
A SCHUR NON-NEGATIVITY CONJECTURE RELATED TO DOUBLE-WIRING

DIAGRAMS

CESAR CUENCA

Abstract. We make an explicit combinatorial construction of the cluster algebra arising from a double wiring

diagram. We also state a Schur non-negativity conjecture and prove it is true for small cases.

1. Introduction

Fomin and Zelevinski defined double wiring diagrams in [6]. A n-stringed double wiring diagram w consists
of two families of n piecewise straight lines colored blue and red, such that each two lines of the same color
intersect exactly once. The lines in each family are assigned numbers from [n] = {1, 2, . . . , n}. The blue (resp.
red) lines have increasing labels if we look at their left (resp. right) ends from top to bottom. Any such diagram
w is divided into chambers. All chambers are assigned two subsets of [n], each of which indicates which lines
of the corresponding color pass below that chamber. A chamber with subsets I, J is associated the minor ∆I,J

of X = (xij)n×n. These are called the chamber minors of w; the set of chamber minors of w is denoted as z =
z(w). For the example in Figure 1, the chamber minors are 1, x31, x21, x23, x13,∆23,12,∆23,13,∆12,13,∆12,23

and ∆123,123 = ∆.

A double wiring diagram w can be associated a quiver Q = Q(w). The associated initial seed (Q(w), z(w))
then gives rise to a cluster algebra A = A(w), a commutative ring with a special combinatorial structure
(precise definitions are given in Section 2). The generators of the cluster algebra A are divided into clusters
and are called cluster variables. A remarkable property of the cluster algebras is that each cluster variable
of A can be expressed as a Laurent polynomial in the variables of the initial seed. Even more remarkable is
that, for this special cluster algebra, each generator of A is in the (integer) polynomial ring on the variables
of X, i.e., Z[{xij}n×n].

A cluster monomial is a finite product of cluster variables of the same cluster. It is conjectured that cluster
monomials belong to the dual canonical basis. More than a conjecture, this was actually a motivating reason
for the development of cluster algebras. In [7], Haiman showed, in a more general setting, that the dual
canonical basis of A are Schur non-negative when evaluated in generalized Jacobi-Trudi matrices. More
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2 CESAR CUENCA

recently, Lam and Rietsch explored similar ideas in [9], but with Stake basis instead of dual canonical basis
and with k-Schur functions instead of Schur functions.

Observe that cluster variables are also cluster monomials. Therefore, if the conjecture above was true,
Haiman’s result would prove that all cluster variables in A are Schur non-negative when evaluated in gener-
alized Jacobi-Trudi matrices. This is still an open problem and would be interesting to prove independently
of Haiman’s theorem.

Conjecture 1.1. Let A be a cluster algebra generated by a double wiring diagram w. Any cluster variable of
A is Schur non-negative when evaluated in generalized Jacobi-Trudi matrices.

Instead of trying to prove Conjecture 1.1 in the general scenario, we restrict ourselves to a particular type
of cluster variable. A cluster variable is said to be Plucker-adjacent if it is comes from one seed mutation to
(Q(w), z(w)) for some w. We propose the following specialization of Conjecture 1.1.

Conjecture 1.2. Let A be a cluster algebra generated by a double wiring diagram w. Any Plucker-adjacent
cluster variable of A is Schur non-negative when evaluated in generalized Jacobi-Trudi matrices.

Proving this conjecture alone would be very interesting and provide us with general Schur positivity theorems.
We prove the conjecture for small chambers.

Theorem 1.3. Let c be a chamber in a double wiring diagram w with degree 6 or less in its associated quiver
Q = Q(w). Then Ωw(c) is Schur non-negative when evaluated in generalized Jacobi-Trudi matrices.

This report is organized as follows. The next section gives the necessary background on symmetric functions
and cluster algebras. In section 3, we show some expressions for Plucker-adjacent cluster variables and prove
a theorem for determinantal identities. In sections 4, we prove a general theorem for reducing Conjecture 1.2
to the case where w is as small as possible. In section 5, we introduce Temperley-Lieb immanants, a technique
for proving Schur non-negativity. In section 6, we prove Theorem 1.3. In the last section, we show some
examples of cluster variables that are not Plucker-adjacent.

2. Background on Symmetric functions and Cluster Algebras

We provide some background on symmetric functions and cluster algebras, as needed for this report. The
interested reader can find more extensive expositions in [4], [3] and Ch. 7 of [10].

2.1. Symmetric functions. The ring of symmetric polynomials has several important linear bases. We

consider its basis of Schur polynomials sλ =
∑
T

xT and its basis of complete homogeneous symmetric poly-

nomials hk =
∑

1≤i1≤...≤ik≤n

xi1 . . . xik . A symmetric polynomial f is said to be Schur non-negative if it can be

expressed as a non-negative linear combination of Schur polynomials. We write f ≥s 0.

For example, any skew-Schur polynomial sµ/ν is Schur non-negative and can be expressed as sµ/ν =
∑
λ c

µ
ν,λsλ,

where the coefficient cµν,λ counts the number of Littlewood-Richardson tableaux of shape µ/ν and weight λ.
In particular, they are non-negative integers. The product of two Schur non-negative polynomials is also
Schur non-negative because of the Littlewood-Richardson rule sλ · sµ =

∑
ν c

ν
λ,µsν . Moreover, any positive

linear combination of Schur non-negative polynomials is also Schur non-negative. This gives the set of Schur
non-negative polynomials the structure of a linear cone.

A generalized Jacobi-Trudi matrix is a n × n matrix of the form H = (hµi−νj ) for some integer partitions
µ = (µ1 ≥ . . . ≥ µn ≥ 0), ν = (ν1 ≥ . . . ≥ νn ≥ 0). In the literature, the homogeneous polynomials hk in
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Figure 3. Example of quiver mutation Q′ = µz(Q). Vertices u, v are frozen.

the matrix H are on the variables x1, . . . , xn, but we consider that they can be on any number m ≥ n of
variables x1, . . . , xm. A polynomial F on the variables of a n×n matrix is Schur non-negative when evaluated
in generalized Jacobi-Trudi matrices if F (H) is Schur non-negative for any generalized Jacobi-Trudi matrix
H. For simplicity, we simply say F is Schur non-negative and write F ≥s 0. We also write F ≥s G if
F − G ≥s 0. The basic example of Schur non-negative polynomial in this context is any minor ∆I,J of X.
Indeed, the generalized Jacobi-Trudi identity implies F (H) = det((hµi−νj )i∈I,j∈J) = sµ/ν , where µ = {µi}i∈I
and ν = {νj}j∈J . From the previous remarks, any positive linear combination of products of minors is Schur
non-negative as well.

2.2. Cluster algebras. A cluster algebra is a commutative ring with a special combinatorial structure. This
combinatorial structure is given by a quiver Q, which is a directed multigraph with no loops and no 2-cycles.
Some vertices of Q are denoted as mutable and the remaining ones are called frozen.

Definition 2.1. Let v be a mutable vertex of quiver Q. The quiver mutation of Q at v is an operation that
produces another quiver Q′ = µv(Q) via a sequence of three steps.

(1) Add a new edge u→ w for each pair of edges u→ v, v → w in Q, except in the case when both u,w
are frozen.

(2) Reverse the direction of all edges adjacent to v.

(3) Remove 2-cycles until none remains.

Definition 2.2. Let F ⊃ R be any field. We say that pair t = (Q, z) is a seed in F if Q is a quiver and z,
called the extended cluster, is a set consisting of algebraically independent elements of F , as many as vertices
of the quiver Q.

The elements of z corresponding to mutable vertices are called cluster variables and the ones corresponding
to frozen vertices are called frozen variables.

A seed mutation at a cluster variable z transforms t = (Q, z) into a new seed t′ = (Q′, z′) = µz(Q, z), where
Q′ is the cluster resulting after mutating Q at the vertex corresponding to z and z′ = z ∪ {z′} \ {z}, where
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the new variable z′ is subject to the mutation relation at z zz′ =
∏
z←x

x +
∏
z→y

y. We sometimes call it the

mutation relation at v if v is the vertex of Q corresponding to z.

Starting from a seed t = (Q, z), one can apply mutations ad infinitum to elements of the extended clusters.
The elements in the union of all extended clusters are the generators of a subring of F that we call the cluster
algebra A(Q, z) generated by seed (Q, z). If t′ = (Q′, z′) is a mutation of seed t, then A(Q, z) and A(Q′, z′)
are isomorphic. We bundle these facts into the next definition.

Definition 2.3. Two seeds t = (Q, z) and t′ = (Q′, z′) are said to be mutation-equivalent if one of them
can be obtained from the other after a sequence of seed mutations. The cluster algebra A(Q, z) generated
by an initial seed t = (Q, z) is the subring of F generated by the elements of extended clusters that are
mutation-equivalent to t.

2.2.1. Quiver associated to a double-wiring diagram. We describe how to associate a quiver Q = Q(w) to any
double wiring diagram w. This construction is described in a more general scenario in Subsection 2.2. of [1].
The construction provided here is purely combinatorial.

(1) The vertices of Q are the chambers of w.

(2) There is an edge between two chambers c and c′ of Q in the following cases.

(a) They are adjacent chambers in the same row. If the color of the crossing between them is blue,
the edge is directed to the left. Otherwise, it is directed to the right.

(b) If c′ has ends of different color and lies completely above (or below) c. If the left end of c′ is blue,
the edge is directed from c to c′. Otherwise, it is directed from c′ to c.

(c) If the left end of c′ is above c and the right end of c is below c′ and both ends have the same
color. If such common color is blue, the edge is directed from c to c′; otherwise, it is directed
from c′ to c.

(d) If the right end of c′ is above c and the left end of c is below c′ and both ends have the same
color. If such common color is blue, the edge is directed from c′ to c; otherwise, it is directed
from c to c′.

The mutable vertices of Q(w) are the chambers in w that have two ends. Then the frozen vertices are the
chambers with only one end, as well as the top and bottom chambers. Figure 2.2.1 shows the quiver that is
associated to the double wiring diagram in Figure 1. It is important to observe that mutable chambers have
at least 4 adjacent edges and they have equal indegree and outdegree. Moreover, incoming edges interlace
with outgoing edges for each mutable vertex if we go around it.

Example 2.4. Consider the chamber c in Figure 5. Its associated quiver has 10 vertices adjacent to it.
Moreover, the incoming and outgoing edges interlace with each other as shown in Figure 2.4.

2.2.2. Cluster algebra associated to a double wiring diagram. The cluster algebra A = A(w) associated to the
double wiring diagram w is the cluster algebra generated by the initial seed t = (Q, z), where Q = Q(w) is
the quiver asssociated to w and the extended cluster z consists of the chamber minors of w. Naturally, the
variable ∆I,J is associated to chamber c if I and J are the sets of indices of blue and red wires below c,
respectively.

At this point, it is worth to clarify the statement of Conjecture 1.2. Let us fix a double wiring diagram w
with Q and A as its associated quiver and cluster algebra. A Plucker-adjacent cluster variable Ω is one that
comes from mutating the initial seed at some cluster variable ∆I,J , corresponding to chamber c. We write
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Figure 6. Part of the quiver of double wiring diagram containing c in Figure 5

the respective Plucker-adjacent cluster variable as Ωw(c). We can safely assume always that c does not have
chambers with both ends of the same color completely above or below c. This follows immediately from the
construction of the quiver Q because none of these chambers shares an edge with c in Q. Moreover, from the



6 CESAR CUENCA

symmetry of the construction of Q, it suffices to analyze the cases where both ends of c are blue and where
the left end of c is blue and its right end is red.

Let w(I ′, J ′) denote the chamber with cluster variable ∆I′,J′ in w if it exists. Write c ← w(I ′, J ′) if there is
an edge from w(I ′, J ′) to c in Q and define c→ w(I ′, J ′) likewise. From the mutation relation at c, we have

Ωw(c) =

∏
c←w(I′,J′) ∆I′,J′ +

∏
c→w(I′,J′) ∆I′,J′

∆I,J
. As remarked in the introduction and proved in Theorem

1.12 of [5], Ωw(c) belongs to the polynomial ring Z[{xij}n×n]. Conjecture 1.2 would imply that such expression
is Schur non-negative when evaluated in any generalized Jacobi-Trudi matrix H = (hµi−νj )n×n. In the next
section, we find some recurrences for computing Ωw(c).

3. Determinantal identities and formulas for some Ωw(c)

In this section, we disgress in two directions that will be useful later. We first prove Theorem 3.2 that
shows how to obtain general determinantal formulas from ones in small dimensions. Then we give recurrence
relations and explicit formulas for some Plucker-adjacent variables Ωw(c).

3.1. Determinantal Identities. The main tool for proving Theorem 3.2 will be Jacobi’s identity, which is
stated as it was in [2].

Theorem 3.1. (Jacobi’s identity) For a subset S ⊂ [n], let s(S) be the sum of numbers in S and S̄ = [n] \S.
If I, J ⊂ [n] are subsets of the same cardinality, then

∆Ī,J̄(X−1) =
(−1)s(I)+s(J)

det(X)
·∆I,J(X)

Theorem 3.2. Let F (z1, . . . , zk) be an homogeneous polynomial of degree d > 0. Let I1, . . . , Ik, J1, . . . , Jk ⊂
[n] be subsets of [n] with |Is| = |Js| for all s. Let Ī := [n]\I for any subset I ⊂ [n]. If F (∆I1,J1 ,∆I2,J2 , . . . ,∆Ik,Jk) =
0, then

(1) F (∆Ī1,J̄1 , . . . ,∆Īk,J̄k) = 0.

(2) If I, J ⊂ [n] are subsets of the same cardinality and such that I (resp. J) is disjoint from all sets Is
(resp. Js), then F (∆I∪I1,J∪J1 ,∆I∪I2,J∪J2 , . . . ,∆I∪Ik,J∪Jk) = 0.

Proof. To prove the first item, rewrite Jacobi’s identity in 3.1 as

∆Ī,J̄(X) =
(−1)s(I)+s(J)

∆(X−1)
·∆I,J(X−1).(3.1)

Since F is homogeneous of degree d, i.e., rdF (x1, . . . , xk) = F (rdx1, . . . , r
dxk) for any r ∈ C, it is easy to

see that the desired result comes from multiplying F (∆I1,J1(X−1), . . . ,∆Ik,Jk(X−1)) = 0 by
( (−1)s(I)+s(J)

∆(X−1)

)d
and using Equation 3.1.

For the second item, consider Y to be the submatrix of X consisting of rows [n] \ I and columns [n] \J . Since
I is disjoint from all Is and J is disjoint from all Js, we have that ∆Is,Js(X) is a minor of Y for all s. The
complementary minor of ∆Is,Js(X) in Y is ∆([n]\I)\Is,([n]\J)\Js = ∆[n]\(I∪Is),[n]\(J∪Js). From the first item,
we have F (∆[n]\(I∪I1),[n]\(J∪J1), . . . ,∆[n]\(I∪In),[n]\(J∪Jn)) = 0. We can apply the first item again to the last
equation (the complementary minor in X of ∆[n]\(I∪Is),[n]\(J∪Js) is ∆I∪Is,J∪Js) and we are done. �
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Figure 7. Chamber c with both blue ends

3.2. Recurrences and formulas for Plucker-adjacent variables. As remarked previously, c has the
same number d = d(c) of incoming and outgoing edges. After this subsection, we will see that Ωw(c) can be
written as sums and differences of products of d− 1 minors of X (e.g. formula 3.6 below). We should remark
that this subsection is completely elementary and is mostly given as an illustration of how to find explicit
formulas for Ωw(c). We only analyze the case where c has both blue ends, hoping that it becomes obvious
how to do the analogous computations in the case where c has blue left end and red right end. Moreover, we
assume that chamber c is in the smallest possible double wiring diagram w (, i.e., w has the smallest possible
number of wires) that may contain such a chamber c. Next section shows that the latter restriction is not
important.

3.2.1. c has no crossings below it. Let us begin by considering a chamber c as the one in Figure 7. Let b′, r′

be the only wires below c and B = {b1 < b2 < . . . < bk+1}, R = {r1 > r2 > . . . > rk} be the sets of labels of

blue and red wires right above c; this implies b1 < b′ < bk+1. We write Ωw(c) as ΩB,Rb′,r′ . The mutation relation
at c is

xb′,r′ · ΩB,Rb′,r′ = xb1,r′ ·
k∏
i=1

∆b′bi+1,r′ri + xbk+1,r′ ·
k∏
i=1

∆b′bi,r′ri(3.2)

We find a recurrence relation if b′ < bk. Consider a chamber c1 which is similar to c, but with wires bk+1, rk
removed. This chamber exists since bk > b′. Let B1 = B \{bk+1}, R1 = R\{rk}, so that the Plucker-adjacent

variable to c1 is ΩB1,R1

b′,r′ . The mutation relation at c1 is

xb′,r′ · ΩB1,R1

b′,r′ = xb1,r′ ·
k−1∏
i=1

∆b′bi+1,r′ri + xbk,r′ ·
k−1∏
i=1

∆b′bi,r′ri(3.3)
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Combining these two equations yields

xb′,r′ · ΩB,Rb′,r′ = ∆b′bk+1,r′rk

(
xb′,r′ · ΩB1,R1

b′,r′ − xbk,r′ ·
k−1∏
i=1

∆b′bi,r′ri

)
+ xbk+1,r′ ·

k∏
i=1

∆b′bi,r′ri

= ∆b′bk+1,r′rkxb′,r′ · Ω
B1,R1

b′,r′ + (xbk+1,r′∆b′bk,r′rk − xbk,r′∆b′bk+1,r′rk) ·
k−1∏
i=1

∆b′bi,r′ri

= ∆b′bk+1,r′rkxb′,r′ · Ω
B1,R1

b′,r′ − (xb′,r′∆bkbk+1,r′rk) ·
k−1∏
i=1

∆b′bi,r′ri

= xb′,r′
(
∆b′bk+1,r′rk · Ω

B1,R1

b′,r′ −∆bkbk+1,r′rk ·
k−1∏
i=1

∆b′bi,r′ri

)
,

where we used the trivial identity xbk+1,r′∆b′bk,r′rk − xbk,r′∆b′bk+1,r′rk = −xb′,r′∆bkbk+1,r′rk (which holds
whenever b′ < bk < bk+1). We can thus cancel xb′,r′ and obtain the recurrence relation

ΩB,Rb′,r′ = ∆b′bk+1,r′rk · Ω
B1,R1

b′,r′ −∆bkbk+1,r′rk ·
k−1∏
i=1

∆b′bi,r′ri(3.4)

We can proceed likewise if b2 < b′. In this case, if we let B1 = B \ {b1} and R1 = R \ {r1}, we obtain the
similar-looking recurrence

ΩB,Rb′,r′ = ∆b′b1,r′r1 · Ω
B1,R1

b′,r′ −∆b1b2,r′r1 ·
k∏
i=2

∆b′bi+1,r′ri(3.5)

Both recurrence relations above are enough to find an explicit formula for ΩB,Rb′,r′ when bi < b′ < bi+1, for any

1 ≤ i ≤ k. For instance, when b1 < b′ < b2 < . . . < bk+1, the recurrence relation 3.4 suffices to obtain

ΩB,Rb′,r′ = ∆b1b2,r′r1 ·
k∏
i=2

∆b′bi+1,r′ri −
k∑
j=2

(
∆bjbj+1,r′rj ·

j−1∏
i=1

∆b′bi,rri ·
k+1∏
i=j+2

∆b′bi,r′ri−1

)
(3.6)

3.2.2. c has no crossings above it. Let us find recurrences similar to 3.4 and 3.5 in this case. For a chamber
c, let b, r the only blue and red wire right above c and B′ = {b′1 < . . . < b′l+1}, R′′ = {r′1 > . . . > r′l} be the
sets of labels of blue and red wires right below c. Notice there is one more red wire below c that is not right
below it. Let us call it r′ and let R′ = R′′ + r′.

Denote by Ωb,rB′,R′ to the Plucker-adjacent variable coming from c. For any subsets I, J ⊂ [n], we call ∆I,J the
complementary minor of ∆I,J in X. The mutation relation at c is

∆b,r · Ω
b,r
B′,R′ = ∆b′1,r

·
l∏
i=1

∆bb′i+1,rr
′
i

+ ∆b′l+1,r
·
l∏
i=1

∆bb′i,rr
′
i

(3.7)

which is in a very similar form as equation 3.3, except that minors are replaced by complementary minors. To
obtain recurrence 3.4, we used identity xbk+1,r′∆b′bk,r′rk−xbk,r′∆b′bk+1,r′rk = −xb′,r′∆bkbk+1,r′rk . We can pro-
ceed analogously, but using instead the identity ∆b′k+1,r

∆bb′k,rr
′
k
−∆b′k,r

∆bb′k+1,rr
′
k

= −∆b,r∆b′kb
′
k+1,rr

′
k
, which
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Figure 8. General arrangement for a chamber with both blue ends

follows from the first identity and (1) of Theorem 3.2. If b′l > b, let B′1 = {b′1, . . . , b′l}, R′1 = {r1, . . . , r
′
l−1};

the analogous to recurrence 3.4 is:

Ωb,rB′,R′ = ∆bb′k+1,rr
′
k
· Ωb,rB′1,R′1 −∆b′kb

′
k+1,rr

′
k
·
k−1∏
i=1

∆bb′i,rr
′
i

(3.8)

We can proceed in the same manner when b′2 < b. If we let B′1 = {b′2, . . . , b′l+1}, R′1 = {r′2, . . . , r′l}, the
analogous recurrence to 3.5 is:

Ωb,rB′,R′ = ∆bb′1,rr
′
1
· Ωb,rB′1,R′1 −∆b′1b

′
2,rr

′
1
·
k∏
i=2

∆bb′i+1,rr
′
i

(3.9)

3.2.3. General chambers c. We now consider chambers with crossings right above and right below it (see
Figure 8). We let B = {b1 < . . . < bk+1}, R = {r1 > . . . > rk}, B′ = {b′1 < b′2 < . . . < b′l+1} and
R′′ = {r′1 > r′2 > . . . > r′l} be the sets of labels of blue and red wires as it is shown in Figure 8. As before,
these is a red wire r′ below c and not right below it; then write R′ = R′′ + r′. It then follows that b′1 < bk+1

and b1 < b′l+1; we write Ωw(c) as ΩB,RB′,R′ .

It should be no surprise at this point that, depending on the relative ordering of the bi, b
′
i, one can find

recurrences like (3.4) and (3.5) by considering chambers c′ that come from removing pairs of a blue and red
wire. The point of all these recurrences will be to prove that Ωw(c) can be expressed as sums and differences
of products of d− 1 minors of X, if chamber c has 2d edges adjacent to it.

As a last calculation in this subsection, let us find a recurrence for Ωw(c) if b′1 < bk; it will be a more general

version of (3.4). Let X =

l∏
i=1

∆B′\{bi},R′\{ri} be the product of variables of chambers with edges directed to c

and below it. Also let Y =

l∏
i=1

∆B′\{bi+1},R′\{ri} be the product of variables of chambers with edges directed

from c to them and below c. The mutation relation at c is the following, more general version of 3.3:

∆B′,R′ · ΩB,RB′,R′ = ∆B′+b1−b′l+1,R
′ ·

k∏
i=1

∆B′+bi+1,R′+ri ·X + ∆B′+bk+1−b′1,R′ ·
k∏
i=1

∆B′+bi,R′+ri · Y

We will use the identity ∆B′+bk+1−b′1,R′∆B′+bk,R′+rk−∆B′+bk−b′1,R′∆B′+bk+1,R′+rk = −∆B′,R′∆B′+bk+bk+1−b′1,R′+rk ,
which follows from the trivial xbk+1,r′∆b′1bk,r

′rk − xbk,r′∆b′1bk+1,r′rk = −xb′1,r′∆bkbk+1,r′rk and (2) of Theorem
3.2. If b′1 < bk, let B′1 = {b′1, . . . , b′l}, R′1 = {r1, . . . , r

′
l−1}; the analogous to recurrence 3.4 is:
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ΩB,RB′,R′ = ∆B′+bk+1,R′+rk · Ω
B1,R1

B′,R′ −∆B′+bk+bk+1−b,R′+rk ·
k−1∏
i=1

∆B′+bi,R′+ri · Y.(3.10)

As remarked previously, the goal of this section is to convince the reader of the truth of the following propo-
sition.

Proposition 3.3. A product of m minors of X, of arbitrary dimensions, will be called a (m,X) - product, or
simply m-product if X is implicit. If c has 2d neighboring edges, then Ωw(c) can be written as the difference
between a (d− 1)-product and the sum of d− 2 (d− 1)-products (see, e.g., formula (3.6)).

In particular, there exists an homogeneous polynomial F on the minors of X such that Ωw(c) = F ({∆I,J}|I|=|J|)
and with degree (d− 1).

This is not hard to prove by induction if one had recurrences for general chambers like (3.10), and also for
chambers with only crossings on one side (3.4), (3.5), (3.8) and (3.9). Of course, one needs several of these,
depending on the order relation of some wires and also in the case where c has blue left end and red right
end. The calculation of the previous recurrences should however be enough to convince the reader doing all
these cases is only a tedious task.

4. Simplifying the double wiring diagram

In this section, we prove the following proposition:

Proposition 4.1. If Ωw′(c) is Schur non-negative, then Ωw(c) is Schur non-negative for any double wiring
diagram w that contains the wires of w′ (and possibly additional ones) and such that it contains c as a chamber.

This will allow us to prove Schur non-negativity of Ωw(c) by proving it for the simplest double wiring diagram
w that contains c. The first trivial observation is that wires above c that do not make crossings right above
c are unimportant. This is because the variables involved in the mutation rule at c do not depend on those
wires. What is a little more surprising is that, for Schur non-negativity, the wires below c that do not make
crossings right below it are also unimportant. Let w,w′ be two doule wiring diagrams that contain a chamber
c, but they differ in that w has additional sets B0, R0 (of the same cardinality) of labels of blue and red wires
below it.

Denote by B′, R′ the sets of labels of blue and red wires in w′, so that B′∪B0 = B, R′∪R0 = R are the sets of
labels of blue and red wires of w. We show that if Ωw′(c

′) is Schur non-negative when evaluated in generalized
Jacobi-Trudi matrices, then so is Ωw(c). Denote by X ′ to the submatrix X(B′, R′). Let w′(I, J) denote
the chamber in w′ with cluster variable ∆I,J if it exists. From Proposition 3.3, Ωw′(c

′) is an homogeneous
polynomial F on the minors of X ′ = X(B′, R′). The mutation relation of Q(w′) at c′ gives

Ωw′(c
′) =

∏
c′←w′(I,J) ∆I,J +

∏
c′→w′(I,J) ∆I,J

∆I,J
= F ({∆I,J}|I|=|J|,I⊂B′,J⊂R′)

Since B0 and R0 are disjoint from the sets of blue and red wires of w′, we can apply part (2) of Theorem 3.2
to the expression above and obtain∏

c′←w′(I,J) ∆B0∪I,R0∪J +
∏
c′→w′(I,J) ∆B0∪I,R0∪J

∆B0∪I,R0∪J
= F ({∆B0∪I,R0∪J}|I|=|J|,I⊂B′,J⊂R′)
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The left hand side of the above expression corresponds to Ωw(c) because of the mutation rule of Q(w) at c
and because c′ ← w′(I, J) ⇐⇒ c ← w(I ∪ B0, J ∪ R0), c′ → w′(I, J) ⇐⇒ c → w(I ∪ B0, J ∪ R0). Therefore
Ωw(c) = F ({∆B0∪I,R0∪J}|I|=|J|,I⊂B′,J⊂R′).

Let H be any n × n generalized Jacobi-Trudi matrix and H ′ = H(B′, R′). From assumption, we know that
Ωw′(c

′)|H′ = F ({∆I,J}I⊂B′,J⊂R′)|H′ is Schur positive, i.e., can be written as
∑
ν aνsν , for aν ≥ 0 and Schur

polynomials sν on the variables of X ′. From the Jacobi-Trudi identity, we have that sν = det(hνi+j−i),
therefore

F ({∆I,J}|I|=|J|,I⊂B′,J⊂R′)|H′ =
∑
ν

aν det(hνi+j−i).(4.1)

We can assume that all entries in H(I, J), I ⊂ B′, J ⊂ R′, are nonzero (otherwise, we use the minors expansion

formula for ∆I,J and get rid of the zero entries). Consider the (generalized Jacobi-Trudi) matrix H̃ that is of
the form below and is such that all H(I, J), I ⊂ B′, J ⊂ R′, and (hνi+j−i) are submatrices of it.

H̃ =



hr+s · · · hr+s hr+s+1 · · · hr+s+k · · · hr+s+k+l

...
. . .

...
...

. . .
...

. . .
...

hr · · · hr hr+1 · · · hr+k · · · hr+k+l

...
. . .

...
...

. . .
...

. . .
...

h1 · · · h1 h2 · · · hk+1 · · · hk+l+1

h0 · · · h0 h1 · · · hk · · · hk+l

...
. . .

...
...

. . .
...

. . .
...

h0 · · · h0 h1 · · · hk · · · hk+l


We also want H̃ to be large enough so that all H(I∪B0, J∪R0) are submatrices of it. For each I ⊂ B′, J ⊂ R′,
denote by Ĩ , J̃ to the rows ans columns of H̃ such that H̃(Ĩ , J̃) = H(I, J) and also denote by Iν , Jν to the

rows and columns of H̃ such that H̃(Iν , Jν) = (hνi+j−i). Finally, denote by ∆̃I,J to the repective minor of

H̃. Then equation (4.1) can be rewritten as

F ({∆̃Ĩ,J̃}|I|=|J|,I⊂B,J⊂R) =
∑
ν

aν∆̃Iν ,Jν .(4.2)

There exist sets of rows and columns B̃, R̃ so that H̃(Ĩ ∪ B̃, J̃ ∪ R̃) = H(I ∪ B0, J ∪ R0) for all |I| = |J |.
Therefore, one can apply part (2) of Theorem 3.2 to (4.2) and obtain

F ({∆̃Ĩ∪B̃,J̃∪R̃}|I|=|J|,I⊂B,J⊂R) =
∑
ν

aν∆̃Iν∪B̃,Jν∪R̃.(4.3)

By the condition imposed, we have that the left-hand side of (4.3) is F ({∆̃Ĩ∪B̃,J̃∪R̃}|I|=|J|,I⊂B,J⊂R) =

F ({∆I∪B0,J∪R0}|I|=|J|,I⊂B′,J⊂R′) = Ωw(c). The generalized Jacobi-Trudi identity says that ∆̃Iν ,Jν is a skew
Schur function, which is Schur non-negative. Therefore, the positive linear combination (which is the right-

hand side of (4.3))
∑
ν aν∆̃Iν∪B̃,Jν∪R̃ is also Schur non-negative, as desired.

In the subsequent sections, especially in section 6, when calculating Ωw(c), we assume that the double wiring
diagram w that contains c is the smallest one in terms of number of wires. For example, if c has 4 blue
crossings next to it and 2 red crossings next to it, then w contains only 4 wires of each color.
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5. Temperley-Lieb Immanants

In this section, we develop a technique for proving Conjecture 1.2 when chamber c has 6 or less adjacent
chambers in Q. We give a rough overview of some results we found in [8], but which are originally due to
Haiman, and Rhoades-Skandera.

5.1. Background. For a n × n matrix X, w ∈ Sn, the Kazhdan-Lusztig immanant Immw(X) is defined in
terms of the Kazhdan-Lusztig polynomials indexed by elements of the symmetric group Sn. The details of
the definition are not important for our purposes. We only remark that the Kazhdan-Lusztig immanants are
essentially the dual canonical basis and thus Haiman’s result shows:

Theorem 5.1. If M is a generalized Jacobi-Trudi matrix, then Immw(M) is Schur non-negative.

The Temperley-Lieb algebra TL(ξ) is the C[ξ]-algebra generated by t1, t2, . . . , tn−1, subject to the relations
t2i = ξti, titjti = ti if |i− j| = 1 and titj = tjti if |i− j| ≥ 2 (see [8] for details). The dimension of TLn(ξ) is
the n-th Catalan number. For any w ∈ Sn, define tw := ti1 · · · tik for a reduced decomposition w = si1 · · · sik .
A natural basis for TL(ξ) is the set of all tw for 321-avoiding permutations w ∈ Sn.

The Temperley-Lieb immanant of an n× n matrix X is defined as

ImmTL
w (X) :=

∑
v∈n

fw(v)x1,v(1) · · ·xn,v(n),

where fw(v) is defined as the coefficient of the basis element tw ∈ TL(2) in the expansion of (ti1 − 1) · · · (tik −
1) ∈ TL(2) for a reduced decomposition v = si1 · · · sik .

Theorem 5.2. For a 321-avoiding permutation w ∈ Sn, we have Immw(X) = ImmTL
w (X). Thus, from

Theorem 5.1, ImmTL
w (X) is Schur non-negative when evaluated in any generalized Jacobi-Trudi matrix.

A product of generators ti1 · · · tik in TLn can be visualized using the Temperley-Lieb diagrams. These are
diagrams with n non-crossing strands connecting the vertices 1, 2, . . . , 2n, with possibly some internal loops
(see [8]). The set of pairs of vertices connected by a strand form a non-crossing matching on the set of vertices
[2n], i.e., for edges (a, b) and (c, d) of the matching, we never have a < c < b < d. This association is a
bijection between the basis {tw : w is a 321-avoiding permutation of Sn} of TLn and the set of non-crossing
matchings on the vertex set [2n].

For a subset S ⊂ [2n], say that w ∈ Sn is S-compatible if each strand of its Temperley-Lieb diagram has exactly
one endpoint in S. A basis element tw is S-compatible if and only if each edge of the associated matching has
one endpoint in S and the other in [2n] \ S. Denote by Θ(S) to all the 321-avoiding permutations w ∈ Sn for
which tw is S-compatible. For a subset I ⊂ [n], let I ′ := {2n+ 1− i : i ∈ I}.

Theorem 5.3. For two subsets I, J ⊂ [n] of the same cardinality and S = S(I, J) = J ∪ (I)′, we have

∆I,J(X) ·∆I,J(X) =
∑

w∈Θ(S)

ImmTL
w (X).

Combining Theorems 5.2 and 5.3 provide a wonderful tool for proving Schur non-negativity for expressions
involving products of complementary minors as we shall see soon. For a 321-avoiding permutation w ∈
Sn, denote by Mw to its associated Temperley-Lieb diagram, which is a non-crossing matching and write
ImmTL

w (X) as Imm(Mw) for simplicity. For two subsets I, J ⊂ [n] of the same cardinality, let S(I, J) =
J ∪ (I)′ and M(I, J) be the set of matchings Mw such that w ∈ Θ(S(I, J)). Equivalently, M(I, J) is
the set of matchings on vertex set [2n] that are S(I, J)-compatible. Theorem 5.3 can then be rewritten
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as ∆I,J(X) · ∆I,J(X) =
∑
Mw∈M(I,J) Imm(Mw). We show a few proofs that some expressions are Schur

non-negative by expressing them as positive linear combinations of immanants.

Example 5.4. The expression Ω = x11 ·∆23,23 −∆123,123 is Schur non-negative.

We have that M({1}, {1}) consists of matchings {16, 25, 34} and {12, 34, 56} since they are the only ones that
are {1, 4, 5}-compatible on vertex set [6]. Likewise, M({1, 2, 3}, ∅) consists of the single matching {16, 25, 34}.
Therefore, Theorem 5.3 tells us that Ω = x11 ·∆23,23−∆123,123 = (Imm({16, 25, 34}) + Imm({12, 34, 56}))−
Imm({16, 25, 34}) = Imm({16, 25, 34}). Theorem 5.2 then implies Ω is Schur non-negative.

Proposition 5.5. The following hold for minors of a 4× 4 matrix X.

(1) ∆13,24∆24,13 ≥s ∆34,13∆12,24.

(2) ∆13,14∆24,23 ≥s ∆12,14∆34,23.

Proof. The proofs simply involve counting S-compatible matchings for some sets S. For the first item,
observe that the left-hand side of the inequality is ∆I1,J1∆I1,J1

for I1 = {1, 3} and J1 = {2, 4}; then let

S1 = S(I1, J1) = S({1, 3, 6, 8}). For the right-hand side, the set of interest is S2 = S(I2, J2) = {3, 4, 5, 7}.
Next, let M1,M2 be the sets of S1 - and S2 - compatible matchings respectively, then

(1) M1 has elements {12, 34, 56, 78}, {12, 34, 58, 67}, {14, 23, 56, 78} and {14, 23, 58, 67}.

(2) M2 has elements {14, 23, 56, 78} and {14, 23, 58, 67}.

Therefore Theorem 5.3 says that the difference between the left - and right - hand side of (1) is Imm({12, 34, 58, 67})+
Imm({14, 23, 58, 67}). Theorem 5.2 then implies this expression is Schur non-negative.

For the second item, we obtain S′1 = {1, 3, 6, 7}, S′2 = {1, 3, 6, 7}. Then, if M ′1,M
′
2 are the sets of S′1 - and S′2

- compatible matchings respectively, we have that

(1) M ′1 has elements {12, 34, 56, 78}, {12, 38, 47, 56}, {14, 23, 56, 78}, {18, 23, 47, 56} and {18, 27, 34, 56}.

(2) M ′2 has elements {14, 23, 56, 78} and {18, 23, 47, 56}.

As above, Theorem 5.3 shows that the difference between the left - and right - hand side of (2) is Imm({12, 34, 56, 78})+
Imm({12, 38, 47, 56})+Imm({18, 27, 34, 56}). Theorem 5.2 then implies this expression is Schur non-negative.

�

The following proposition proves the Schur non-negativity of some expressions using Temperley-Lieb im-
manants and the technique of copying rows and columns of generalized Jacobi-Trudi matrices.

Proposition 5.6. The following expressions hold for minors of a 4× 3 matrix X.

(1) ∆13,13∆24,12 ≥s ∆34,12∆12,13.

(2) ∆13,23∆24,12 ≥s ∆34,12∆12,23.

(3) ∆13,23∆24,13 ≥s ∆34,13∆12,23.

(4) ∆13,13∆24,12 ≥s ∆12,13∆34,12.

(5) ∆13,23∆24,12 ≥s ∆12,23∆34,12.

(6) ∆13,23∆24,13 ≥s ∆12,23∆34,13
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Proof. Let us prove (1), i.e., ∆13,13∆24,12 −∆34,12∆12,13 ≥s 0. We need to show this is Schur non-negative
for any 4× 3 generalized Jacobi-Trudi matrix M = (Hµi−νj )i,j . Let M ′ be the 4× 4 generalized Jacobi-Trudi
matrix that comes from duplicating the first column of M . Let 1′ the duplicated column and let the columns
of X be labeled 1, 1′, 2, 3 in that order. Let ∆I,J |M ′ be the (I, J)- minor of X ′ evaluated in M ′. From (1)
in Proposition 5.5, we have ∆13,1′3|M ′∆24,12|M ′ ≥s ∆34,12|M ′∆12,1′3M ′ . Since columns 1 and 1′ are equal
in M ′, the identity becomes ∆13,13|M∆24,12|M ≥s ∆34,12|M∆12,13|M . Since this holds for any generalized
Jaoobi-Trudi matrix M , we are done.

Items (2) and (3) also follow from (1) of Proposition 5.5, but duplicating the second and third column,
respectively.

Items (4), (5) and (6) above follow from (2) Proposition 5.5, via the same technique and duplicating the first,
second and third column, respectively. �

6. Proof of Theorem 1.3

We prove conjecture 1.2 for Plucker-adjacent cluster variables Ωw(c) that come from chambers c in w, whose
corresponding vertex in Q = Q(w) has 6 or less adjacent vertices. From the construction of Q, any chamber
c has an even number of adjacent vertices that is at least 4.

If chamber c has degree 4 in Q, then it was proven in Lemma 18 of [6] that its mutated variable Ωw(c) is a
chamber minor ∆I1,J1 of a double wiring diagram w′ that comes from making a local or braid move to w at
c. In particular, the generalized Jacobi-Trudi identity implies that when we evaluate Ωw(c) at a generalized
Jacobi-Trudi matrix, we obtain some skew-Schur function sµ1/ν1 , which is Schur non-negative.

From section 4, we can assume the double wiring diagram w of c is as small as possible. For chambers of
degree 6, then the simplest w has at most 4 wires. In each case below, we first calculate Ωw(c) with general
labels for the wires and then let them be numbers from 1, 2, 3, 4 according to the relative ordering of them.
When c has degree 6 in Q, then there will be 3 general chamber arrangements when c has both blue ends and
2 general chamber arrangements when c has blue left end and red right end.

Case 1: Both ends of c are blue

Subcase 1: c has no crossings below it (see Figure 7).

Depending on whether b1 < b < b2 or b2 < b < b3, we can use recurrence 3.4 or 3.5 to obtain a formula for
Ωw(c). In the first case, we have Ωw(c) = ∆b1b2,rr1∆bb3,rr2 −∆b2b3,rr2∆bb1,rr1 and in the second case, we have
Ωw(c) = ∆bb1,rr1∆b2b3,rr2 −∆b1b2,rr1∆bb3,rr2 .

Proposition 6.1. All of these expressions for Ωw(c) above are Schur non-negative.

Proof. In the first case, we can let b1 = 1, b = 2, b2 = 3 and b3 = 4. Three subcases arise depending on the
relative order of r with respect to r1, r2. The three formulas for Ωw(c) are, when r < r2 < r1, r2 < r < r1

and r2 < r1 < r respectively,

(1) ∆13,13∆24,12 −∆34,12∆12,13

(2) ∆13,23∆24,12 −∆34,12∆12,23

(3) ∆13,23∆24,13 −∆34,13∆12,23

In the second case, we let b1 = 1, b2 = 2, b = 3 and b3 = 4. As above, the three formulas for Ωw(c) are

(1) ∆13,13∆24,12 −∆12,13∆34,12
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(2) ∆13,23∆24,12 −∆12,23∆34,12

(3) ∆13,23∆24,13 −∆12,23∆34,13

It was proven in Proposition 5.6 that all 6 of these expressions are Schur non-negative, as desired. �

Subcase 2: c has no crossings above it.

In this case, we can use recurrences 3.8 and 3.9 to obtain all the formulas for Ωw(c). It is not surprising
that they turn out to be of the same form as the formulas in the first subcase, but each minor is replaced
by its complementary minor in X. For example, The analogous to (1) is ∆13,13∆24,12 − ∆34,12∆12,13 =
∆24,24∆13,34−∆12,34∆34,24. We could prove these 6 expressions are Schur non-negative using immanants and
copying rows and columns, as it was done in the previous subcase. However, this will not be necessary.

Let H be any 4 × 4 generalized Jacobi-Trudi matrix. Let H ′ be the reflection of H over the secondary
diagonal. It is clear that H ′ is also a generalized Jacobi-Trudi matrix and

(
∆24,24∆13,34 −∆12,34∆34,24

)
|H =(

∆13,13∆24,12−∆34,12∆12,13

)
|H′ . The latter expression is Schur non-negative from (1) of the previous subcase.

Since H was arbitrary, this shows ∆24,24∆13,34 −∆12,34∆34,24 ≥s 0. A similar reasoning applies to all other
formulas for Ωw(c).

Subcase 3: c has one crossing above it and one crossing below it (see Figure 8 with k = l = 1).

In this case, if b′1 < b1, we can use recurrence 3.10 to obtain Ωw(c) = ∆b′1b
′
2b2,r

′r′1r1
·xb1,r′−∆b′2b1b2,r

′r′1r1
·xb′1,r′ .

Letting b′1 = 1, b1 = 2, we have three formulas for Ωw(c) which are

(1) x2,1 ·∆134,123 − x1,1 ·∆234,123

(2) x2,2 ·∆134,123 − x1,2 ·∆234,123

(3) x2,3 ·∆134,123 − x1,3 ·∆234,123

Proposition 6.2. All of these expressions for Ωw(c) are Schur non-negative.

Proof. The proof for all of these is similar to that of Proposition 5.6.

For the first two, we prove x2,2∆134,134 − x1,2∆234,134 ≥s 0. The first item then follows from copying the first
column of that expression and the second item follows from copying the second column.

It is not hard to check that x2,3∆13,12 = Imm({12, 36, 45, 78})+Imm({12, 38, 45, 67})+Imm({18, 23, 45, 67})+
Imm({18, 27, 36, 45}) and x1,3∆23,12 = Imm({12, 36, 45, 78}) + Imm({12, 38, 45, 67}). Thus the statement
follows from Theorem 5.1.

For the last expression , we prove x2,3∆134,124 − x1,4∆234,123 ≥s 0; the statement follows from copying the
third column.

Again, this simply follows from the equalities x2,3∆134,124 = Imm({12, 38, 45, 67}) + Imm({12, 38, 47, 56}) +
Imm({18, 23, 45, 67}) + Imm({18, 23, 47, 56}) and x1,4∆234,123 = Imm({12, 38, 47, 56}). �

In the case b1 < b′1, we obtain the formulas where each minor above is replaced by its complementary minor
in X, e.g., ∆2,1 ·∆134,123−∆1,1 ·∆234,123 = ∆134,234 · x2,4−∆234,234 · x1,4. The Schur non-negativity of these
expressions follows from the analysis above and the same trick applied to subcase 2.

Case 2: c has both ends of different color

Subcase 1: c has no crossings below it (see Figure 5).



16 CESAR CUENCA

In this case, the minimal double wiring diagram for c has 3 wires. Moreover, we must have b2 > b1, b and
r1 > r2, r. The mutation relation at c is

xb,r · Ωw(c) = xb,r1 · xb2,r ·∆bb1,rr2 + 1 ·∆bb1 ·∆bb2,rr2 .

If b1 > b, we have Ωw(c) = xb1,r1 ·∆bb2,rr2 −xb,r1∆b1b2,rr2 . By renaming the wires b = 1, b1 = 2, b2 = 3, r1 = 3
and {r, r2} = {1, 2}, we have the expression Ωw(c) = x2,3∆13,12 − x1,3∆23,12.

If b > b1, we have Ωw(c) = xb,r1∆b1b2,rr2 − xb1,r1 ·∆bb2,rr2 . In this case, renaming the variables b = 2, b1 =
1, b2 = 3, r1 = 3 and {r, r2} = {1, 2}, we have the same expression as the one above. Thus the following
proposition suffices for this subcase.

Proposition 6.3. x2,3∆13,12 − x1,3∆23,12 ≥s 0

Proof. x2,3∆13,12 = Imm({12, 36, 45}) + Imm({16, 23, 45}).

x1,3∆23,12 = Imm({12, 36, 45}). �

Subcase 2: c has no crossings above it.

This case follows from the previous subcase, as it was seen in the subcase 2 of case 1.

7. Final remarks

7.1. Examples of non Plucker-adjacent cluster variables. A single wiring diagram can be associated
with a reduced word for the permutation (1, 2, . . . , n) → (n, . . . , 2, 1) of Sn. A transposition si = (i, i + 1)
simply corresponds to a crossing between the wires at the levels i and i + 1. We consider a double wiring
diagram w with n = 4, for which all blue crossings are to the left of the red crossings, the blue crossings
correspond to the reduced word s1s2s3s1s2s3 in S4 and the red crossings correspond to the reduced word
t1t2t1t3t2t1 (ti = (i, i+ 1) = si, but we stick to the notation in [8]). The associated quiver is the one in Figure
7.1, where for example, chambers 4, 9 and 15 correspond to cluster variables ∆123,123,∆14,12 and x1,4. The
vertices 0, 1, 7, 8, 12, 13, 15, 16 are frozen ones.

1 2 3 4

0

5 6 7

8 9 10 11 12

13 14 15

16

We obtained some cluster variables that are not Plucker-adjacent. For all the ones we found, but one, one can
prove Schur non-negativity via the method of immanants and copying rows and columns, as in Proposition
5.6. That special cluster variable is z11 = ∆14,34∆123,123 − x13∆1234,1234 and comes from mutating the initial
seed at 10 and then at 11.

Other examples of cluster variables that are not Plucker-adjacent are given below and they come from the
seed after mutating at 3, 5, 10, 9, 11, 10, 14, 3, 5 in that order. The motivation to mutate at these vertices is
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that the quiver associated to the final seed has a double edge from 14 to 4. Then by mutating at 14 and 4
repeatedly, one obtains infinitely many cluster variables, but the size of these grows very rapidly.

(1) z3 = ∆34,23∆12,13 −∆12,23∆34,13.

(2) z5 = x33∆123,124 − x34∆123,123.

(3) z14 = x32∆12,13 − x31∆12,23.
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