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ABSTRACT. Rowmotion is an invertible action on the order ideals of a poset that has been
studied by many different authors (including Fon-der-Flaass, Cameron, Striker, and Williams).
The action of rowmotion on the (a,b)-rectangle poset is well-understood: Propp and Roby
showed that the action of rowmotion is the same as the action of cyclic rotation on necklaces
with a black beads and b white beads. The rowmotion orbits for the corresponding (a,b)-
trapezoid poset, however, remain mysterious. Using a bijection between order ideals of the
rectangle and trapezoid poset given by Hamaker, Patrias, Pechenik, and Williams, we prove
that the action of rowmotion on the (a,b)-trapezoid is the same as for the (a,b)-rectangle.
The notion of weak K-Knuth equivalence, introduced by Buch and Samuel, is central to our
proof technique. We also show that rowmotion on the (a, b)-trapezoid poset is homomesic with
respect to the down-degree statistic for the case a < 4 and any b, giving an approach that could
be generalized to all a and b.

1. INTRODUCTION AND BACKGROUND

A partially ordered set (henceforth abbreviated a poset) is a set P with a binary relation < that
is reflexive, anti-symmetric, and transitive. Two elements x,y € P are comparable if we have
r < yory < x, and incomparable otherwise. We say y covers x if y > x and there does not
exist z € P such that y > z > z; equivalently, we say that x s covered by y. The Hasse diagram
of P is an undirected graph with vertex set P, and an edge between y and x if they have a cover
relation. A graded poset is a poset P with a rank function rank : P — 7Z such that if z < y,
rank(z) < rank(y) and if y covers z, rank(y) = rank(z) + 1.

Given a poset P, an order ideal I of P is a subset of P that is downward closed, i.e: if ¢ € I
and y < x in P, then y € I as well. A filter ideal I' of P is the complement of an order ideal,
or equivalently, a subset of P that is upward closed. Denote the set of order ideals of P to be
J(P), which is also a poset with relation given by inclusion between order ideals.

The dual poset of a poset P is the poset P* that has the same underlying set as P, but with the
binary relation reversed. Note that an order ideal of P corresponds to a filter ideal of P* and
vice versa.

Given an order ideal I € P, we can take the maximal elements of I to get an antichain A, i.e:
a set of elements of P that are incomparable to one another. In general, the set of order ideals
of P is in bijection with the set of antichains, with the reverse map sending A to the order ideal
generated by A, i.e: the ideal {x € P | x < y for some y € A}. The down-degree of I is defined
to be the number of maximal elements of I.

A linear extension of a poset P is a bijection p: P — {1,2,...,|P|} that is order-preserving, i.e:
p(x) < p(y) for all x < y in P. A P-partition of P of height m is a order preserving map from
P to [m] ={0,...,m}. Denote PP™(P) the set of all P-partitions of P of height m. Note that
there is a bijection between PP™(P) and chains of order ideals of P of length m, given by sending
a P-partition m : PP™(P) to the chain 7#~1({0}) c =~ 1({0,1}) € --- € 77 1({0,...,m — 1}).
With this bijection, it’s clear that a P-partition of height 1 corresponds to an order ideal.

In our paper, we will mostly study the rectangle poset

Rop=1{(i,j) €Z*|1<i<a,1<j<b}
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FIGURE 1. R, and T, for a =3,b =5

and the trapezoid poset

Toary ={(0,j) €2’ |1<i<j<a+b—1}

J
with the relation (i,7) < (¢,j') <= i < ¢ and j < j/. It was shown in [Sta86] that the
number of P-partitions of height m is the same for the rectangle and trapezoid poset; in other
words, we have: PP (R, ;) = PP (T, q4p) for all a,b,m. Such a pair (P, Q) of posets satisfying
PP™(P) = PP™(Q) for all m is called a doppelginger pair. It turns out that the rectangle and
trapezoid poset (conjecturally) have a deeper connection than just being a doppelgénger pair;
for a survey of these conjectures, see [Hop19].

2. ROWMOTION AND MINUSCULE DOPPELGANGERS

2.1. Rowmotion on order ideals and piecewise linear rowmotion.

Definition 2.1. Let P be a poset, and I € J(P) an order ideal of P. Then the rowmotion of
I, denoted row([I) is the order ideal generated by the minimal elements that are not in I, i.e.

row(l) = (a € P:a € min{P — I})

Rowmotion can be viewed as composition of ‘toggles’ of poset elements. For p € P and order
ideal I, we denote 7, (/) as toggling p on I which is defined as follows:

IUp ifpéTand IUpe J(P),
T(I)=<I\p ifpeland\peJ(P),
1 otherwise.

Then rowmotion is just performing toggles row by row from top to bottom.

Proposition 2.2. [PR15] row(I) = 7, 07, , © -+ 0 7, (L) where {p1,--- ,pn} is a linear
extension of the poset P.

Rowmotion is generalized by Eisenstein and Propp to a piecewise linear action on P-partitions
(or equivalently, order polytopes), which toggles are refined by a tropical exchange relation:

7(p) = max{a:a < p}+min{b:b>p} —p

We can identify a rowmotion as a height 1 P-partition where elements in the ideal are labeled as
0 and 1 otherwise. Then the classical Rowmotion is equivalent to piecewise linear rowmotion on
this P-partition, thus we do not distinguish the notation between classical and piecewise linear
rowmotion.

2.2. Bijections between plane partitions of minuscule doppelgingers. In this section
we describe the bijection ¢, given in [HPPWI18|, between P-partitions of the rectangle R,
and the trapezoid T, ,45. Note that this bijection applies to all minuscule doppelgéngerpairs
shown in Figure 3, but we will mostly focus on the case of the rectangle and trapezoid. The
construction is based on k-jeu-de-taquin slides, which are a K-theoretic analogue of the usual
jeu-de-taquin. The discussion below is an adaptation of [HPPW18, Section 6.2].
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Definition 2.3. An increasing tableauz of height ¢ on a poset P is a function T : P — [¢] such
that whenever z < y in P, we have T'(z) < T'(y). Denote the set of all increasing tableaux of
height I to be ITY(P). We say that x covers (resp. is covered by) a € N in T if there exists
y € P covered by (resp. covering) x with T'(y) = a. Let Cr(z) denote the set of all a such that
x either covers or is covered by a in T

When P is a ranked poset with all maximal chains of the same length ht(P), [DPS17, Theorem
4.1] shows that there is a bijection PP (P) ~ ITI+M(P)(P) " Since all of the miniscule Dop-
pelgéngers pairs are of this form, it suffices to find a bijection ¢ between increasing tableaux of
such pairs. To define ¢, we first need some preliminary definitions.

Definition 2.4. The swap of two numbers a,b in an increasing tableaux T is the function
swap,, ;(1") such that for all z € P:

a if T(x) =band a € Cp(x)
swap, ,(T)(z) = ¢ b if T(x) =a and b € Cp(z)
T(z) else

After performing a swap, the resulting tableaux can be considered to still be increasing, but
with the order of the numbers a and b switched. Next, we can describe K-jeu-de-taquin as a
sequence of swaps, which turns a number a into the maximal number.

Definition 2.5. Suppose T is an increasing tableaux of height £. Then define the k-jeu-de-taquin
slide of a € ¢ to be the tableaux

L
jat(T) == ( 11 swapa,b> (™)

b=a+1

The resulting tableaux will still be increasing with the ordering that @ is now the maximal value.
Alternatively, we could make the tableaux increasing by replacing all instances of a with ¢ and
decrease all b € [a + 1,¢] by one. However, unless stated otherwise, it is assumed that we don’t
relabel the entries.

We now define the bijection ¢ for the case of rectangle and trapezoid. For the other doppel-
géngers pairs, see [HPPW18|.

Definition 2.6. Given an increasing tableaux T € I T[”(Ra’b) of the rectangle, one obtains an
increasing tableaux ¢(T') € ITV(T, ;) as follows:

(i) Create a larger poset P = R, U{(i,j) |0<i<a—1,—a+1<j<0,i+j<a—1}, and
consider the tableaux 77U U on P that is T on the part R, p, U is the minimal tableaux
associated to the triangle shape, and U is U with all entries having a bar on top. Order
the entries so that 1 <2< - <24 —-3<1<2<--- <.

(i) Do K-jdt slide of i for all i = 0,...,2a — 3.
(iii) Take the resulting increasing tableaux on the trapezoidal part T, of P to be the result

o(T).

See Figure 2 for an example of ¢. We are interested in how ¢ interacts with the action of
rowmotion. In the case of order ideals, we will prove the following theorem.

Theorem 2.7. For any of the minuscule doppelgingers pair

(Pv Q) € {(Ra,bv Ta7a+b)’ (OG(6’ 12)7 H3)v (Q2n’ IZ(Zn))}



4 QUANG VU DAO, JULIAN WELLMAN, CALVIN YOST-WOLFF, SYLVESTER ZHANG
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FIGURE 2. The map ¢ for an order ideal I € J(T33)
| Label [ Poset Name Hasse Diagram I Hasse Diagram Poset Name ‘

B) | Acrm = 0O of,

(H) MAog6.12) % 7y,

/O .,

FIGURE 3. [HPPWI18, Figure 1| Relevant miniscule Doppelgéangers pairs

p commutes with rowmotion on order ideals of the pair. In other words, we have a commutative
diagram:

J(P) —= J(Q)

lI‘OW lrow

J(P) —— J(Q)

Although Theorem 2.7 considers three minuscule doppelgéngers pairs, the only hard part comes
from the case of the rectangle and trapezoid. In particular, we have the following:

Proposition 2.8. Theorem 2.7 is true for (P, Q) € {(Rap, Tu.a+tb), (OG(6,12), H3), (Q?", I5(2n))}
for all n, and all a,b < 8.

Proof. The cases (Rqp, Tg,q+p) for a,b < 8 and (OG(6,12), H3) are checked by computer. For
the last case, note that each poset only has 2 rowmotion orbits, one of size 2n — 2 and the other
of size 2. It’s easy to see that for I € J(OG(6,12)) in orbit of size 2, p(I) is also in orbit of size
2, hence rowmotion commutes with ¢ for such I. For any ideal I in the other rowmotion orbit
of J(OG(6,12)), I consists of all elements of J(OG(6,12)) of rank < m for some m. In this
case, it can be seen that ¢(I) is the set of elements of J(Hs) of rank < m for some m. Observe
that for a graded poset P with all maximal elements of P having rank m + 1, and the ideal
I C P consisting of all elements < m, the minimal elements of P \ I are the elements of rank
m + 1 thus row(7) is either the ideal consisting of all elements of a poset P of rank < m + 1 or
the empty ideal. Since OG(6,12) and Hs both have the same maximal rank, we conclude that
¢ commutes with rowmotion on (OG(6,12), H3) O
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3. K-JDT EQUIVALENCE OF SHIFTED AND STANDARD TABLEAUX

The connection between the bijection of [HPPW18] and rowmotion is most apparent in their
use of K-jdt slides. In this section, we will introduce some invariants of K-jdt and use these
invariants to prove Theorem 2.7 through considering rowmotion and ¢ is terms of K-jdt slides.
Throughout this section tableaux are assumed to be strictly increasing.

3.1. K-jdt equivalence for tableaux of type A and B. While the swaps involved in the
bijection ¢ of [HPPW18| were performed between two integers, we could just as easily perform
swap, ;, where we perform the swap with a set to a dummy variable “e”. A K-jdt slide is then
the process of performing the swaps

... SWap, 9 0 SWap, 1 0 SWap,

for some tableaux where boxes are labeled either with nonnegative integers or with dots. We
will be concerned with K-jdt on tableaux in two partially ordered sets. The first is tableaux in
N? with order (a,b) < (¢,d) when a < ¢,b < d. We will call a non-skew tableaux on this set
a standard tableauz. A standard tableaux T’s shape may be represented as a partition A, with
(4,7) € T if and only if A\; > i. A tableaux of skew or non-skew shape on this set we will call a
tableaus of type A. The second is tableaux in {(a,b) € N2|a < b} with order (a,b) < (c,d) when
a < c¢,b<d. We will call a non-skew tableaux on this set a shifted tableaux. A shifted tableaux
T’s shape may be represented as partitions A with (¢, j) € T if and only if \; > i—j. A tableaux
of skew or non-skew shape on this set we will call a tableauz of type B.

Two tableaux T,T" of type A or B are considered K-jdt equivalent if T' can be reached from 7"
by a series of K-jdt slides on type A or B respectively. In particular, for a shifted tableaux T'
of shape A = (n,n —2,n —4...n—2r), o~ Y(T) is K-jdt equivalent to T since ¢ can be written
as a the composition of K-jdt slides. A useful consequence of the order that we perform the
swaps, is that if we restrict two K-jdt equivalent tableaux T, 7" to the same interval [a,b] (i.e.
remove all boxes from T and 7" that are not in the interval [a,b]), then the same K-jdt slides
which change T into T" restricted to the swaps within the interval [a, b] will change T'|f, ) into
T"|{a,)- Specifically,

Lemma 3.1 (Lemma 3.3 [BS16]). If T and T' are K-jdt equivalent, then T,y and T'|, ) are
K-jdt equivalent.

In [BS16], Buch and Samuel show K-jdt equivalence for type A and type B tableaux can be
described by K-Knuth and weak K-Knuth equivalent relations of reading words respectively.

Definition 3.2. The row reading word of a tableau T of type A or B is the reading word
obtained by reading the rows of T from smallest element in the row to largest, starting with the
largest row (under the increasing relations on boxes in the same column).

Example 3.3.
> has row reading word 456245123
4
2
6 has row reading word 634512346
31415
1]2]3]4]6]

Theorem 3.4 (Theorem 6.2 [BS16|). Tableauz T, T’ of type A are K-jdt equivalent if and only if
their row words are K-Knuth equivalent, where K-Knuth equivalence is the symmetric transitive
closure of the following basic equivalences:
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o uaav = uav for integers a and words u,v

(e]

uabav = ubabv for integers a,b and words u, v

o uabcv = uacbv for integers b < a < ¢ and words u,v

(e]

uabcv = ubacv for integers a < ¢ < b and words u,v

Theorem 3.5 (Theorem 7.8 [BS16|). Tableaux T,T' of type B are K-jdt equivalent if and
only if their row words are weakly K-Knuth equivalent, where weak K-Knuth equivalence is
the symmetric transitive closure of the basic equivalences of K-Knuth equivalence and the basic
equivalence

o abv = bav for integers a,b and word v.

The reader may notice weak K-Knuth and K-Knuth equivalence are similar and believe that
K-jdt eqiuvalences of type A and type B are related. This is indeed true, though perhaps to less
of an extent than one might believe. For a tableaux T of type B, we may construct a tableaux
of type A by reflecting B across the diagonal. Concretely, we define 72 to be the tableaux of
type A where the entry in the (4, j) box of T2 is the entry in the (4,5) box of T if i < j and the
entry in the box of (j,7) in T' otherwise.

Proposition 3.6 (Proposition 7.1 [BS16]). If T and T" are K-jdt equivalent tableauz of type B,
then T? and T" are K-jdt equivalent tableauz of type A.

3.2. Hecke permutations. While weak K-Knuth and K-Knuth equivlance of row reading
words completely describe K-jdt equivalence, these equivalences can be difficult to work with.
Buch and Samuel [BS16] introduce a simpler yet cruder invariant of K-jdt on tableaux of type
A and use this invariant to prove minimal tableaux are unique rectification targets (the reader
is not expected to know what minimal tableaux or unique rectification targets are. The authors
have not dove into unique rectification although an interesting project might be to see if the
techniques we use in the next section would be useful for classifying some unique rectification
targets). This invariant is the Hecke permutation. The Hecke product of a permutation v and a
simple transposition s; = (i,7 + 1) is denoted u - s with

R if w(i) > u(i+1)
o Nusy i u(i) < u(i41)

Definition 3.7 (|BS16]). The Hecke permutation of a tableaux 7' with reading word u =
aiasgas . . .ay, is the Hecke product

So - (Say - (Sa_y - (527 51)...))

which is a permutation on max(ai,as...ax) + 1 elements. We will denote this permutation by
w(T) or w(u).

The equivalence relation between tableaux’s row reading words based on their Hecke permuta-
tions is a weakening of the K-Knuth equivalence relations such that if v and v’ are K-Knuth
equivalent, then w(u) = w(u’) (Buch and Samuel don’t cite anybody for this... should find who
originally did it/what to cite). In particular this implies

Corollary 3.8. (Corollary 6.5 [BS16|) The Hecke permutation of a tableauz of type A is invari-
ant under K-jdt slides.
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3.3. Almost minimal tableaux and the minimal ideal of a tableaux. In section 2, we
defined a bijection between plane partitions of height m and increasing tableaux of a certain
height for ranked posets where all maximal chains have the same length. Given this bijection,
it is natural to consider an order ideal as a specific case of an increasing tableaux.

Definition 3.9. An almost minimal tableaux is an increasing tableaux T such that for any
square s, T[s] — rank(s) € {0,1}. Equivalently, T — rank is an order ideal.

There is a clear bijection between almost minimal tableaux and order ideals from adding and
subtracting rank. Although our proof of Theorem 2.7 will only involve almost minimal tableaux,
our main theorem in this subsection will be more general and we will need more general notation:

Definition 3.10. Given an increasing tableaux 7' of shape A/, its minimal ideal is the set of
squares s such that T'[s] — rank(s) = 0. This set is downward closed and thus an order ideal of
A/p. For convenience will denote the minimal ideal of T by Iy and the minimal ideal of T" by
I}

Our results in this section will come from analyzing the Hecke permutation of standard tableaux.
We will specifically be interested in finding where elements ¢ occur in the Hecke permutation
formed from the row reading word of a tableaux.

Proposition 3.11. Let T be a tableauz and T, be the tableaus T without the first r rows, then
for any i, w(T)~1 (i) > w(T,) (i) — r.

Proof. Let m = w(T,)~!(i). Each time we compute the Hecke product of w with a transposition
si, only the i-th and (i + 1)-th entries of w is changed. Since each row of T is increasing, m
decreases by at most one, namely, when we compute Hecke product with s,,_1 if m — 1 is in the
rth row. Thus

W@ 1) (0) 2 w(T) ™ (6) - 1.

The proposition now follows by induction. O
In the following lemma row(i) denotes the ith row of the tableaux 7. This is the only place
where we use row in such a way. Elsewhere, row refers to the action of rowmotion.
Lemma 3.12. Let Iy be minimal ideal of a standard (non-skew, non-shifted) tableaux T .

i) If |row(i) N Iy| < [row(i — 1) N Iy|, then w(T)~1(i) = |row(i) N Io| + 1

i) If [row(i) N Io| = |row(i — 1) N Iy|, then w(T)~1(i) > |row(i) N Iy| + 1
Proof. For each row r with |row(r) N Iy| > 0, the first element in the row is the first appearance

of r in the row reading word of T'. Using this, it is easy to check that the |row(r) N Iy| part of
the reading word in w(7,_1) simply moves the element r. This yields

(1) w(T,_1) " (r) = Jrow(r) N Io| + -

and for any integer a, if

(2) r < w(T,) Ya) < Jrow(r) N Io| + 7,
then

(3) w(T,_1) " (a) = |row(r) N Iy| — 1.

(i) We will prove by induction that for all j <74
w(Ty) (@) = |row(i) N Io| + j.
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This will be enough to prove (i). The base case follows from equation 1. For the inductive step,
suppose for j < i
w(Tj)_l(i) = |row(i) N Iy| + j.
Notice since I is an ideal,
j—1l<|row(@)NIy|+j<|row(i—1)NIl+j—1<|row(j—1)NI|+j—1

Thus our argument around equations 2 and 3 finish our inductive step.
(ii)By equation 1,

w(T;—1) 71 (3) = |row(i) N Iy| + i.
Also by equation 1, for all j < i,

w(Tiz2) ™' (j) < w(Tiz) 7' (D).
Thus
w(Ti2) ™' (4) > w(Tiz) ™' (3),
and by proposition 3.11, we conclude
w(T) L) > |row(i) N Iy| + 2
0

Theorem 3.13. Let T and T’ be K-jdt equivalent standard (non-skew, non-shifted) tableaux
with minimal ideals Iy and I). Then Iy = I.

Proof. Suppose that Iy # I). Let r be the first row where [y and I, differ, then Lemma 3.12
implies that

wH(T)(r) # w™H(T")(r).

Therefore the Hecke permutations of T and 7" differ. Since by corollary 3.8, Hecke permutations
are invariant under k-jdt slides for tableaux of type A, T and T are not k-jdt equivalent. [

Since almost minimal tableaux 1" are completely described by their shape and their set of squares
such that T'— rank = 0, we conclude:

Corollary 3.14. For a straight tableauz of shape X, all almost-minimal tableauzx of shape \ are
in separate K-Knuth equivalence classes.

To extend this result to result to shifted tableaux, we will use the connection K-jdt of tableaux
T of type B and K-jdt of tableaux T? of type A. Notice in a standard tableaux, rank(i, j) =
rank(j,i). It follows for a shifted (non-skew) tableaux T, for any square s = (i,j) € T2,
T?[s] — rank(s) = T?[(j,4)] — rank(j,i). Thus T is almost minimal if and only if T2 is almost
minimal. Our above corollary combined with this observation and proposition 3.6 shows that:

Corollary 3.15. For a shifted tableauz of shape A, all almost-minimal tableauz of shape A\ are
in separate weak K-Knuth equivalence classes.

Our last ingredient we will need to prove that the bijection of [HPPW18] commutes with row-
motion on ordered ideals is the following corollary:

Corollary 3.16. Let T,T' be two almost minimal tableaux of the same shape of type A or B
with mazimal rank r. Then T|[1ﬂ 1s k-jdt equivalent to T/|[1,r} if and only if T =T
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Proof. (<) If T =T, then Ty ;) = T"|[1 ) by lemma 3.1.

(=) Suppose Ty, is k-jdt equivalent to T7"|f; . For type B, by proposition 3.6, (T\[17r])2 =
T2|[1,T] is k-jdt equivalent to (T’|[1ﬂ)2 = T’2|[1,,ﬂ]. Define tableaux S, S’ of type A, where S =
T,8" =T for T, T of type A and S = T2,5" = T' for T, T’ of type B. Let Iy be the minimal
ideal of S and Ij) the minimal ideal of S’. Notice that Iy, I are also the minimal ideals of
S|, and S|y 4, respectively. Then Theorem 3.13 implies that I = Ij. Since almost minimal
tableaux are completely determined by their shape and their ideal, S = S’ (they have the same
shape and the same ideal), and therefore T = T". O

3.4. Rowmotion and ¢ in terms of K-jdt. We may consider the bijection ¢ of [HPPW18]
from section 2.2 as a bijection between increasing tableaux of the rectangle and trapezoid shape.
Then ¢ descends to a bijection between almost minimal tableaux of the rectangle and trapezoid.
Because ¢ is composed of K-jdt

Lemma 3.17. For a rectangle shape A, all almost minimal tableaux of shape A are in separate
weak K-Knuth equivalence classes. ¢ acting on order ideals can be described as matching each
almost minimal tableauz of the rectangle with its unique weak K-Knuth equivalent almost minimal
tableaux of the trapezoid.

To progress to proving Theorem 2.7, we would now like to consider how rowmotion affects K-jdt
equivalence. To do this we will describe rowmotion as a composition of K-jdt slides. This is
done in [DPS17]| under the name K-promotion.

Definition 3.18. For a straight or shifted tableaux 7" with all maximal elements of the same
rank r (for rectangle and trapezoid, r = a 4+ b), the K-promotion of T is defined as follows.

1) Turn the tableau into a skew tableau by replacing the minimal entry 1 by a dot e then
subtract 1 from all other entries.

2) Turn the skew tableau into a straight shape by performing K-rectification, i.e. send

T — (Hleswap%i) .

3) Adding element r + 1 to the resulting tableau, so that the shape of tableau is preserved.

In the case where there does not exist a 1 in the tableaux, K-promotion simply decrements each
entry by 1.

Lemma 3.19 (theorem 3.8 in [DSV19]| does this up to showing K-bender knuth swaps corre-
spond to inverse rowmotion, perhaps this is in the literature? Otherwise we will write out that
step/that it follows closely from definitions). K-promotion on almost minimal tableauz is equal
to the inverse of rowmotion on the corresponding order ideals.

Example 3.20

—

Inverse rowmotion as K-promotion).

4156 ] removel | 3141 5H K-rectify 415 ]| | add maximum | 4 | 5
5 314 31415
3 e 1|2 112
6 add rank 11111| Rowmotion | 1 | 1 | 1 | subtract rank
5) 1 3
2 00 001 1|2
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Tow
- T Nt
[
[
R > _ >
g remove . g add v
minimal k-jdt mazimal
— elements, — ] elements |
subtract 1
| e || ||
/ / / !
r . I
rowil

FIGURE 4. Commutative diagram for proof of Theorem 2.7. The red squiggles
indicate weak K-Knuth equivalence. Note that where the large dot(s) ends up
in the second to rightmost trapezoid will depend of the order ideal ideals.

Using this definition of rowmotion, we will prove Theorem 2.7 by showing that performing the
above process preserves weak K-Knuth equivalence of order ideals of the rectangle and trapezoid
i.e. if I is weakly K-Knuth equivalent to J, then row~!(I) is weakly K-Knuth equivalent to
row 1(J). By lemma 3.17 this implies that rowmotion inverse commutes with ¢ and thus
rowmotion commutes with .

Proof of Theorem 2.7 in the case of (Rap,Tup). Let T and T” be almost minimal tableaux of
the rectangle and trapezoid respectively which are K-jdt equivalent (by Lemma 3.17 this is
equivalent to ¢(T) = T"). Let Ty, Ts, T3 be the results of performing steps 1, 1 and 2 and 1,2
and 3 of k-promotion respectively on T and define T, Ty, T4 similarly for 7" (thus T3 = row™1(T)
and T4 = row™1(T")). By lemma 3.1, T|2mazrank+1 and T’|2mazrank+1 are K-jdt equivalent.
Thus T and 7] are K-jdt equivalent. Performing K-jdt preserves K-jdt equivalence, thus T and
Ty are K-jdt equivalent. By Lemma 3.17, T3 is K-jdt equivalent to an almost minimal tableaux
T*. By lemma 3.1, T*|;1 jmazrank] 18 K-jdt equivalent to Ty = T3|( mazrank]- By corollary 3.16,
T* =Tj. Thus
row N(T) =Ty "2 7% = T = row™\(T").

Finally Lemma 3.17 implies that ¢(row=(T)) = row™(T") = row=(xo(T)). O

The above proof completes the hard case of Theorem 2.7 with Proposition 2.8 covering the other
cases.
4. TOGGLE SYMMETRY AND HOMOMESY OF DOWN-DEGREE

In this section, we will prove our second result about rowmotion on the trapezoid poset: that it
is homomesic with respect to the down-degree statistic for the trapezoid T3, and Ty,,. We first
provide the relevant definitions.

Definition 4.1 ([PR15]). A statistic f on a set S is said to be homomesic with respect to an
invertible operator ® : S — S if for all ®-orbits O,

1 1
#O%JC(T)Z#SZf(T)-

TeS
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Propp and Roby had rowmotion on the rectangle in mind when they formulated the term
“homomesy.” We will be concerned with when down-degree exhibits homomesy with respect
to rowmotion for the rectangle and trapezoid. To approach this, we will focus on toggles as
introduced by [CEDF95|. We define toggles as in [Hop17]. For an ideal I and an antichain A,
we denote

H(I)::{l if A¢ I and AU is an ideal

0 otherwise

_ 1 if Ae ] and I\ A is an ideal
Ty () :=
A (1) {0 otherwise

Tal) : = T () = Ty (I)

We commonly use p to denote a single element antichain associated to the element p of the
poset. We call a distribution u on ideals in a poset toggle-symmetric if for any fixed p,

Efw; Tp(I)] = 0.

Some clear examples of toggle-symmetric distributions are the uniform distribution on all ideals
or a uniform distribution on ideals contained in a single rowmotion orbit. The distribution de-
fined by choosing a plane partition J,, uniformly at random, and then picking an ideal in J,,
uniformly at random is a toggle symmetric distribution. The distribution defined by choosing
a plane partition J,, uniformly at random from a rowmotion orbit, and then picking an ideal in
Jm uniformly at random is also toggle-symmetric.

In slightly greater generality, we call a distribution g on ideals in a poset toggle on anitchains-
symmetric if for any fixed antichain A,

Elw; Ta(I)] = 0.

The uniform distribution on all ideals and a uniform distribution on ideals contained in a single
rowmotion orbit are both toggle on anitchains-symmetric.

Remark 4.2. The distribution defined by choosing a plane partition .J,;, uniformly at random,
and then picking an ideal in J,,, uniformly at random is toggle on anitchains-symmetric. is not
toggle on anitchains-symmetric (has sam proved this somewhere?).

In [CHHM17|, Chan, Haddadan, Hopkins, and Moci show for any toggle-symmetric distribution
poon Rep, E[u;ddeg] = E[uniyg, ,);ddeg]. In particular, they showed that the down-degree
statistic is homomesic with respect to the action of rowmotion on the set of order ideals of the
rectangle. To do this, they use the “rook” approach.

4.1. The rook approach. We will be concerned with rook arrangements on the trapezoid. For
readers interested in rook arrangements on other shapes, see [Hopl7|. Before we proceed we
need a way of of labeling the elements of our posets. For the trapezoid, we use the Cartesian
coordinates with the minimal element being (0,0) and the maximal elements having coordinates
(i,a+b—1—2i) for 0 <1i < a, see 5 for an example. For notational convenience, (i, A;) will
refer to the element (i,a +b— 1 — 2i).

Definition 4.3. A rook on the (4, j) square of a trapezoid Ty is a linear equation

RZ’J : RJ(T“’I’) — R

a—2

Rij(a-I)=a- (Z (6 Ty (D + e THD) + C{_(i’,)\i/),(i’+1,/\i/+1)}T{_(i’,)\i/),(i’+1,)\i/+1)}(I)>

P =0
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where

1 ifi >candi +j5 >i1+4+j

c{,.,): —1 ifd <iandi +7 <i+jand j >0
0 otherwise

1 ifi <iandi +j5 <i+j

cj. =¢—1 ifi>diand i +j >i+jand j/ >0
0 otherwise

n )1 ifid>iand i +a+b—-2-2i">i+
e 2@ +10 1) 0 otherwise .

For each rook placed on the trapezoid, it affects an element p of our poset ¢, + c]f times. We say
that the rook attacks a square p if ¢, + c;r # 0. As we see in Figure 5, a rook on the trapezoid
will attack the squares that lie in the same row and column, with the exception that once we
reach the leftmost or upmost part of the row/column, the rook starts attacking squares (or pairs
of squares) that lie on the diagonal.

Our definition of a rook satisfy the following nice property:

Proposition 4.4 ([Hopl7|). For any order ideal I € J(T,), we have R; j(I) = 1.

FIGURE 5. Rook Arrangements
In the below figure we write a number in a V-shaped nook with element p of our poset above it
to denote to represent C;?_ and a number in a A-shaped nook with an element of P below it to

denote ¢, . A number in a V-shaped nook at the top of our trapezoid refers to c; were A is the
antichain of the two elements bordering the nook. The blue line shows the squares the rook
attacks.

Poset labeling “

For the case when a = b, Hopkins shows that all toggle-symmetric distributions have the same
expected down-degree using the rook approach.
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Theorem 4.5 ([Hop17], Theorem 4.2). For any toggle-symmetric distribution p on the trapezoid
Ta,a;
ab

a+b

E[u; ddeg| = E[uni (t, ,); ddeg] =
For a general trapezoid and a toggle-symmetric distribution u, it is not necessarily true that we
E[w; ddeg] = Eluni y(r, ,); ddeg] (see [Hop17]). However, we can use the rook approach to to find
the difference between E[u; ddeg] and E[uni j(r, ,); ddeg] = ab/(a + b):

Lemma 4.6. For any toggle-symmetric distribution p on the trapezoid T, y,

a a—2
ab a—b ) ) _
Bl ddeg] = — =+ — (Z(a — 1= DE[ Tl = D iEly; ’f(i,Ai),(m,Am)])

=0 =0

Proof. Consider the linear map ¢ : R/(Tab) 5 R

a+b—1
¢=(2a—a*)Rpp+(b-a ZR(0])+bZRZO +a Y Ry,
j=a+1
We will compute E[y; ¢] in two ways. On one hand, for any ideal I,
a a— a+b—1
o(I) = (2a — a®)Roo)(I) + (b—a) > Roy(I) +bY _ RioI)+a > Ry (I) =ab
j i= j=a+1

thus Elu; @] = ab.

On the other hand, we see that the rook arrangement which ¢ defines attacks every element of
Top a+b times except for elements of form (¢,0), which are attacked (a+b) —(a—b)-(a —1—1)
times. Thus for some constants c,,

a

p=(a+b)-ddeg—) (a—b)(a—1—i )+Z Tin) mmecpT

i=0
Over a toggle-symmetric distribution u, E[u; Zp ¢pTp] = 0. Using linearity of expectatlon

a

a—2
[m > CpT] (a+b)-Elps; ddeg] =) _(a—b)(a—1-i)E [u; T(;fo)} +§(a—b)E [u; Tiro (i1, Am)}

=0

Combining our two equations for E[u, ] yields the desired result. O

A way to evaluate the error term, that is:

a a—2
a—>b ) . _
a+b (Z(a — 1= DB Tl = ;ZE[“; T(i,xi>,(i+1,xi+1)]>

=0

would yield many results about the trapezoid. Down-degree is homomesic with respect to an
invertible operator @, if for any orbit O of ®, and the error term for the distribution uniep is 0.
The error term is 0 for the distribution defined by choosing a standard shifted Young Tableaux
on Tg ; uniformly at random and then choosing an ideal consisting of all numbers < m for some
m if and only if a conjecture of Reiner, Tenner and Yong ([RTY18|, conjecture 2.24) is true. The
error term is 0 for the distribution defined by choosing a plane partition of height m uniformly
at random and then choosing one of the m ideals from the plane partition uniformly at random
if and only if a conjecture of Hopkins ([Hop19] Conjecture 3.10) is true.

In many general cases, we did not find a way to evaluate this error term. For rowmotion orbits,
there is a way to trace out rowmotion orbits and consider a finite number of cases to show
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FIGURE 6. Rook arrangement defined by ¢ for T} and error term scaled down
by (a+b)/(a — b)

E[unio;ddeg] = ab/(a+b) by locally (i.e. over some fixed number of rowmotion orbits) showing
the error term is 0.

Theorem 4.7. The action of rowmotion on the trapezoid exhibits For a rowmotion orbit O on
TS,n or T4,n;

ab
a+b

E[unip;ddeg] =

For T3, there were 3 cases we needed to consider and for T}, there were 9 cases. We will not
include this casework since there is a more powerful theorem we can show for T3, and T} ,:

Theorem 4.8. For any toggle on anitchains-symmetric distribution p on 13, and Ty,

ab
E[u; ddeg| = PRI

In [Hop19], Hopkins proves a rowmotion orbit of order ideals is toggle on antichains-symmetric.
Thus our above theorem implies theorem 4.7.

4.2. Proof of Theorem 4.8. Although Theorem 4.8 is only concerned with the T3, and T},
cases, we will state many of our lemmas more generally in hopes that this may help future
readers can generalize our theorem.

Lemma 4.9. For any toggle-symmetric distribution p on the trapezoid T,

a—1
D (a—1-DE[m Tl ~ > ElwTi,l=0
o i+j<a—1

>0
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Proof. Define

a—1—1t
i 3 BT
j=1
= Pr[u; I has a maximal element in {(7,7)|i + j =n,j > 0}]

= Pr[u; (n,0) is a maximal element in I]
Importantly, notice that
an, + by, = Pr[u; I has a maximal element in {(7,j)]i + j = n}]
= Pr[u; I has a minimal element in {(i,j)|i +j = n + 1|5 > 0}]
= Pr[u; I has a maximal element in {(7,j)|i + j =n+ 1|7 > 0}] [by toggle-symmetry]
= Qn+1

where I¢ is the complement of the ideal I. The second to last equality follows from if an ideal
is cut out with a A-shaped nook on a non-maximal element, then it must be followed by a
V-shaped nook and vice versa. We now compute

a—1 a—1 a

D (a—1-DEmTol— > ElwTi,l=> (a=1-0b-) a

i=0 i+j.§((1]—1 i=0 i=1
7>

a—1 a
= <Z(a —1—id)(aj41 — ai)) - Zai
i=0 {

:Zai—Zai =0
i=1 =1

In particular, the above lemma says that a toggle-symmetric distribution yu satisfies E[u; ddeg] =
ab/(a + b) if and only if our error term form lemma 4.6 is equal to

a—1
Z(a —-1- Z)E[Mvﬁ;())] - Z E[/‘Q 72;3)] = 0.
i=0 i+j<a—1

7>0

Thus we have

Proposition 4.10. A toggle-symmetric distribution u satisfies E[u; ddeg] = ab/(a + b) if and
only if

a—2
> Bl Tl =D Bl T )
1=0

i+j<a—1
>0

To make progress towards proving this equality, we will first convert the LHS into a sum of
toggles on antichains. Then we will try to use the toggle on antichains-symmetry property to
move our toggles on antichains in the RHS from the maximal elements to toggles on antichains
near the minimal elements of the trapezoid.

Lemma 4.11. For a trapezoid Ty, there is an equality of functions on J(Tjp):

+ nag—
>, Tin=2 > (=1)"T4
(ij)li-+i<a—1 n>2 \A=n
3>0 Ac{(i,j)]i+j<a+1}
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Proof. Consider an ideal in the restricted shape S = T,, N {(4,7)[i + 7 < a,(i,5) # (a — 1,1)},
with the same < relations as in T, . It is clear that the functions on J(7,)

Z 7. (4,5) Z Z (=1)"Ty

(4,5)|i+7<a—1 n>2 |Al=n
Jj>0 Ac{(i,9)]i+j<a+1}

may be viewed as functions on restrictions of ideals in J(T,p) to J(S). Any ideal in J(S)

corresponds to the lattice path consisting of up-left and down-left steps starting at the rightmost

corner of our shape and ending with an up-left step at one of a — 1 of the leftmost vertices

of our shape, which cuts out the ideal i.e. the set of elements below our path is the ideal.

> (6,j)li+j<a—2 T(;tj) counts the number of A-shaped nooks with both edges on a square (i, 7)
>0

with ZJ+ j < a-—2and j > 0 of such a lattice path. For each of these A shaped nooks, there
must be a V-shaped nook after and before it. Conversely given any two V-shaped nooks, there
is a there must be a A-shaped nook inbetween them, and the edges of this nook must be on a
square (i,7) with (7,7) with i+ j < a —2 and j > 0. Thus

Y TI=1v Y T,

pes (i,4)|i+j<a—1
7>0
and
L+ )lii<a Tof s
x 2 A N Tty He)
n>2 n>2 n
Ae{(i ,J)IZ+J<a+1}
L+ G livi<a—1 Ty s 1+ iti<a— T
_ ( ( J)|j>JO_ (J)) +Z(_1)n( (i |]+>JO< 1 )
1 n

=1+ ) Tis)

(4,9)|i+j<a—1
3>0

Lemma 4.12. For a trapezoid T,y, and a toggle on antichains-symmetric distribution p,

ZE (z)\)(z+1)\z+1 ZZEM’ (ji—j+1), ZEM’ (11)

=1 j<i

Proof. Call an antichain A with two elements adjacent if A = {(4, ), (', j')} with i+j = '+5'+1.
Define the subsets of adjacent antichains

= {A={(0,9), (0,3} € Tupli+7 =7 +5 +1,5 # N},
To={A={(i,5), (I, J)} ETupli+j=1i+j+1,0<4j}
S:=85tns".

To get the first equality, we consider the following equation on ideals

=X Ti-> T

AeSt AeS—

a—1
= Z Ta+ Z Tz Ai)s(i4+1, 0 41) Z Z s T(;,ifjJrl),(i,O)

AeS =1 j<i
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We compute E[y; f] in two ways. First notice that if you can toggle in an antichain in ST, then
you can toggle out an antichain in S, thus for all ideals I, f(I) =0 and so E[u; f] = 0. Next

E ZEILL77?4 +ZE'U7 (3,Mi) 1+1Az+1 ZZEM’ (]1 J+1) (ZO)]

AeS 1=0 i=1 j<i
-2
_ZEM7 (4,2),(i+1 )‘z+l ZZEM’Tiz —j+1) (1,0)]
1=0 =1 j<1

We get the second equality from toggle on antichains-symmetry:

a—2 a-l
; Elw; T 1)l = Z Z Ep; T(?,z‘—jﬂ),(i,())]

i=1 j<i

_ZZEM7 (j,i—7+1),(4,0 )]

=1 j<1
(]

Proof of Theorem 4.8. Case 1: T3,. Between proposition 4.10 and lemma 4.12, all that re-
mains, is to show

Bl Tio.)] = Bl T a0
Define S to be the set of anitchains

S = {A S T3,n|A = {(27j)7 (Lj + 2)(07.7 +4)} or A= {(27j)> (Lj + 2)(07j + 5)} and j < /\2}

Then define a function of ideals,

Fi=Y Ta—=Tgn + Tanes + Tono2 + Tenos + T + Tia). @)
AeS

We compute E[u; f] in two ways. First we prove that for any ideal I, f(I) = 0. This can be
checked for any ideal with all maximal elements in {(7,j)|i + j > A2}. For smaller j, we can
check by hand that for the restriction of the ideal to g, N {(¢,7)|2i 4+ j < 5} is zero, i.e:

Teo.12.05 + Teo.w2.ea + Toz + Tenes + Twowa + Tunes + Tuoes) =0
For other ideals, notice that
T+ J+2)(OJ+4)(I)—1forj>11fand only if 7,
Thus f(I) = 0. On the other hand, from toggle on antichains symmetry,
Bl 1= Bl To )] = Bl Ty 200

Thus we conclude the theorem for the T3,, case.

2 j-1).(1j+1)04+3) L) =1

Case 2: T, ,. We will do this in three computations:

1) Let S be the set of 4 element antichains of T} ,, of the form (3, j), (2, j+2), (3, j+4), (4, j+6+m)
for 0 < m < 2 or of the form (3, 5), (2,74+2),(3,7+5),(4,j+6+m) for 0 <m < land j < \y—1.
Let S’ be the set of color coded antichains in figure 7.

Consider the function of ideals
_ + — — -
F=2 Tat+ > Ta+ T 60~ Tanos ~ Loz ~ Ta.oa
AesS Aes’

We compute E[u; f] in two ways. First I claim for any ideal I, f(I) = 0. This can be checked for
any ideal with maximal elements (i,7) for i + j > 8 by noting if we can toggle in an antichain
in S or S/, then we can toggle our an antichain in S or S’. Moreover, in any ideal we can only
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FIGURE 7. The antichains of S” coded by color

toggle in at most 1 antichain in S or S’ and in any ideal we can toggle out at most 1 antichain
from S or S’. We can check for any ideal with a maximal element with i+ j < 8, that these also
satisfy f(I) = 0. On the other hand, from toggle on antichains symmetry,

Elps; f] = Bl T3 5 5.00) — B T11), 05 T L2005 T Ta2),0.0)

2)Let S be the set of three element antichains of the form (i1, j1), (i2, j2), (i3, j3) where iy > iy >
i3, 11+ j1+2 = ia+j2, and do+jo+2 < iz+j3 < ia+jo+3 with i1+71 < 3+A3 and (42, j2) # (2, A2).
Let S’ be the set of 4 element antichains of the form (3, 7), (2,7 + 2), (1,5 +4), (0,5 + 6). Then
define a function f on ideals

_ + + — — -
F=2_Ta= 2 Tat T 00 o9 T .o Tomas0m 22 | 22 Tan@ire-e = Tan.mits
AeS AeS’ =1 \0<z<s

We compute E[u; f] in two ways. First, I claim for any ideal I, f(I) = 0. For ideals which
contain maximal elements (4, j) for i + j > A3 + 2, this can be checked since there are few since
there are few possible nonzero terms in f. For ideals which contain multiple maximal elements
(i,7) with i 4+ j < 8, this can also be checked since there are few possible nonzero terms in f.
For other ideals I, by chasing V and A nooks, we see you can toggle in an element of S’ if and
only if you can toggle out an element of S’, and that the number of elements of S which can
by toggled in equals the number of elements of S which can be toggled out. We conclude that
f(I) =0. On the other hand, from toggle on antichains symmetry,

2
e . + - - -
Bl f1=E {1 T T Taan.@re) T T@1),1.3),05 — Z Z Tii1) wito—o) T L1, (0,i+3—2)

i=1 \0<z<i
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3) By proposition 4.10, lemma 4.12 and adding our calculations in (1) and (2), showing

2
Ta1,05 T L2051t 12,04 T N Ty wito—o) T L1, (@it3—2)

i=1 \0<z<i

o), 13)(05)+ZZE Giimegt1),(00)] Z Z (-,

=1 j<i k>2
Ae{(z ,])|l+]<a+1}
will imply our theorem for 7% ,. This can be checked for any ideal by restricting the ideal to
Turn N{(, )i+ j < 8} and checking all ideals in this shape. O

Conjecture 4.13 ([Hopl19, Conjecture 4. 30]) There is a size-preserving bijection ¢ between
the rowmotion orbits of PPY(R,p) and PPY(T, 44p). Moreover, for all rowmotion orbits O for

PPK(Ra’b), we have:
Z ddegT = Z ddegT.
TeO Tep(O)

Theorem 2.7 gives a candidate for the bijection ¢ for the case £ = 1. Together with homomesy
of rowmotion orbits of the trapezoid, this approach would be enough to prove the conjecture for
the case £ = 1.
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