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Abstract. We first present a previously unpublished result of Stanton [11]

that the group of order four generated by rotation by 90◦ acting on alternating
sign matrices exhibits the CSP with the obvious q-analogue of |ASM(n)|.

In [12], Wieland introduced a much larger cyclic group that acts on the set
of alternating sign matrices. Unfortunately, it has a very complex orbit struc-

ture that does not exhibit the CSP with that polynomial and is not suggestive

of CSP with any simple polynomial. However, we found smaller groups that
do exhibit the phenomenon, and in the process discovered an extremely large

group of maps on the alternating sign matrices.

We finish by suggesting the existence of a group of order three on the ASMs
that exhibits cyclic sieving and a class of subsets of the ASM(n) that exhibit

cyclic sieving with gyration and a new set of polynomials.
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1. Introduction

Definition 1.1. An alternating sign matrix (ASM) of size n is an n × n matrix
with all entries 0, 1, or -1 such that the non-zero entries in each row and column
alternate sign and sum to one.

They arise naturally in the study of the lambda determinant (see [2]). We will
call the set of ASMs of size n ASM(n). In [13], Zeilberger proved that

(1.1) |ASM(n)| =
n−1∏
i=0

(3i + 1)!
(n + i)!

.
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There is an easy bijection between ASMs and another class of objects called fully
packed loop diagrams.

Definition 1.2. A fully packed loop diagram (FPL) of size n is an n× n grid with
a boundary as in Figure 1.1 such that each vertex touches exactly two solid lines
and two dotted lines.

Figure 1.1. FPL Border

To convert an FPL to an ASM, place a 0 at any vertex where a solid line changes
direction and a 1 or -1 at all other vertices such that the non-zero entries in each
row alternate sign and sum to one. To convert back, draw the boundary as before
and, starting at the bottom left corner, fill the squares of the ASM as in Figure 1.2
so that all vertices touch exactly two solid lines. Throughout the paper, we will use
FPLs and ASMs interchangeably.

Figure 1.2. Pictures in FPL corresponding to numbers in ASM

We now consider a cyclic group of large order acting on the ASMs. First, label
each vertex (i, j) of an FPL, as in Figure 1.3. If a square has bottom left vertex (i, j),
we assign it the parity of i+j. This labelling allows us to define the following maps.

Definition 1.3. Even (odd) gyration, is an involution Geven : ASM(n) → ASM(n)
(Godd : ASM(n) → ASM(n)) defined as follows. Visit every square labelled even
(odd) on an FPL. If the square contains two parallel solid lines, change solid lines
in the square to dotted lines and vice versa. Otherwise, do nothing.
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Figure 1.3. Labelled ASM

Definition 1.4. Gyration is the operation G = Geven ◦ Godd first created by
Wieland in [12]. It provides a bijection between ASMs with similar pairing patterns
(see Theorem 5.3 for the details of this bijection and [12] for its proof).

We will also need two basic operations on ASMs.

Definition 1.5. Rotation by 90◦ is an operation, R90◦ : ASM(n) → ASM(n) such
that it rotates an ASM 90◦ counterclockwise. We also define (R90◦)2 = R180◦ and
(R90◦)3 = R270◦ .

Definition 1.6. For a set X, a polynomial X(q), and H = < h > a cyclic group
of order n that acts on X, we say (X, X(q), H) exhibits the cyclic sieving phe-
nomenon (CSP) if ∀ d such that d | n, one has X(e2πı/d)=|

{
x ∈ X | hn/d(x) = x

}
|.

We will often drop this formality, and say that a specific bijection φ : ASM(n) →
ASM(n) exhibits the CSP, by which we mean that (ASM(n), ASM(n, q), < φ >)
exhibits the CSP, where ASM(n, q) is defined below.

(1.2) ASM(n, q) =
n−1∏
i=0

(3i + 1)!q
(n + i)!q

.

Note that this is not an arbitrary choice. The following theorem was conjectured
by Andrews in [1] and proven by Mills et. al. in [5] .

Theorem 1.7. ASM(n, q) =
∑
m

M(n, m)qm where M(n, m) is the number of de-

scending plane partitions of n with the number of rows, the number of columns, and
all entries less than m.

Proof. See [5]. �

Corollary 1.8. ASM(n, q) ∈ N[q].

Proof. Theorem 1.7 �
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2. Cyclic Sieving Phenomenon with Rotation

We first give a previously unpublished theorem due to Stanton [11].

Definition 2.1. The set of half-turn (quarter-turn) symmetric matrices is
ASM(n)HT = {A ∈ASM(n) : R180◦(A) = A}
ASM(n)QT = {A ∈ASM(n) : R90◦(A) = A}

Theorem 2.2.
(1) ASM(n,−1) = |ASM(n)HT |
(2) ASM(n, ı) = |ASM(n)QT |

Proof. We will prove (1) for the case n = 2m and (2) for n = 4m + 2 and omit the
rest of the proof because it is similar and tedious.

(1) Note the following basic facts,

(2.1) limq→−1[n]q =
{

limq→−1(1 + q)(n/2) even n
1 odd n

(2.2) limq→−1n!q = limq→−1bn/2c! ∗ (1 + q)bn/2c

Plugging (2.2) into (1.2),

(2.3) ASM(n,−1) = limq→−1

n−1∏
i=0

b 3i+1
2 c!(1 + q)b

3i+1
2 c

b i+n
2 c!(1 + q)b

i+n
2 c

First we need to get rid of the limit.

Lemma 2.3. ASM(2m,−1) is non-zero and finite.

Proof. It follows from 1.8 that ASM(2m,−1) is finite.

Now, it suffices to show that
2m−1∑
i=0

(b3i + 1
2

c − b i + 2m

2
c) = 0.

2m−1∑
i=0

(b3i + 1
2

c − b i + 2m

2
c) =

2m−2∑
i=0

i even

(i) +
2m−1∑
i=1

i odd

(i + 1)−
2m−1∑
i=0

(m)

=
2m−1∑
i=0

(i−m) + m = 0

In fact, this gives an alternative proof that ASM(2m,−1) is finite. �

We can now simplify (2.7) for n = 2m 1.

(2.4) ASM(2m,−1) =
2m−1∏
i=0

b 3i+1
2 c!

b i+2m
2 c!

1In fact, if we replace 2m by n, the formula holds for all n.
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Then,

ASM(2m,−1) =

2m−2∏
i=0

i even

3i
2 !

2m+i
2 !


2m−1∏

i=1
i odd

3i+1
2 !

2m+i−1
2 !

 =
m−1∏
i=0

(3i)!(3i + 2)!
(m + i)!2

Kuperberg ([4] ) proved that

(2.5) |ASM(n)HT | =
m−1∏
i=0

(3i)!(3i + 2)!
(m + i)!2

So, we have ASM(2m,−1) = |ASM(2m)HT |.

For the case n = 2m + 1, see [7].

(2) First, we present a simple lemma due to Robbins [10].

Lemma 2.4. For n = 4m + 2, |ASM(n)QT | = 0.

Proof. An ASM of size 4m + 2 × 4m + 2 must have all of its entries sum
to 4m + 2. If it is invariant under R90◦ , all four quadrants must have the
same number of 1s and -1s. Therefore, the sums of the entries in the four
quadrants must all be m + 1/4. Obviously, this is not possible, so no such
matrices exist. �

As in (1), we first need a basic fact about the q-factorial.

(2.6) limq→in!q = limq→ibn/4c!(1 + q + q2 + q3)bn/4c

Plugging in (2.6) into (1.2),

(2.7) ASM(n, ı) = limq→i

n−1∏
j=0

b 3j+1
4 c!(1 + q + q2 + q3)b

3j+1
4 c

b j+n
4 c!(1 + q + q + q3)b

j+n
4 c

For n = 2m+2, the exponent on (1+q+q2+q3) is
4m+1∑
j=0

(
b3j + 1

4
c − b4m + j + 2

4
c
)

=
4m+1∑
j=0

(−m) +
4m∑
j=0

j≡0(4)

(
j

2
) +

4m+1∑
j=1

j≡1(4)

(
j + 1

2
) +

4m−2∑
j=2

j≡2(4)

(
j − 2

2
) +

4m−1∑
j=3

j≡3(4)

(
j − 1

2
)

=
4m+1∑
j=0

(
j

2
−m)−m +

3
2

= 2

So, ASM(2m + 2, ı) = 0, which agrees with Lemma 2.4 .

For the case n = 2m + 1 see [8]. For n = 4m see [4].
�
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Table 3.1. Gyration Orbits

n Orbit Size Number of Orbits
1 1 1
2 2 1
3 2 2

3 1
4 2 3

4 1
8 4

5 2 4
4 4
5 5
10 38

6 2 6
4 16
6 24
10 4
12 532
24 20
36 4
84 2

n Orbit Size Number of Orbits
7 2 12

4 28
6 20
7 98
8 4
10 14
12 12
14 11,464
21 10
22 6
28 476
42 360
56 56
70 106
98 80
126 20
154 20
210 8
266 8

3. Cyclic Sieving Phenomenon with Gyration

Our original hope was to find CSP with gyration itself and the obvious q-analogue
of (1.1) .

Unfortunately, gyration does not exhibit the CSP as we’d hoped. See Table
3.1 for the orbits of gyration. Note that they get rather large, so they’re not
very suggestive of CSP with a simple polynomial. For example, when n = 5,
ASM(5, −1) = 25, but there are actually 413 ASMs fixed by G|G|/2 = G10.

However, we did find CSP with smaller groups related to gyration.

Theorem 3.1. The following maps exhibit the CSP with Equation (1.2) with orders
two, two, and four respectively:

(1) Godd ◦R180◦ for all n.
(2) Geven ◦R180◦ for odd n.
(3) Godd ◦R90◦ for even n.

Proof. Let GTL
i , GTR

i , GBL
i , and GBR

i , be Gi applied only to the top left, top right,
bottom right, bottom left and bottom right corners respectively (Note that we have
defined these not to act on their boundary diagonals). Similarly, define GM

i , GA
i

to be Gi applied only to the main diagonal and the antidiagonal respectively (see
Figure 3.1).

We note the following basic relations on the Gj
i :

(3.1) (Gj
i )

2 = 1

(3.2) Gj
i ◦R180◦ = R180◦ ◦Gj

i
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Figure 3.1. Operation Diagrams

(3.3) Gi ◦R90◦ = R90◦ ◦Gi(n even)

(3.4) Geven ◦R90◦ = R90◦ ◦Godd(n odd)

(3.5) Gj
i ◦Gk

i = Gk
i ◦Gj

i

(3.6) Gi = GBL
i ◦GTR

i ◦GM
i = GBR

i ◦GTL
i ◦GA

i

(3.7) GA
odd = 1

(3.8) GM
odd = 1 (n even)

(3.9) GM
even = 1 (n odd)

(3.10) GTR
i ◦R180◦ = R180◦ ◦GBL

i , GTL
i ◦R180◦ = R180◦ ◦GBR

i

(3.11) R90◦ ◦GBL
i ◦GBR

i = GTR
i ◦GBR

i ◦R90◦(n odd)

The orders of the maps in question follow trivially from (3.2) and (3.4). We can
now prove Theorem 3.1.

(1) Suppose A is an ASM invariant under R180◦ . Then consider A′ = GTL
odd(A).

Godd ◦R180◦(A′) = GBR
odd ◦GTL

odd ◦GA
odd ◦R180◦(A′) (3.6)

= GBR
odd ◦GTL

odd ◦R180◦(A′) (3.7)

= GBR
odd ◦GTL

odd ◦R180◦ ◦GTL
odd(A)

= (GBR
odd)2 ◦GTL

odd ◦R180◦(A) (3.10)

= GTL
odd(A) (3.1)

= A′

Since GTL
odd is an involution, it must define a bijection between the fixed

points of R180◦ and Godd ◦R180◦ , and since Godd ◦R180◦ has order two, we
are done.
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(2) Suppose A is an n × n ASM invariant under R180◦ and n is odd. Then
consider A′ = GTR

even(A).

Geven ◦R180◦(A′) = GTR
even ◦GBL

even ◦GM
even ◦R180◦(A′) (3.6)

= GTR
even ◦GBL

even ◦R180◦(A′) (3.9)

= GTR
even ◦GBL

even ◦R180◦ ◦GTR
even(A)

= (GBL
even)2 ◦GTR

even ◦R180◦(A) (3.10)

= GTR
even(A) (3.1)

= A′

Since GTR
even is an involution, it must define a bijection between the fixed

points of R180◦ and Geven ◦ R180◦ , and since Geven ◦ R180◦ has order two,
we are done.

(3) Suppose A is an n × n ASM invariant under R90◦ and n is even. Then
consider A′ = GBL

odd ◦GBR
odd(A).

Godd ◦R90◦(A′) = GTR
odd ◦GBL

odd ◦GM
odd ◦R90◦(A′) (3.6)

= GTR
odd ◦GBL

odd ◦R90◦(A′) (3.8)

= GTR
odd ◦GBL

odd ◦R90◦ ◦GBL
odd ◦GBR

odd(A)

= (GTR
odd)

2 ◦GBL
odd ◦GBR

odd ◦R90◦(A) (3.11)

= GBL
odd ◦GBR

odd(A) (3.1)

= A′

Since GBL
odd ◦ GBR

odd is an involution, it must define a bijection between
the fixed points of R90◦ and Godd ◦ R90◦ . Also, note that for n even,
(Godd ◦ R90◦)2 = R180◦ . So (Godd ◦ R90◦)2 trivially has the same fixed
points as (R90◦)2 = R180◦ . Since Godd ◦R90◦ has order four for n even, we
are done.

�

Note that these proofs fail for the cases not listed in the theorem. For example,
Geven ◦R180◦ does not exhibit the CSP for even n due to the fact that squares on
both the main and antidiagonals are even.
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Table 4.1. Structure of GSn

n order structure
1 1 C1

2 2 C2

3 6 S3

4 24 S4

5 8640 = 26 ∗ 33 ∗ 5 C2 × C2 × ((C3 × (GL2(4) o C2)) o C2)
6 16639583300553277440 = 233 ∗ 318 ∗ 5 Not Available

4. The Generalized Symmetric Group

The n × n ASMs are a generalization of the n × n permutation matrices, so it
seems natural to define a group of operations on the ASMs that generalizes the
symmetric group.

Recall that the symmetric group is generated by elements (i, i + 1) which swap
the ith and (i + 1)th rows of a matrix.

We define the generalized symmetric group of size n (GSn) to be the group
generated by the maps [i, i + 1] 1 ≤ i < n, defined as follows on an ASM A:

[i, i + 1](A) =
{

(i, i + 1)(A) if (i, i + 1)(A) is an ASM
A otherwise

This group is significantly more complicated than the symmetric group. First
note that if we define [1, 3] in the obvious way, [1, 2][2, 3][1, 2] 6= [1, 3]. In fact,
the element [1, 3] is not in GSn for n > 4, so one can consider an even larger
generalization that contains all

[x1, x2, x3, . . . xm] =
{

(x1, x2, x3, . . . xm)(A) if (x1, x2, x3, . . . xm)(A) is an ASM
A otherwise

Question 4.1. Does there exist an element X = [x1, x2, x3, . . . xm] such that
X ∈ GSn for all sufficiently large n?

Worse still, [1, 2][2, 3][1, 2] 6= [2, 3][1, 2][2, 3] for n > 4. Because of facts
like this, the group is much much larger than the symmetric group (see table 4.1).
However, the group’s order is divisible by very small primes, suggesting the follow-
ing questions.

Question 4.2. What is the order of the GSn for all n? Does there exist a simple
product formula that gives this order for any n?

Question 4.3. What is the structure of GSn for all n?

GS(n) also suggests a natural partition on ASM(n).

Definition 4.4. For v = (v1, v2, . . . vn) ∈ Zn, let ASM(n)v = {A ∈ ASM(n) : A
has vi − 1s in its ith column }.

Question 4.5. What is |ASM(n)v| for each v.

Question 4.6. What is the order and structure of GSn restricted to ASM(n)v for
each v.
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We also discovered a subset of GSn that exhibits a very nice property.

Definition 4.7. For σ ∈ GSn, we say that σ is a palindrome iff

(4.1) σ ◦R180◦ = R180◦ ◦ σ−1

In some sense, these maps act on the top of the matrix as they do on the bottom.
I.e., they can be written as

[x1, x1+1][x2, x2+1] . . . [xm, xm+1][n−xm, n−xm+1] . . . [n−x2, n−x2+1][n−x1, n−x1+1].

To better understand palindromes, we introduce an obvious group isomorphic to
GSn also acting on ASM(n).

Definition 4.8. The column generalized symmetric group of size n (GSn,C) is the
group generated by elements [i, i+1]C that permute the columns of ASM(n) exactly
as the generators of GSn permute the rows.

Theorem 4.9. If σ ∈GSn is a palindrome and m, k ∈ Z, then
(1) For n > 1, σk ◦ σ2m−k

C ◦ R180◦ has order 2 and exhibits the CSP with
ASM(n,q)

(2) For n > 2, σk ◦ σ2m−k
C ◦ R90◦ has order 4 and exhibits the CSP with

ASM(n,q).

First note some basic facts. For a σ ∈ GSn,

(4.2) σC = R90◦ ◦ σ ◦R270◦

(4.3) σ ◦ σC = σC ◦ σ

(4.4) R90◦ ◦ σ = σC ◦R90◦ , R90◦ ◦ σC = σ−1 ◦R90◦ (iff σ a palindrome)

Next we prove a basic lemma.

Lemma 4.10. If σ ∈GSn is a palindrome and m, k ∈ Z, then
(1) σk ◦ σ2m−k

C ◦R180◦ is an involution.

(2) σk ◦ σ2m−k
C ◦R90◦ has order dividing four.

Proof.

(1) (
σk ◦ σ2m−k

C ◦R180◦
)
◦

(
σk ◦ σ2m−k

C ◦R180◦
)

= σk ◦ σ2m−k
C ◦ σ−k ◦ σk−2m

C (4.1)
= 1 (4.3)
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(2) (
σk ◦ σ2m−k

C ◦R90◦
)
◦

(
σk ◦ σ2m−k

C ◦R90◦
)

= σk ◦ σ2m−k
C ◦ σk

C ◦ σk−2m ◦R180◦ (4.2)
= σ2m ◦ σ2m

C ◦R180◦ (4.3)

But, by (1), this is an involution. Therefore the original map has order
dividing four.

�

Now, the theorem will follow from the next lemma.

Lemma 4.11. If σ ∈GSn is a palindrome and m ∈ Z, then
(1) For n > 1 σ2m ◦R180◦ has order 2 and exhibits the CSP with ASM(n,q)

(2) For n > 2 σ2m ◦R90◦ has order four and exhibits the CSP with ASM(n,q).

Proof.
(1) Suppose A is an ASM invariant under R180◦ . Consider A′ = σm(A).

σ2m ◦R180◦(A′) = σ2m ◦R180◦ ◦ σm(A)
= σm(A) (4.1)
= A′

So, A′ is invariant under σ2m ◦ R180◦ . But σm has an inverse, so it de-
fines a bijection. So, σ2m ◦ R180◦ has the same number of fixed points as
R180◦ , and by Lemma 4.10 it is an involution and therefore has CSP with
ASM(n, q).

(2) Suppose A is an ASM invariant under R90◦ . Then consider A′ = σmσm
C (A).

σ2m ◦R90◦(A′) = σ2m ◦R90◦ ◦ σmσm
C (A)

= σ2m ◦ σm
C ◦ σ−m(A) (4.4)

= σm ◦ σm
C (A) (4.3)

= A′

So, A′ is invariant under σ2m ◦R90◦ . Now, suppose B is an ASM invariant
under R180◦ . Then consider B′ = σmσm

C (B)

(σ2m ◦R90◦)2(B′) = σ2m ◦R90◦ ◦ σ2m ◦R90◦(B′)
= σ2m ◦ σ2m

C ◦R180◦(B′) (4.4)
= σ2m ◦ σ2m

C ◦R180◦σ
mσm

C (B)
= σ2m ◦ σ2m

C ◦ σ−mσ−m
C (B) (4.1)

= σmσm
C (B) (4.3)

= B′

So, B’ is invariant under
(
σ2m ◦R90◦

)2. Since the map σmσm
C has an in-

verse, σ−m
C σ−m, it forms a bijection from the fixed points of R90◦ and R180◦

to those of σ2m ◦R90◦ and
(
σ2m ◦R90◦

)2 respectively.
We still need to prove that α = σ2m ◦ R90◦ has order four. Since the

fixed points of α2 are in bijection with those of R180◦ and for n > 2, R180◦

is not the identity. Then by Lemma 4.10, |α| = 4.
�
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We can now prove Theorem 4.9.

Proof.
(1) Suppose k is even, then 2m-k is even, and

σk ◦ σ2m−k
C ◦R180◦ = σk ◦ σ

(2m−k)/2
C ◦R180◦ ◦ σ

(k−2m)/2
C (4.1)

= σ
(2m−k)/2
C ◦ σk ◦R180◦ ◦ σ

(k−2m)/2
C (4.3)

Therefore σk ◦ σ2m−k
C ◦R180◦ is just a conjugate of σk ◦R180◦ , so it has

the correct order and exhibits CSP with ASM(n,q) by Lemma 4.11.

Now suppose k is odd. Then clearly σ−1◦σ−1
C defines a bijection from the

fixed points of α = σk◦σ2m−k
C ◦R180◦ and those of σk+1◦σ2m−k−1

C ◦R180◦ . By
Lemma 4.10, α has the correct order. Therefore, ∀k ∈ Z, σk ◦σ2m−k

C ◦R180◦

has order two and exhibits the CSP with ASM(n, q).

(2) Similarly, ∀k ∈ Z,
σk ◦ σ2m−k

C ◦R90◦ = σ−2m ◦ σ2m−k
C ◦ σk−2k ◦R90◦

= σ−2m ◦ σ2m−k
C ◦R90◦ ◦ σk−2k

C (4.4)

So σk◦σ2m−k
C ◦R90◦ is a conjugate of σ−2m, and therefore has the correct

order and exhibits the CSP with ASM(n,q) by Lemma 4.11.
�

5. A Set of ASMs on which Gyration is Well-Behaved

Recall that in Section 3 we showed that gyration does not exhibit CSP with
ASM(n, q) and we noted that the orbit structure of gyration seems much too com-
plex to exhibit CSP with a simple polynomial.

Definition 5.1. A solid (dotted) pair in an FPL is an ordered pair (i, j) such that
a solid (dotted) line connects the boundary line i to boundary line j (labelled as in
Figure 1.3 ). πS (πD) is the set of all solid (dotted) line pairings on some FPL.

Definition 5.2. An adjacent pair is a pair in an FPL linking i to i + 1 or 1 to 2n.

For reasons best explained in [3], the ASMs with more adjacent loops tend to
be in higher orbits of gyration. So, we choose to look at a smaller set of ASMs. To
motivate this, we first present a result of Wieland [12] .

Theorem 5.3. Let An(πS , πD) be the set of ASMs of order n in which the solid
line subgraph induces pairing πS, the dotted line subgraph induces pairing πD. If
π′S is πS rotated clockwise, and π′D is πD rotated counterclockwise, then the sets
An(πS , πD) and An(π′S , π′D) are in bijection.

Proof. Gyration defines the bijection between these two sets. See Wieland [12] for
a proof. �

In particular, FPLs with the same number of solid adjacent pairs are closed
under gyration by Theorem 5.3. Also, FPLs with fewer adjacent loops tend to
be in smaller orbits of gyration (see [3] for more detail). This motivates the next
definition.
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Definition 5.4. ASM(n)k = {A ∈ASM(n) : A has at most n− k solid adjacent pairs}.

Propp and Wilson conjectured that |ASM(n)1| = |ASM(n)| − 2|ASM(n− 1)| [6].
So, we define ASM(n, q)1 =ASM(n, q)− (1 + qn)ASM(n− 1, q)

We found this surprising result.

Theorem 5.5. For n ≤ 5, gyration restricted to ASM(n)1 exhibits the CSP with
the polynomial ASM(n, q)1.

Proof. Computation. (See Table 5.1) �

Unfortunately, Theorem 5.5 does not generalize simply for n = 6 or 7. However,
the orbit structures of gyration on ASM(6)2, ASM(6)3, and ASM(7)3 are very
suggestive of CSP (see Table 5.2). This leads to a natural question.

Question 5.6. Does there exist a simple function f : Z −→ Z and set of poly-
nomials ASM(n, q)k such that gyration restricted to ASM(n)f(n) exhibits the CSP
with ASM(n, q)f(n)? Is the order of the gyration restricted to ASM(n)f(n) always
2n for n > 3?

If such a set of functions and polynomials were found, it would prove (or dis-
prove) many of the open conjectures in [14].

Table 5.1. Gyration Orbits on ASM(n)1

n Orbit Size Number of Orbits
3 3 1
4 4 1

8 3
5 5 5

10 32

Table 5.2. Gyration Orbits on ASM(6)2 and ASM(7)3

Set Orbit Size Number of Orbits
ASM(6)2 4 5

6 15
12 242

ASM(6)3 4 5
6 1
12 30

ASM(7)3 7 35
14 1936
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6. ASM(n, q) at a Third Root of Unity

Theorem 6.1. |ASM(n, e2πı/3)| ∈ Z for all n.

Proof. Let ω = e2πı/3 and ω6 = eπı/3. Then note the following relations.

(6.1) limq→ω[n]q =

 limq→ω(1 + q + q2)(n/3)! if n ≡ 0 (3)
1 if n ≡ 1 (3)
1 + ω = ω6 if n ≡ 2 (3)

(6.2) limq→ωn!q = limq→ω(1 + q + q2)b
n
3 cbn

3
c!(ω6)b

n+1
3 c

Lemma 6.2. ASM(n, ω) is non-zero and finite.

Proof. Since ASM(n, q) ∈ N[q] by Corollary 1.8, ASM(n, ω) is finite.

The proof that it is non-zero is straight-forward but tedious. It is essentially the
same as the proof of Lemma 2.3. We don’t require this fact for our main theorem,
so we omit the proof. �

Plugging in (6.2) to (1.2) and noting that Lemma 6.2 allows us to ignore the
limq→ω(1 + q + q2)i term, we have a nice formula for ASM(n, ω).

(6.3) ASM(n, ω) =
n−1∏
i=0

i!(ω6)i

bn+i
3 c!(ω6)b

n+1+i
3 c

Lemma 6.3. |ASM(n, ω)| is either integral or irrational.

Proof. Since ASM(n, q) is a polynomial in N[q] by Corollary 1.8, ASM(n, ω) ∈ Z[ω].
Note that |a + bω| =

√
a2 − ab + b2. If a, b ∈ Z, then |a + bω| ∈ Z

⋃
(R−Q). �

By taking the absolute value of (6.3), we get

(6.4) |ASM(n, ω)| =
n−1∏
i=0

i!
bn+i

3 c!

This is clearly rational, so by Lemma 6.3, it is an integer. �

See Table 6.1 for the values for small n. Note that they are typically very small
compared to ASM(n). This suggests the following question.

Question 6.4. Is there a map of order three on ASM(n) that exhibits CSP with
|ASM(n, q)|?
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Table 6.1. Values of |ASM(n, q)| at a Third Root of Unity

n |ASM(n, ω)| |ASM(n)|
1 1 1
2 1 2
3 2 7
4 3 42
5 6 429
6 20 7436
7 50 218,348
8 175 10,850,216
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