also
remain between lines `5 and `6 or between `6 and `7.

�

Remark 4.2. This is not a very satisfying interpretation of S(m,m+ 4) because of
the many conditions that it imposes on paths that are counted. The examination of
the case of s = 4, however, reveals some of the difficulties of using this method for
s ≥ 4, namely that we have to deal with double cancellation as well as the addition
of more paths. For these reasons, it is unlikely that the methods used in the proof
of Theorem 3.1 will generalize to higher s.

5. Connection to Annular Non-crossing Partitions

In this section, we point out a connection between the numbers

P (p, q) =
q

2(p+ q)

(
2p

p

)(
2q

q

)
(see Section 7 of [2]) and annular non-crossing partitions.
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Definition 5.1. The set of annular non-crossing partitions of type B, denoted by
NC(B)(p, q), consist of set partitions of

B(p, q) = {1, 2, · · · , p+ q} ∪ {−1,−2, · · · ,−(p+ q)}
such that

(1) If A is a block of the partition, then −A is also a block of the partition.
(2) We draw two circles: one with 2p points labeled 1, 2, · · · , p,−1,−2, · · · ,−p

oriented clockwise on the outside, and the other with 2q points labeled p+
1, p+2, · · · , p+q,−(p+1),−(p+2), · · · ,−(p+q) oriented counterclockwise
on the inside.

(3) We draw a non-self-intersecting clockwise closed contour (following the or-
der of B(p, q)) for each block of the partition such that the region enclosed
stays in the annulus.

(4) Regions enclosed by different contours are mutually disjoint. In other
words, different blocks of the partition do not cross each other.

(5) If a block A satisfies A = −A, then A must include points on both the
inside and outside circles. We call such a block a zeroblock and notice that
an annular non-crossing partition has at most one zeroblock.

Example 5.2. We refer the readers to [4, Fig. 1] for an example.

We also need the following definition in order to state the connection between
annular non-crossing partitions and the super Catalan numbers.

Definition 5.3. An annular non-crossing partition is said to have connectivity c if
it has c pairs of non-zero blocks with points on both the inside and outside circles.
Such blocks are called connected blocks.

Theorem 5.4. The number of annular non-crossing partitions with connectivity
greater than or equal to 1 is

|NC(B)(p, q; c ≥ 1)| = pq

p+ q

(
2p

p

)(
2q

q

)
.

Remark 5.5. For the proof of the Theorem, we refer the reader to [4, Theorem 4.5].
With this result, we notice then that

P (p, q) =
q

2(p+ q)

(
2p

p

)(
2q

q

)
=
|NC(B)(p, q; c ≥ 1)|

2p
. (5)

Gessel [2] gave a combinatorial interpretation for P (p, q) as the number of lattice
paths from (0, 0) to (p + q, p + q − 1) with unit up and right steps such that the
path never touches the points (q, q), (q+1, q+1), · · · on the diagonal. It would also
be interesting to find a combinatorial interpretation of the connection between the
number P (p, q) and the number of annual non-crossing partitions with connectivity
greater than or equal to 1 as stated in (5).

Moreover, the super Catalan numbers can be obtained by choosing a subclass of
the annular non-crossing partitions and put a signed weight using connectivity c,
although it is not clear how we pick the subclass.

6. Other Integer Factorial Ratios

The super Catalan numbers (2) are a natural extension of the Catalan numbers
(1), which are in one variable, to an integer factorial ratio in two variables. In this
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section, we extend the idea of the super Catalan numbers to other integer factorial
ratios in three variables. We then find a general family of factorial ratios that are
integral.

Two natural extensions of the super Catalan numbers to three variables are
defined in (6) and (7). We first give algebraic proofs of the integrality of these
factorial ratios.

Proposition 6.1. For a, b, c ≥ 0,

(3a)!(3b)!(3c)!

a!b!c!(a+ b)!(a+ c)!(c+ b)!
(6)

is an integer.

Proof. To show that (6) is an integer, it suffices to show that the order (i.e. multi-
plicity) of any prime p in the expression is non-negative. To do this, we first recall
a well-known fact that the order (i.e. multiplicity) of a prime p in a! is

ordp a! =

⌊
a

p

⌋
+

⌊
a

p2

⌋
+

⌊
a

p3

⌋
+ · · · .

Letting l = a
pk ,m = b

pk , n = c
pk , we see that to show

(3a)!(3b)!(3c)!

a!b!c!(a+ b)!(a+ c)!(c+ b)!

is an integer, it suffices to prove that

b3lc+ b3mc+ b3nc − blc − bmc − bnc − bl +mc − bl + nc − bn+mc ≥ 0.

Further letting l0 = l−blc,m0 = m−bmc, n0 = n−bnc, this inequality reduces to

b3l0c+ b3m0c+ b3n0c − bl0 +m0c − bl0 + n0c − bn0 +m0c ≥ 0,

which is not hard to verify by dividing into 4 cases. �

Proposition 6.2. For a, b, c ≥ 0,

(4a)!(4b)!(4c)!

a!b!c!(a+ b)!(a+ c)!(c+ b)!(a+ b+ c)!
(7)

is an integer.1

Proof. The proof follows using a similar method as in the proof of Proposition
6.1. �

Moreover, Warnaar and Zudilin [6] observed that the above integrality of factorial
ratios has interesting q-counterpart when we let

[n] = 1 + q + · · ·+ qn−1 =
1− qn

1− q
.

The integrality implies that the q-analogs of the factorial ratios are polynomials
with integer coefficients. We can also examine the positivity of the coefficients
of these q-analogs. They are positive for small a, b, and c, which leads us to the
following conjectures:

1The authors would like to thank Rohit Agrawal for suggesting this factorial ratio.



S(m,m + s) FOR s ≤ 3 AND SOME INTEGER FACTORIAL RATIOS 11

Conjecture 6.3. For a, b, c ∈ Z≥0,

[3a]![3b]![3c]!

[a]![b]![c]![a+ b]![a+ c]![c+ b]!
∈ N[q].

Conjecture 6.4. For a, b, c ∈ Z≥0,

[4a]![4b]![4c]!

[a]![b]![c]![a+ b]![a+ c]![c+ b]![a+ b+ c]!
∈ N[q].

6.1. Generalized Integer Factorial Ratios. We may also generalize (7) to n
variables x1, . . . , xn as follows. We let X = {1, . . . , n} and P = {S ⊆ X : S 6= ∅}.
Then, we can consider whether the factorial ratio

n∏
i=1

(2n−1xi)!

∏
S∈P

(∑
i∈S

xi

)
!

(8)

is integral. We can also interpret (8) as the factorial ratio on a Boolean algebra
with the denominator the product of factorial of each atom in the Boolean algebra
poset and the numerator the product of the factorial for the total number of each
atom in the poset. We can confirm the integrality of such factorial ratios for n ≤ 6
by computer experimentation.

We can also consider the integrality of such ratios for generalized posets. To do
so, we let ai,k ∈ Z≥0, 1 ≤ i ≤ l and

Ai(x1, x2, . . . , xr) =

r∑
k=1

ai,kxk,

where for each i, at least one ai,k 6= 0. Then, we can look at factorial ratios of the
form ∏r

j=1

((∑l
i=1 ai,k

)
xk

)
!∏l

i=1Ai(x1, x2, . . . , xr)!
. (9)

We note that not all such ratios are integral. For example, the factorial ratio 2

(8a)!(6b)!(6c)!

a!b!c!(a+ b)!3(a+ c)!3(b+ c)!(a+ b+ c)!

is not an integer for a = 6, b = 1, c = 1. Thus, an interesting question to consider
is if there are sufficient conditions on the ai,k for the integrality of (9).

6.1.1. An Attempt a Generalization. In this section, we look at the family of integer

factorial ratios where
∑l

i=1 ai,k = m for all k, some fixed m. We attempt to find a
sufficient condition for the integrality of such ratios.

We let ai,k ∈ Z≥0, 1 ≤ i ≤ l and

Ai(x1, x2, . . . , xr) =

r∑
k=1

ai,kxk,

2We would like to thank Prof. Dennis Stanton for showing us this example.
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where for each i, at least one ai,k 6= 0 and
∑l

i=1 ai,k = n for all k. Then, we look
at the factorial ratio

(nx1)!(nx2)! · · · (nxr)!∏l
i=1Ai(x1, x2, . . . , xr)!

(10)

We first define yk = xk − bxkc and notice that by similar reasoning as in the
proof of Proposition 6.1, to show the integrality of (10), it suffices to show that

r∑
k=1

bnykc −
l∑

i=1

⌊
r∑

k=1

ai,kyk

⌋
≥ 0

for all {y1, . . . , yr} where 0 ≤ yk < 1 for all 1 ≤ k ≤ r.
But we have that⌊

r∑
k=1

ai,kyk

⌋
≤

r∑
k=1

ai,k

(
(nyk − bnykc) + bnykc

n

)
≤
bi +

∑r
k=1 ai,kbnykc
n

,

if bi =
∑r

k=1 ai,k − 1 where the last step follows since (nyk − bnykc) < 1 for all yk
and b

∑r
k=1 ai,kykc must be an integer. Thus, we have that

l∑
i=1

⌊
r∑

k=1

ai,kyk

⌋
≤

l∑
i=1

(
bi +

∑r
k=1 ai,kbnykc
n

)

=

∑l
i=1 bi +

∑r
k=1

(∑l
i=1 ai,k

)
bnykc

n
.

Therefore, if
∑l

i=1 bi < n, we would have that b
∑r

k=1 ai,kykc < 1 +
∑r

k=1bnykc
from which it follows that since the sum of floor functions is integral, we have that

r∑
k=1

bnykc −
l∑

i=1

⌊
r∑

k=1

ai,kyk

⌋
≥ 0.

Hence, this method gives us that a sufficient condition for the integrality of (10) is

that
∑l

i=1 bi < n.

Remark 6.5. We notice that this says that
∑l

i=1(
∑r

k=1 ai,k − 1) = nr − l < n,
which is not strong enough of a condition to find a non-trivial family of integer
factorial ratios. This suggests that only looking at the sum of ai,k terms is not
enough to find sufficient conditions for integrality and that we would need to look
at the interactions between ai,k terms to find a non-trivial condition.
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