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Abstract. An arborescence of a directed graph Γ is a spanning tree directed toward a particular vertex v.
The arborescences of a graph rooted at a particular vertex may be encoded as a polynomial Av(Γ) represent-
ing the sum of the weights of all such arborescences. The arborescences of a graph and the arborescences of
a covering graph Γ̃ are closely related. Using voltage graphs as a means to construct arbitrary regular covers,
we derive a novel explicit formula for the ratio of Av(Γ) to the sum of arborescences in the lift Aṽ(Γ̃) in terms
of the determinant of Chaiken’s voltage Laplacian matrix, a generalization of the Laplacian matrix. We also
provide an alternative determinantal formula to account for the non-regular covers. Chaiken’s results on the
relationship between the voltage Laplacian and vector fields on Γ are reviewed, and we provide a new proof
of Chaiken’s results via a deletion-contraction argument, resulting in an original proof of the Matrix Tree
Theorem. Special attention is given to the case of 2-fold covers: we exhibit a non-explicit bijection between
classes of arborescences of the cover Γ̃ and pairs (T, g) of arborescences T of Γ and negative vector fields g,
as well a provide a second proof of the ratio formula in this special case.

1. Introduction

In this report, we examine the relationship between arborescences of a graph and the arborescences of a
covering graph. An arborescence rooted at a vertex v is a spanning tree of a directed graph that is directed
towards v. We say that such an arborescence is “rooted” at v. Using the Matrix Tree Theorem [FS99,
Theorem 5.6.8], we can compute the sum of the weights of all arborescences of Γ rooted at a given vertex as
a minor of the Laplacian matrix of Γ. We denote this weighted sum Av(Γ), where v is the vertex at which
the arborescences are rooted.

One natural question to ask is how completely do the arborescences of a graph Γ characterize the arbores-
cences of a covering graph Γ̃. For example, every arborescence of Γ lifts to a partial arborescence of Γ̃, and
this lift is unique if the root of the arborescence in Γ̃ is fixed; conversely, every arborescence of Γ̃ descends
to a subgraph of Γ containing an arborescence. Therefore, we ask whether there is a meaningful relationship
between Av(Γ) and Aṽ(Γ̃), where ṽ is a lift of v. We show that the answer to this question is affirmative
when Γ̃ is a regular cover. In this case, Av(Γ) always divides Aṽ(Γ̃), meaning that each arborescence of Γ
corresponds to a set of arborescences of Γ̃. The primary goals of this paper are to derive an explicit formula
for the ratio Aṽ(Γ̃)

Av(Γ) and to examine cases where this ratio is especially computationally nice.

The ratio Aṽ(Γ̃)
Av(Γ) first arose in Galashin and Pylyavskyy’s study of R-systems [GP19]. The R-system is a

discrete dynamical system on a edge-weighted strongly connected simple directed graph Γ = (V,E,wt) whose
state vector X = (Xv)v∈V evolves to its next state X ′ = (X ′v)v∈V according to the following relation:

∑
(u,v)∈E

wt(u, v)Xv

X ′u
= ∑
(v,w)∈E

wt(v,w)Xw

X ′v
(1)

1Harvard University.
2University of Minnesota, Twin Cities.
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This system is homogeneous in both X and X ′, so we consider solutions in projective space. Galashin and
Pylyavskyy determined all solutions X ′ of this equation as a function of X:

Theorem 1.1. [GP19] The system given by equation (1) has solution

X ′v =
Xv

Av(Γ)
.

This solution is unique up to scalar multiplication, yielding a unique solution to the R-system in P∣V ∣.

However, we can see the value of X ′v in equation (1) depends only on the neighborhood of the vertex v.
Thus, in the case of a covering graph Γ̃, we may find two solutions to the R-system: one by applying the
previous theorem directly, and one by treating each vertex of Γ̃ locally like a vertex of Γ, and then applying
the theorem. The two respective solutions are

X ′ṽ =
Xṽ

Aṽ(Γ̃)
and X ′ṽ =

Xṽ

Av(Γ)
.

Therefore, uniqueness of the solution implies that the vectors

( Xṽ

Aṽ(Γ̃)
)
v∈V

and ( Xṽ

Av(Γ)
)
v∈V

are scalar multiples of each other, where ṽ is any lift of v. Equivalently:

Corollary 1.2. When Γ is strongly connected and simple, the ratio Aṽ(Γ̃)
Av(Γ) is independent of the choice of

vertex v and of the choice of lift ṽ.

The existence of this invariance motivates finding an explicit formula for this ratio. Galashin and Pylyavskyy
correctly conjectured the formula for the ratio in the case of 2-fold covers:

Theorem 1.3. Let Γ = (V,E,wt, ν) be an edge-weighted Z/2Z-voltage directed multigraph, and let L (Γ) be
its voltage Laplacian matrix. Then for any vertex v of Γ and any lift ṽ of v in the derived graph Γ̃ of Γ, we
have

Aṽ(Γ̃)
Av(Γ)

= 1

2
detL (Γ)

The original goal of our project was to prove this formula, but we ultimately deduced the formula in the
generality of arbitrary k-fold covering graphs, with extra interpretations in the case of regular covering
graphs. In full generality, this formula is

Theorem 1.4. Let Γ = (V,E,wt) be an edge-weighted multigraph, and let Γ̃ be a k-fold cover of Γ. Let
L (Γ) be the voltage Laplacian of Γ. Then for any vertex v of Γ and any lift ṽ of v in Γ̃ of Γ, we have

Aṽ(Γ̃)
Av(Γ)

= 1

k
det[L (Γ)]Z[E]

In the above formula det[L (Γ)]Z[E] is the determinant of L (Γ) as a Z[E]-linear transformation when the
cover is regular. We can take this determinant by restriction of scalars (see Section 5 for details). In case
of arbitrary covers (including non-regular ones), the matrix [L (Γ)]Z[E] can be determined concretely from
the covering graph (definition 5.6).

The rest of the report will proceed as follows. Section 2 covers the background and conventions necessary
to read this paper. In this section, we also discuss the Laplacian matrix and the Matrix Tree Theorem in
greater detail, and give additional topological background on covering graphs. In particular, we introduce
the voltage graph, a construction that allows us to compactly describe arbitrary regular covering graphs Γ̃
by assigning a group-valued voltage to each edge of Γ. Section 3 reviews some known results relating vector
fields on voltage graphs to the voltage Laplacian. Vector fields are closely related to arborescences, and this
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discussion especially helps to frame the results of the case of 2-fold covers. We provide an original proof of
these results on vector fields, which results in a novel proof of the Matrix Tree Theorem. Section 4 details
our initial results on the ratio formula in the 2-fold case, first by extending Galashin-Pylyavskyy’s invariance
result to arbitrary multigraphs, and then using this invariance to give an inductive proof of the formula in
the 2-fold case. The methods of this section do not generalize to higher covers, so Section 5 derives the in
general case via a linear algebraic approach through the Matrix Tree Theorem. To this end, we prove several
new results about how changing vector space bases affects the values of minors. We conclude with several
open questions.

2. Background

2.1. Arborescences. Let Γ = (V,E,wt) be an edge-weighted directed multigraph with a weight function
on the edges wt ∶ E → R, for some ring R. In the rest of this report, we will usually abbreviate “edge-
weighted” to “weighted” and “directed multigraph” to “graph.” Any instance in which we wish to consider
only directed or only simple graphs will be explicitly noted. We will consider the weights of the edges of G
to be indeterminates, treating the weight wt(e) of an edge e as a variable. Let the set of such variables be
denoted wt(E). We denote the source vertex of an edge e by es and target vertex of e by et. If an edge has
source v and target w, we may write e = (v,w). However, note that when Γ is not necessarily simple, there
may be more than one edge satisfying these properties, so (v,w) may specify multiple edges. We denote the
set of outgoing edges of a vertex v by Es(v), and the set of incoming edges of v by Et(v).

Definition 2.1. An arborescence T of Γ rooted at v ∈ V is a spanning tree directed towards v. That is, for
all vertices w, there exists a directed path from w to v through T . 1 We denote the set of arborescences of Γ
rooted at vertex v by Tv(Γ). The weight of an arborescence wt(T ) is the product of the weights of its edges:

wt(T ) =∏
e∈T

wt(e)

We denote by Av(Γ) the sum of the weights of all arborescences of Γ rooted at v:

Av(Γ) = ∑
T ∈Tv(Γ)

wt(T )

Av(Γ) is either zero or a homogeneous polynomial of degree ∣V ∣ − 1 in the edge weights of G.

2.2. The Laplacian Matrix and the Matrix Tree Theorem. The Matrix Tree Theorem, also known
as Kirchoff’s Theorem, yields a way of computing Av(Γ) through the Laplacian matrix of Γ.

Definition 2.2. Label the vertices of Γ as v1, v2, . . . . The Laplacian matrix L(Γ) of a graph Γ is the
difference of the weighted degree matrix D and the weighted adjacency matrix A of Γ:

L(Γ) =D(Γ) −A(Γ).

Here, the weighted degree matrix is the diagonal matrix whose i-th entry is

dii = ∑
e∈Es(vi)

wt(e)

and the weighted adjacency matrix has entries defined by

aij = ∑
e=(vi,vj)

wt(e).

1In the literature, an arborescence rooted at v is usually defined to to be a spanning tree directed away from v, so that v is the
unique source rather than the unique sink; see, for example, [KV06], [Cha82], and [GM89]. Our convention is consistent with
the study of R-systems.
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Since we will always be working with weighted graphs in this paper, we will usually drop the word “weighted”
when talking about the Laplacian matrix. Note also the ordering of the rows and columns of the Laplacian.
We will always assume that v1 corresponds to the first row and column of L(Γ), that v2 corresponds to the
second row and column of L(Γ), and so on.

Theorem 2.3. (Matrix Tree Theorem) [Cha82] The sum of the weights of arborescences rooted at vi is equal
to the the minor of L(Γ) obtained by removing the i-th row and column:

Avi(Γ) = detLi
i(Γ).

2.3. Covering graphs.

Definition 2.4. A k-fold cover of Γ = (V,E) is a graph Γ̃ = (Ṽ , Ẽ) that is a k-fold covering space of G in
the topological sense that preserves edge weight. In order to use this definition, we need to find a way to
formally topologize directed graphs in a way that encodes edge orientation. To avoid this, we instead give a
more concrete alternative definition of a covering graph. The graph Γ̃ = (Ṽ , Ẽ) is a k-fold covering graph of
Γ = (V,E) if there exists a projection map π ∶ Γ̃→ Γ such that

(1) π maps vertices to vertices and edges to edges;
(2) ∣π−1(v)∣ = ∣π−1(e)∣ = k for all v ∈ V, e ∈ E;
(3) For all ẽ ∈ Ẽ, we have wt(ẽ) = wt(π(ẽ));
(4) π is a local homeomorphism. Equivalently, ∣Es(ṽ)∣ = ∣Es(π(ṽ))∣ and ∣Et(ṽ)∣ = ∣Et(π(ṽ))∣ for all ṽ ∈ Ṽ .

We do not require a covering graph to be connected—results about arborescences are trivial in the discon-
nected case anyways.

2.4. Voltage graphs and derived graphs.

Definition 2.5. Let G be a finite group. A weighted G-voltage graph Γ = (V,E,wt, ν) is a weighted directed
multigraph with each edge e also labeled by an element ν(e) of G. This labeling is called the voltage of the
edge e. Note that the voltage of an edge e is entirely distinct from the weight of e.

Definition 2.6. Given a G-voltage graph Γ, we may construct an ∣G∣-fold covering graph of Γ known as the
derived graph Γ̃ = (Ṽ , Ẽ,wt). The derived graph of a voltage graph is a graph with vertex set Ṽ = V ×G and
edge set

Ẽ ∶= {[v × x,w × (gx)] ∶ x ∈ G,e = (v,w) ∈ Γ, ν(e) = g ∈ G} .

Example 2.7. Let G = Z/3Z = {1, g, g2}, and let Γ be the following G-volted graph, where edges labeled
(x, y) have edge weight x and voltage y:

1

23

(a, g)

(b,1)(d, g2)
(e,1)

(c, g2)

Figure 1. A Z/3Z-voltage graph Γ
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Then the derived graph Γ̃, with vertices (v, x) = vx and with edges labeled by weight, is:

11

2131
1g

2g3g

1g2

2g23g2

a

a

a
b

bb
c

c

c

d

d

d

e

ee

Figure 2. The derived covering graph Γ̃ of Γ. Edge colors denote correspondence to the
edges of Γ via the quotient map.

While derived graphs might seem to be a very special subset of covering graphs, they in fact give rise to a
broad class of covering graphs called regular covering graphs.
Definition 2.8. Given a graph Γ and a covering graph Γ̃, the deck group Aut(π) of Γ̃ is the group of
automorphisms on Γ̃ that preserve the fibers of the projection map π.
Definition 2.9. A regular cover Γ̃, sometimes known as a Galois cover, of a graph Γ is a covering graph
whose deck group is transitive on each fiber π−1(v) for each v ∈ V .
Example 2.10. The derived graph in example 2.7 is a regular cover because the cyclic permutation σ that
sends each vi,x to vi,gx is in Aut(π), which shows that Aut(π) is transitive on each fiber π−1(v).
Example 2.11. The following is a simple example of a graph (left) and a non-regular covering graph (right):

No automorphism maps vertex 11 to vertex 12, since, for example, 11 is part of a 2-cycle and 12 is not, so
Aut(π) is not transitive on π−1(1). Nevertheless, all criteria necessary to be a covering graph are met.

1 2

11 21

12 22

13 23

Theorem 2.12. (Theorems 3 and 4 in [GT75]) Every regular cover Γ̃ of a graph Γ may be realized as a
derived cover of Γ with voltage assignments in Aut(π). Conversely, every derived graph is a regular cover.

The main focus of this paper is to explore the relationship between the arborescences of a voltage graph Γ
and the arborescences of its derived graph Γ̃. Theorem 2.12 allows us to deal with all regular covering graphs
in the framework of a voltage. It turns out that regularity is not necessary for Theorem 1.4, which holds for
all k-fold covers; however, the results of this main theorem have nice interpretations in terms of the voltage
Laplacian in the regular case.
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2.5. The reduced group algebra. We wish to define a matrix similar to the Laplacian matrix that tracks
all the relevant information in an G-voltage graph. In order to do so in general, we need to extend our field
of coefficients in order to codify the data given by the voltage function ν. Following the language of Reiner
and Tseng in [RT14]:

Definition 2.13. The reduced group algebra of a finite group G over a ring R is the quotient

R[G] = R[G]
⟨∑g∈G h⟩

,

where R[G] is the group algebra of G over R. That is, we quotient the group algebra by the all-ones vector
with respect to the basis given by G.

For simplicity, in the remainder of this paper we take R = Z. In practice, we will always be dealing with
integers. Note that if G ≅ Z/2Z, then Z[G] ≅ Z, with the non-identity element of G identified with −1.
Similarly, if G ≅ Z/pZ, with p prime, then Z[G] ≅ Z(ζp), where ζp is a primitive p-th root of unity and
the generator g of G is identified with ζp. (To see this, note that both rings arise by adjoining to Z an
element with minimal polynomial ∑p−1

i=0 xi.) The fact that the reduced group alebgra of prime cyclic G lies in
a field extension over Q ⊇ Z will be important later in giving us nice formulas for the ratio of arborescences
described in the introduction.

2.6. The voltage Laplacian matrix. We now define a generalization of the Laplacian matrix that takes
into account voltages:

Definition 2.14. The voltage adjacency matrix A (G) has entries given by

aij = ∑
e=(vi,vj)∈E

ν(e)wt(e),

where we consider ν(e) as an element of the reduced group algebra Z[G]. That is, the i, j-th entry consists
of sum of the volted weights of all edges going from the i-th vertex to the j-th vertex. The voltage Laplacian
matrix L (Γ) is defined as

L (Γ) =D(Γ) −A (Γ)

where D(Γ) is the (unvolted) weighted degree matrix as described in Definition 2.2.

Note that when every edge has trivial voltage, then L (Γ) = L(Γ), so that the voltage Laplacian is indeed
a generalization of the Laplacian. Since we consider the edge weights of Γ as indeterminates, we treat the
entries of L (G) as elements of Z[G][wt(E)] ⊂ Z[G][wt(E)]—that is, the polynomial ring of edge weights
with coefficients in the reduced group algebra.

Example 2.15. Let Γ the Z/3Z-voltage graph in Example 2.7. Under the identification Z[Z/3Z] ≅ Z(ζ3),
the voltage Laplacian of Γ is

L (Γ) =
⎡⎢⎢⎢⎢⎢⎣

a + b 0 0
0 c 0
0 0 d + e

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

ζ3a b 0
0 0 ζ23c
ζ23d e 0

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

(1 − ζ3)a + b −b 0
0 c −ζ23c
−ζ23d −e d + e

⎤⎥⎥⎥⎥⎥⎦
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3. The voltage Laplacian and vector fields

Definition 3.1. A vector field γ of a directed graph Γ is a subgraph of Γ such that every vertex of Γ has
outdegree 1 in γ. Similarly to arborescences, we define the weight of a vector field wt(γ) ∶= ∏e∈γ wt(e) of a
vector field be the product of its edge weights, so that wt(γ) is a degree ∣V ∣ monomial with respect to the
edge weights of Γ. Write C(γ) for the set of cycles in a vector field γ. If G is abelian, and if c is a cycle of
γ then defined the voltage of c as ν(c) ∶=∏e∈c ν(e)—this product is only well-defined when G is abelian.

The determinant of L (Γ) counts vector fields of Γ in the following way:

Theorem 3.2. Let G be an abelian group, and let Γ be an edge-weighted G-voltage graph. Then

∑
γ⊆Γ

⎡⎢⎢⎢⎢⎣
wt(γ) ∏

c∈C(γ)
(1 − ν(c))

⎤⎥⎥⎥⎥⎦
= detL (Γ)

where the sum ranges over all vector fields γ of Γ.

Example 3.3. Let Γ be the Z/3Z-voltage graph of example 2.7. There are four distinct vector fields of Γ
(see Figure 3).

1

23

(b,1)(d, g2)

(c, g2)

1

23

(a, g)

(d, g2)

(c, g2)

1

23

(b,1)
(e,1)

(c, g2)

1

23

(a, g)

(e,1)

(c, g2)

Figure 3. The four vector fields of Γ

The first three of these vector fields contain one cycle; from left to right, these unique cycles have weights
ζ3, ζ3, and ζ23 . The rightmost vector field has two cycles, one with weight ζ and the other of weight ζ2. From
Example 2.15, we have

detL (Γ) = (1 − ζ3)bcd + (1 − ζ3)acd + (1 − ζ23)bce + (1 − ζ3)(1 − ζ23)ace

The four terms in this expression correspond to the four vector fields of Γ as described by the theorem.

The following special case of the above, with G = Z/2Z, will be useful later in our first proof of the ratio of
arborescences formula for signed graphs:

Corollary 3.4. Suppose that Γ is a Z/2Z-voltage graph, i.e. a signed graph. Define a negative vector field
γ of Γ to be a vector field such that every cycle c of γ has an odd number of negative edges, so that ν(c) = −1.
Denote the set of negative vector fields of G by N (Γ). Then

∑
γ∈N (Γ)

2#C(γ)wt(γ) = detL (Γ)

We present two proofs of Theorem 3.2: one original, as far as we are aware, and the other dating back to
Chaiken.

The first proof proceeds by deletion-contraction, and requires the following lemma.
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Lemma 3.5. Let Γ be as in Theorem 3.2 with voltage function ν ∶ E → Z[G],let v be any vertex of Γ, and
let g ∈ G. We define a new voltage function νv,g given by

νv,g(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gν(e) ∶ if e ∈ Ei(v), e ∉ Et(v)
g−1ν(e) ∶ if e ∈ Et(v), e ∉ Es(v)
ν(e) ∶ else

(a) for any cycle c of Γ, we have ν(c) = νv,g(c); and
(b) the determinant of the voltage Laplacian of Γ with respect to the voltage ν is equal to the determinant

of the voltage Laplacian of Γ with respect to νv,g. That is,
detL (V,E,wt, ν) = detL (V,E,wt, νv,g)

Proof.

(a) If c does not contain the vertex v, or if c is a loop at v, then the voltages of all edges in c remain
unchanged. Otherwise, c contains exactly one ingoing edge e of v and one outgoing edge f of v, so
that

νv,h(c) =
ν(c)

ν(e)ν(f)
[gν(e)][g−1ν(f)]

= ν(c)

as desired.
(b) The matrix L (V,E,wt, ν) may be transformed into the matrix L (V,E,wt, νv,g) by multiplying

the row corresponding to v by g and multiplying the column corresponding to v by g−1, so the
determinant remains unchanged.

∎

This lemma will allow us some freedom to change the voltage of Γ as needed.

Proof. (First proof of Theorem 3.2). Denote the left-hand side of the theorem as

Ω(Γ) ∶= ∑
γ⊆Γ

⎡⎢⎢⎢⎢⎣
wt(γ) ∏

c∈C(γ)
(1 − ν(c))

⎤⎥⎥⎥⎥⎦

We proceed by deletion-contraction. Our base case will be when the only edges of Γ are loops. When this
happens, L (Γ) is diagonal, with

ℓii = ∑
e=(vi,vi)∈E

(1 − ν(e))wt(e).

Thus we have

detL (Γ) =
∣V ∣

∏
i=1

⎛
⎝ ∑
e=(vi,vi)∈E

[1 − ν(e)]wt(e)
⎞
⎠

If we expand the product above, each term will correspond to a unique combination of one loop per vertex
of Γ. But such combinations are precisely the vector fields of Γ, so we obtain

detL (Γ) = Ω(Γ)

For the inductive step, assume that there exists at least one edge e between distinct vertices, and assume that
the proposition holds for graphs with fewer non-loop edges than Γ. Using the lemma, we may change the
voltage of Γ so that e has voltage 1 without changing either Ω(Γ) or detL (Γ). Without loss of generality,
let v1 = Es and v2 = et.
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If γ is a vector field of Γ, then γ either contains e or it does not. In the latter case, γ is also a vector field
of Γ/e. Clearly all such γ arise uniquely from a vector field of Γ/e. Therefore, there is a weight-preserving
bijection between the vector fields of Γ not containing e and the vector fields of Γ/e.

Otherwise, if e ∈ γ, then no other edge of the form (v1, vj) is in γ. We define a special type of contraction:
let Γ/1e ∶= (Γ/e)/Es(v1). That is, we contract along e, and delete all other edges originally in Es(v1). Note
that the contraction process merges vertices v1 and v2 into a “supervertex,” which we denote v12.

Then vector field γ descends uniquely to a vector field γ on Γ/1e. Every vector field γ in Γ/1e corresponds
uniquely to a vector field of Γ containing e, obtained by letting the unique edge coming out the supervertex
v12 in γ be the unique edge coming out of the vertex v2 in γ, and letting e be the unique edge with source at
v1 in γ. This inverse map shows that the vector fields of Γ containing e are in bijection with the vector fields
of Γ/1e. This bijection is weight-preserving up to a factor of wt(e). Finally, note that γ and its contraction
γ have the same number of cycles, with the same voltages. If a cycle contains e in γ, then that cycle is
made one edge shorter in γ, but still has positive length since e is assumed to not be a loop. If c is a cycle
containing e in γ, then since e has voltage 1, the cycle voltage ν(c/e) of the contracted version of c is equal
to the cycle voltage before contraction. Thus, we may write

Ω(Γ) = Ω(Γ/e) +wt(e)Ω(Γ/1e)

By inductive hypothesis, since Γ/e and Γ/1e have strictly fewer non-loop edges than Γ, we have
Ω(Γ/e) +wt(e)Ω(Γ/1e) = detL (Γ/e) +wt(e)detL (Γ/1e)

Note that L (Γ/e) is equal to L (Γ) with wt(e) deleted from both the 1,1- and 1,2-entries. Therefore, via
expansion by minors, we obtain

detL(Γ/e) +wt(e)detL1
1(Γ) +wt(e)detL2

1(Γ) = detL (Γ)(2)

where L j
i (Γ) is the submatrix of L (Γ) obtained by removing the i-th row and the j-th column.

To construct L (Γ/1e) from L (Γ), we disregard the first row of L (Γ), since the special contraction Γ/1e
simply removes the outgoing edges Es(v1). Then, we combine the first two columns of L (Γ) by making
their sum the first column of L (Γ/1e), since when we perform a contraction that merges v1 and v2 into v12,
we also have Et(v1)∪Et(v2) = Et(v12). Thus L (Γ/1e) is a (∣V ∣− 1)× (∣V ∣− 1) matrix that agrees with both
L 1

1 (Γ) and L 2
1 (Γ) on its last ∣V ∣ − 2 columns, and whose first column is the sum of the first columns of

L 1
1 (Γ) and L 2

1 (Γ). Therefore,
detL (Γ/1 e) = detL 1

1 (Γ) + detL 2
1 (Γ)

Substituting into (2), we obtain
detL (Γ) = detL (Γ/e) +wt(e)detL (Γ/1 e)

= Ω(Γ/e) +wt(e)Ω(Γ/1 e)
= Ω(Γ)

as desired. ∎

The second proof of the theorem follows a style similar to Chaiken’s proof of the Matrix Tree Theorem
in [Cha82]. Chaiken actually proves a more general identity, which he calls the “All-Minors Matrix Tree
Theorem,” that gives a combinatorial formula for any minor of the voltage Laplacian. We do not reproduce
such generality here, but instead follow a simplified version of his proof, more along the lines of Stanton and
White’s version of Chaiken’s proof of the Matrix Tree Theorem but with more generality [SW86].

Proof. (Second proof of Theorem 3.2) (Chaiken). Let Γ have n vertices. For simplicity, assume that Γ has no
multiple edges, since we can always decomposed detL (Γ) into a sum of determinants of voltage Laplacians
of simple subgraphs of Γ, which also partitions the sum given in the theorem. We also assume that Γ is a
complete bidirected graph, since we can ignore edges not in Γ by just considering them to have edge weight
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0. Write L (Γ) = (ℓij), write D(Γ) = (dij), and write A (Γ) = (aij), so that ℓij = δijdii − aij . Then the
determinant of L (Γ) may be decomposed as

detL (Γ) = det(δijdii − aij) = ∑
S⊆[n]

⎡⎢⎢⎢⎢⎣
∑

π∈P (S)
(−1)#C(π)wtν(π) ∏

i∈[n]−S
dii

⎤⎥⎥⎥⎥⎦
where P (S) denotes the set of permutations of S, the set C(π) is set of cycles of π, and wtν(π) ∶=∏i∈S ai,π(i).
The product of the dii may be rewritten as a sum over functions [n] − S → [n], yielding

detL (Γ) = ∑
S⊆[n]

∑
π∈P (S)

(−1)c(π)wtν(π) ∑
f ∶[n]−S→[n]

wt(f)

= ∑
S⊆[n]

∑
π∈P (S)

∑
f ∶[n]−S→[n]

(−1)c(π)wtν(π)wt(f)(3)

where wt(f) denotes the unvolted weight of the edge set corresponding to the function f , since this part of
the product ultimately comes from the degree matrix. Thus, the determinant may be expressed as a sum of
triples (S,π, f) of the above form—that is, we let S be an arbitrary subset of [n], we let π be a permutation
on S, and we let f be a function [n] − S ↦ [n].

The permutation π may always be decomposed into cycles, and f will sometimes have cycles as well—that
is, sometimes we have f (m)(k) = k for some k ∈ Z and k ∈ [n] − S. We can “swap” cycles between π and f .
Suppose c is a cycle of f that we want to swap into π. Let the subset of [n] on which c is defined be denoted
W . Then we may obtain from our old triple a new triple (S∐W,π∐ c, f ∣[n]−S−W ), where π∐ c denotes
the permutation on S∐W given by (π∐ c)(v) = π(v) if v ∈ S and (π∐ c)(v) = c(v) if v ∈ W . That is, we
“move” C from f to π. Similarly, if c is a cycle of π, then we can obtain a new triple (S −W,π∣S−W , f∐ c).
Note that these two operations are inverses.

This process is always weight-preserving—it does not matter whether c is considered as part of π or as part
of f , since it will always contribute wt(c) to the product. However, one iteration of this map will swap the
sign of (−1)#C(π), and will also remove or add a factor from wtν(π) corresponding to the voltage of c. If π
and f have k cycles amongst both of them, then there are 2k possibilities for swaps, yielding a free action of
(Z/2Z)k. If we start from the case π is the empty partition, then the sign (−1)#C(π) starts at 1. Every time
we choose to swap a cycle c into π from f , we flip this sign and multiply by ν(c), effectively multiplying by
−ν(c). Thus, the sum of terms in (3) coming from the orbit of the action of (Z/2Z)k on (S, f, π) is

wt(π)wt(f) ∏
c∈C(π)∪C(f)

(1 − ν(c))

where wt(π) is now unvolted. This orbit class corresponds to the contribution of one vector field γ of Γ to
the overall sum, where γ is the unique vector field such that wt(γ) = wt(π)wt(f). Thus, summing over all
orbit classes, we obtain the desired formula:

detL (Γ) = ∑
γ⊆Γ

⎡⎢⎢⎢⎢⎣
wt(γ) ∏

c∈C(γ)
(1 − ν(c))

⎤⎥⎥⎥⎥⎦
∎

Corollary 3.4 gives a fast proof of the Matrix Tree Theorem (Theorem 2.3). Indeed, Chaiken considers
Theorem 3.2 to be a generalization of the Matrix Tree Theorem.

Proof. (Matrix Tree Theorem) The set Tvj(Γ) of arborescences of the graph Γ rooted at v remains the same
if we remove all edges in Es(vj) and replace them with a single loop e, so let this be the case. We assign a
Z/2Z-voltage to Γ: let all edges of Γ be positive except e, which is negative. Then the negative vector fields
of Γ are precisely the arborescences of Γ plus the edge e—no other configurations are possible, since any
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cycle other than the loop e would be positive. Since every such negative vector field has exactly one cycle
(the loop e), by the corollary the sum of the weights of the arborescences of Γ is given by

Avj(Γ) =
detL (Γ)
2wt(e)

.

However, the row in L (Γ) corresponding to vj consists of all zeroes except in the column corresponding to
v, which contains 2wt(e). Thus, detL (G) is given by 2wt(e)detL j

j (Γ), where detL j
j (Γ) is the minor of

L (Γ) corresponding to removing the j-th row and column. Thus,
Av(Γ) = detL v

v (Γ)
as desired. ∎

4. The ratio formula for 2-fold covers

We now state and prove a result about the arborescences of any 2-fold covering graph. Recall in Corollary
1.2, we showed that the ratio Aṽ(Γ̃)

Av(Γ) is well-defined and independent of the choice of vertex v when Γ is
simple and strongly connected. Galashin and Pylyavskyy’s study of R-systems occurs almost exclusively
in the context of strongly connected simple digraphs, but with the corollary in hand we no longer need to
consider the relevant R-system. Thus, we may extend the proposition to any directed multigraph:

Corollary 4.1. (Invariance under rerooting). Corollary 1.2 extends to arbitrary multigraphs whenever
possible. That is, if Γ is any multigraph (not necessarily simple or strongly connected), and Γ̃ is any covering
graph of Γ, we still have that the ratio Aṽ(Γ̃)

Av(Γ) is independent of the choice of vertex v and its lift ṽ as long as
this ratio is defined (i.e. Av(Γ) ≠ 0).

Proof. Suppose Γ is simple but not necessarily strongly connected. We may consider Γ as a subgraph of the
complete graph K∣V ∣. Denote the complement of the edge set of G in K∣V ∣ as EK/Γ. By Proposition 1.2, we
know that Aṽ(K̃∣V ∣)

Av(K∣V ∣)
is well-defined and independent of the choice of v.

Now note that whenever an edge of Γ has weight 0, any arborescence containing that edge vanishes in the
polynomial Av(Γ). Thus, let φ be the evaluation homomorphism that maps the weight of every edge in
EK/Γ to 0, so that

φ(Av(K∣V ∣)) = Av(Γ)(4)
φ(Aṽ(K̃∣V ∣)) = Aṽ(Γ̃)(5)

since every arborescence of Γ rooted at v is also an arborescence of K∣V ∣ rooted at v, and this set of
arborescences is precisely the set of arborescences not containing any edge in EK/V (and similarly for K̃∣V ∣
and Γ̃). Since ratio of the left-hand sides of equations (4) and (5) is invariant under changing root, so is the
ratio of the right-hand sides.

In the additional case that Γ is not simple, we can augment Γ to a graph Γ+ by placing a vertex on the
midpoint of each edge of Γ—given e = (u, v), we add a vertex ve with unique ingoing edge (u, ve) and
unique outgoing edge (ve, v). Set ν(u, ve) = ν(u, v) and ν(ve, v) = 1. Then Γ+ is a simple graph, since every
edge is either of the form (ve, v) or (u, ve), and we know ∣Es(ve)∣ = ∣Et(ve)∣ = 1. We therefore know that
Proposition 1.2 holds for Γ+. However, note that whenever we root at some vertex v ∈ V (Γ) ⊆ V (Γ+), every
arborescence must contain every edge of the form (ve, v), since this is the only outgoing edge of ve; similarly,
every arborescence of the cover of Γ+ contains both lifts of every (ve, v). Since these edges must always be
used in both of these constructions, we may freely contract along them without cutting out or merging any
arborescences in both Γ+ and Γ̃+. Contracting along every such edge transforms Γ+ back into Γ. Therefore,
if we let φ ∶ wt(ve, v) ↦ 1 and φ ∶ wt(u, ve) = wt(u, v), we have Av(Γ) = φ(Av(Γ)) and Aṽ(Γ̃) = φ(Aṽ(Γ̃).
Therefore, Proposition 1.2 result holds for non-simple Γ as well.
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∎

We now turn to the first proof of Theorem 1.3, which provides a formula for Av(Γ̃)
Av(Γ) when Γ̃ is a 2-fold cover,

which we now restate:

Theorem 4.2. Let Γ be an edge-weighted Z/2Z-volted directed multigraph—that is, a signed graph. For any
vertex v of Γ and any lift ṽ of v to the derived graph Γ̃ of Γ, we have

Av(Γ)detL (Γ) = 2Aṽ(Γ̃)

Equivalently, either Av(Γ) = 0 or we have

Aṽ(Γ̃)
Av(Γ)

= 1

2
detL (Γ).

Proof. We proceed by strong induction, and by relying heavily on the fact that we can usually prove the
formula rooting at a specific vertex to proliferate the formula to any vertex. We will also apply the results
about negative vector fields from Corollary 3.4.

4.1. Base cases. First, note that if some vertex of Γ has outdegree 0, then both sides of the above identity
are 0, no matter which root is chosen, since a row of detL (Γ) will be the zero vector and at least two
vertices in Γ̃ will have outdegree 0.

Next, suppose that every vertex of Γ has outdegree exactly 1. Choose any v ∈ G. Then there is only one
candidate for a negative vector field of Γ, and only one candidate for an arborescence of Γ rooted at v. If Γ
has more than one cycle, then Γ is disconnected, so that Av(Γ) = 0 and Aṽ(Γ) = 0. Assume Γ has exactly
one cycle. If this cycle does not contain v, then no path from the vertices in the cycle to v exists, so no
arborescence rooted at v exists, and Av(Γ) = Aṽ(Γ̃) = 0. Now assume that the unique cycle of Γ contains
v. If this cycle is positive, then no negative vector fields exist, and thus detL (Γ) = 0 by Corollary 3.4.
Furthermore, there exist two disjoint lifts of this cycle to Γ̃, which again means that Γ̃ is disconnected, so
that Aṽ(Γ) = 0. Thus, the statement holds in these cases.

The only remaining case is if Γ has a unique negative cycle that contains v. Then this cycle lifts to a cycle
twice as long in Γ̃ containing both lifts v′ and v′′ of v, which is the unique cycle in G̃. Therefore, the edges
of G̃, except the unique edge in Ei(ṽ), form a unique arborescence T̃ rooted at ṽ. Siimilarly, the edges of G,
except the unique edge in Es(v), form a unique arborescence T rooted at v; and Γ forms the unique negative
vector field γ of itself. Thus wt(T )wt(γ) = wt(Γ̃). Since detL (Γ) = 2wt(γ) by Corollary 3.4, previous
proposition, we conclude that Av(Γ)detL (Γ) = 2Aṽ(Γ̃) . This proves the identity when ∣E∣ ≤ ∣V ∣.

4.2. Main inductive step. Now suppose that the identity holds whenever ∣E∣ ≤ k for some k ≥ ∣V ∣, and
let G have k + 1 edges. By the pigeonhole principle, at least one vertex v of G satisfies ∣Es(v)∣ ≥ 2. Assume
further that we can choose such v with Av(Γ) ≠ 0.

Let e be any edge in Es(v), and define Ee
s(v) ∶= Es(v)/e. Then both G/e and G/Es(v) have at most k edges,

since ∣Es(v)∣ ≥ 2. By inductive hypothesis,

Av(Γ/e)detL (Γ/e) = 2Aṽ(Γ̃/e)

Av(Γ/Ee
s(v))detL (Γ/Ee

s(v)) = 2Aṽ( ̃Γ/Ee
s(v)))

Without loss of generality, let ṽ = v′, and let e′, e′′ be the lifts of e with sources at v′, v′′, respectively. Every
arborescence of Γ̃ rooted at v′ contains exactly one edge in Es(v′′). This edge is either e′′ or it is not, so we
may partition such arborescences into two disjoint classes based on whether they include e′′—that is,

Av′(Γ̃) = Av′(Γ̃/e′′) +Av′(Γ̃/Ee′′

s (v′′))
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However, note that

Av′(Γ̃/e′′) = Av′(Γ̃/{e′, e′′}) = Av′(Γ̃/e)

No arborescence rooted at v′ utilizes any edge with source at v′, so we may simply delete the edge e′ from
Γ as it suits us. Similarly,

Av′(Γ̃/Ee′′

s (v′′) = Av′(Γ̃/(Ee′′

s (v′′) ∪Ee′

i (v′)))

= Av′( ̃Γ/Ee
i (v))

Thus,

Aṽ(Γ̃) = Aṽ(Γ̃/e) +Aṽ( ̃Γ/Ee
s(v))

= 1

2
Av(Γ/e)detL (Γ/e) +

1

2
Av(Γ/Ee

s(v))detL (Γ/Ee
s(v))

Now, note that Av(Γ/e) = Av(Γ/Ee
s(v)) = Av(Γ)—again, no arborescence rooted at v utilizes any edge in

Es(v). Thus,

2Aṽ(Γ̃) = Av(Γ) (detL (Γ/e) + detL (Γ/Ee
s(v)))

Finally, note that the matrix L (Γ), the matrix L (G/e), and the matrix L(G/Ee
s(v)) are all equal except

in the row corresponding to v, and that the sum of the v-th rows of L (Γ/e) and L(Γ/Ee
s(v)) is equal to the

v-th row of L (Γ). Thus, detL (Γ) = detL (Γ/e) + detL(Γ/Ee
s(v)), so that

2Aṽ(Γ̃) = Av(Γ)detL (Γ)

as desired. By Corollary 4.1, we conclude that

2Aũ(Γ̃) = Au(Γ)detL (Γ)

for any choice of u ∈ V .

4.3. Exceptional cases. We must choose v to be some vertex with ∣Es(v)∣ ≥ 2, but what if all such vertices
satisfy Av(Γ) = 0? Then either Au(Γ) = 0 for all u ∈ Γ, in which case the theorem is trivially satisfied, or
there exists some vertex u with outdegree exactly 1 such that Au(Γ) ≠ 0.

Suppose that in the latter case we can choose u such that there exist two distinct arborescences T1 and T2

rooted at u. Then there must exist some vertex w such that the outgoing edge e of w in T1 is distinct from
the outgoing edge f of w in T2. Define Γ+ to be the graph obtained by Γ by adding an auxiliary edge a from
u to w, so that Γ+ has k + 2 edges, and therefore Γ+/e and Γ+/Ee

s(w) both have at most k + 1 edges. Since
u has outdegree 2 in both Γ+/e and Γ+/Ee

s(w), we may apply the inductive step to conclude

Au(Γ+/e)detL (Γ+/e) = 2Aũ(Γ̃+/e)

Au(Γ+/Ee
s(w))detL (Γ+/Ee

s(w)) = 2Aũ( ̃Γ+/Ee
s(w))

Note that Au(Γ+/Ee
s(w)) ≠ 0, since by assumption there exists at least one arborescence T1 rooted at u using

the edge e, so that T1 remains an arborescence even after removing the edges Ee
s(v). Similarly, Au(Γ+/e) ≠ 0.

Therefore, we may apply Proposition 4.1 to conclude

Aw(Γ+/e)detL (Γ+/e) = Aw̃(Γ̃+/e)

Aw(Γ+/Ee
s(w))detL (Γ+/Ee

s(w)) = Aw̃( ̃Γ+/Ee
s(w))

Since e and the edges of Ee
s(w) are elements of Es(w), we can apply the same arguments as we did in

the original inductive step. Then it follows that Aw(Γ+/e) = Aw(Γ+/Ee
s(w)) = Aw(Γ+), that Aw̃(Γ̃+/e) +

Aw̃( ̃Γ+/Ee
s(w)) = Aw̃(Γ̃+), and ultimately that

Aw(Γ+)detL (Γ+) = 2Aw̃(Γ̃+)
13



Since Aw(Γ+) ≠ 0—the auxiliary edge a ensures that any arborescence rooted at u may be modified into an
arborescence rooted at w—we may reroot to conclude

Au(Γ+)detL (Γ+) = 2Aũ(Γ̃+)

Note that every arborescence T ∈ Tu(Γ) lifts uniquely to an arborescence T + ∈ Tu(Γ+) not containing a,
and conversely that every arborescence T + ∈ Tu(Γ+) not containing a descends uniquely to an arborescence
T ∈ Tu(Γ). We therefore perform the same trick that we did in the proof of Corollary 4.1. Let φ be the
evaluation homomorphism mapping wt(a) ↦ 0. Then have φ(Au(Γ+)) = Au(Γ), φ(L (Γ+)) = L (Γ), and
φ(Aũ(Γ̃+)) = Aũ(Γ̃). Since φ is a homomorphism, we conclude

Au(Γ)detL (Γ) = 2Aũ(Γ̃)
Thus, the formula is proven.

4.4. Rooted tree case. Finally, we consider the case where

(1) No vertices with outdegree ≥ 2 root an arborescence;
(2) There exists at least one arborescence rooted at some vertex; and
(3) All vertices with outdegree 1 root no more than 1 arborescence?

In this case, Γ must have a structure similar to a rooted tree. Let u be a vertex with outdegree 1 that roots
exactly one arborescence T . Without loss of generality, u is the only vertex of outdegree 1—we may contract
along the unique outgoing edge e of any other such vertex u′ to yield a graph with fewer edges otherwise,
since

● Every arborescence of Γ rooted at u passes through e, so that that Au(Γ) = wt(e)Au(Γ/e);
● Every arborescence of Γ̃ passes through both lifts of e, so that Aũ(Γ̃) = wt(e)2Au(Γ̃/e); and
● detL (Γ) = wt(e)detL (Γ/e) via expansion by minors along the row corresponding to u′.

Therefore, the unique outgoing edge of u must be a loop, since otherwise the terminal vertex of this edge
roots an arborescence, violating condition 1 above since all vertices other than u have outdegree ≥ 2. We
may treat Γ as a Hasse diagram for the poset defined by T , with u the unique minimal element. Every other
vertex v of Γ has exactly one edge belonging to the arborescence T , and all other edges of v must point to
some v ≥ u. Otherwise, a non-cyclic path from v to u distinct from the one given by T would exist, violating
the uniqueness of the arborescence T .

Take any vertex w ≠ u. Let e be the edge of w belonging to T . Define Γ+ to be the graph obtained from
Γ by adding an auxiliary edge a from u to w. Then we apply the same trick with the arborescences of the
cover to conclude that Γ+/e and Γ+/Ee

s(w) satisfy the formula when rooted at u. Note that Au(Γ+/Ee
s(w))

is never zero, since T remains an arborescence in Γ+/Ee
s(w), so we may apply Corollary 4.1 to conclude that

Av(Γ+/Ee
s(w))detL (Γ+/Ee

s(w)) = Aw̃( ̃Γ+/Ee
s(w)).

If any edge in Ee
s(w) does not point towards w, it points to some vertex w′ > w, so that w′ roots an

arborescence by modifying T to pass through a and the edge (w,w′) ∈ Ee
s(w). Since w′ has outdegree ≥ 2

and roots at least one arborescence, we conclude that the desired identity also holds on Γ+/e when rooting
at w instead. In this case, we know the formula holds for Γ+/e and Γ+/Ee

s(w) when rooting at w, so now we
may apply the same logic as the inductive step to conclude that the formula holds for Γ+ when rooting at
w, and therefore when rooting at u. Setting wt(a) = 0 then shows that the formula holds for Γ rooting at u.

If this process goes through for at least one vertex w ≠ u, then we are done. Otherwise, we conclude that
edge set of Γ consists only of the tree T plus loops, in which case we may prove the formula directly. Without
loss of generality, all loops are negative, since positive loops do not contribute to either the negative vector
fields of Γ nor the arborescences of Γ̃. Then every arborescence of Γ̃ contains at least one lift of every edge
in T , but this is the only condition on the arborescences—as long as the lift of the same negative loop is
not used twice, there can be no cycles. For every loop besides the one at u, there are two choices of lifts.
Thus, for each negative vector field γ ⊆ Γ, we obtain 2#C(γ)−1 arborescences of Γ̃—one factor of two for each
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loop of γ other than the one at u. Since this process uniquely describes all arborescences of Γ̃, we have by
Corollary 3.4 that

2Aũ(Γ̃) = wt(T )∑
γ⊆Γ

2#C(γ)wt(γ)

= Au(Γ)detL (Γ)

This exhausts all possible exceptions to the inductive step, completing the proof.

∎

5. Generalization to higher covers

The preceding proof unfortunately does not generalize to k-fold covers for k > 2. In these cases, the main
inductive step fails because there are too many lifts of an outgoing edge of v, even if we disregard the outgoing
edges of ṽ. In this section, we present a more algebraic approach that generalizes to higher covers.

5.1. Restriction of scalars.

Definition 5.1. Let R be a commutative ring, and let S be a free R-algebra of finite rank. Let T be
an S-linear transformation on a free S-module M of finite rank. Then we may also consider M as a free
R-module of finite rank, and T as an R-linear transformation; this is known as restriction of scalars. We
write detR T to denote the determinant of T as an R-linear transformation.

Recall that the voltage Laplacian L (Γ) has entries in the reduced group algebra augmented by edge weights:
S = Z[G][E]. Letting R = Z[E], we may also consider L (Γ) as an R-linear transformation on a R-module
of rank (∣G∣ − 1)∣V ∣.

Example 5.2. Returning to Example 2.15, the voltage Laplacian L (Γ) is a matrix that represents a linear
transformation on a Z(ζ3)[E]-module with basis vectors indexed by the three vertices of Γ:

L (Γ) =
⎡⎢⎢⎢⎢⎢⎣

(1 − ζ3)a + b −b 0
0 c −ζ23c
−ζ23d −e d + e

⎤⎥⎥⎥⎥⎥⎦
We may consider this same module as a Z[E]-module instead, simply by disallowing scalar multiplication
outside of the subring Z[E] ⊆ Z(ζ3)[E]. Now we look at the basis vectors of the Z[E]-module. Since the
Z[E]-span of a set of vectors is smaller than its Z(ζ3)[E]-span, however, we will need more basis vectors
than before in order to span the entire module. One basis for this module has basis vectors doubly indexed
by vertices and the two non-identity group elements of Z/3Z, which shows that the module has Z[E]-rank
6. Ordering basis vectors as vg1 , v

g
2 , v

g
3 , v

g2

1 , vg
2

2 , vg
2

3 , the voltage Laplacian may considered as a Z[E]-linear
transformation, with matrix

[L (Γ)]Z[E] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a + b −b 0 a 0 0
0 c c 0 0 −c
d −e d + e −d 0 0
−a 0 0 2a + b −b 0
0 0 c 0 c 0
d 0 0 0 −e d + e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the Z[E]-determinant of this transformation is

det
Z[E]

L (Γ) ∶= det[L (Γ)]Z[E]

= 3a2c2d2 + 3b2c2d2 + 6abc2d2 + 9a2c2e2 + 3b2c2e2 + 9abc2e2 + 9a2c2de + 3b2c2de + 12abc2de
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With restriction of scalars in hand, we restate Theorem 1.4 in the case of regular covering graphs before
examining the particularly nice case of G prime cyclic:

Theorem 1.4. (Regular covering graph case) Let Γ = (V,E,wt, ν) be an edge-weighted G-voltage multigraph,
and let Γ̃ be its derived covering graph. Then for any vertex v of Γ and any lift ṽ of v, we have

Aṽ(Γ̃)
Av(Γ)

= 1

∣G∣
det
Z[E]

L (Γ)

5.2. The prime cyclic case. In the case where G is prime cyclic, the theorem has an especially nice
interpretation:

Corollary 5.3. Let G be the prime cyclic group of order p, and let Γ be as in the theorem. Then for any
vertex v of Γ and any lift ṽ of v in the derived graph Γ̃ of Γ, we have

Aṽ(Γ̃)
Av(Γ)

= 1

∣G∣
NQ(ζp)/Q [detL (Γ)]

= 1

∣G∣

p−1
∏
i=1

det[σi(L (Γ))]

where NQ(ζp)/Q [detL (Γ)] denotes the field norm of Q(ζp) over Q, naturally extended to a norm on Q(ζp)[E],
and σi is the field automorphism mapping ζp ↦ ζip.

Proof. The corollary follows from the theorem if we can show that detZ[E]L (Γ) = NQ(ζp)/Q [detL (Γ)].
Theorem 1 of [Sil00] states that if A is a commutative ring, if B is a commutative subring of Matn(A), and
if M ∈Matm(B), then

det
A

M = det
A
(det

B
M)

In this case, let A ∶= Q[E]. The reduced group algebra B ∶= Q(ζp)[E] may be realized as a subring of
Matp−1(A), with an element α of B being identified with the A-matrix corresponding to multiplication by
α in B, where we view B as an A-module. Note that A and B are both commutative. Finally, we let
M = L (Γ). But the field norm NQ(ζp)/Q(α) is defined as the determinant of the map x ↦ αx as a Q-linear
transformation, or, equivalently in our case, a Z-linear transformation. When extended to Q(ζp)[E], this
definition shows that

det
Z[E]
( det
Z(ζp)[E]

L (Γ)) = NQ(ζp)/Q [ det
Q(ζp)[E]

L (Γ)]

as desired. ∎

Example 5.4. Let Γ be the graph from example 2.7. We computed detL in Example 3.3:

detL (Γ) = (1 − ζ3)bcd + (1 − ζ3)acd + (1 − ζ23)bce + (1 − ζ3)(1 − ζ23)ace

Since voltage is given by Z/3Z, the reduced group algebra is Z(ζ3)[E] ⊂ Q(ζ3)[E], which we treat as an
extension over Q. The Galois norm in this case is the same as the complex norm, since the Galois conjugate
of an element of Q(ζ3)[E] is the same as its complex conjugate. This norm is

detL (Γ)detL (Γ) = ((1 − ζ3)bcd + (1 − ζ3)acd + (1 − ζ23)bce + (1 − ζ3)(1 − ζ23)ace)

⋅ ((1 − ζ23)bcd + (1 − ζ23)acd + (1 − ζ3)bce + (1 − ζ23)(1 − ζ3)ace)
= 3a2c2d2 + 3b2c2d2 + 6abc2d2 + 9a2c2e2 + 3b2c2e2 + 9abc2e2 + 9a2c2de + 3b2c2de + 12abc2de

which matches detZ[E]L (Γ) from Example 5.2.
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5.3. Triangularization. To prove Theorem 1.4, we carefully apply a change of basis to the Laplacian matrix
of Γ̃. In order to do this, we need to be a little more careful in how we write this matrix and in which basis
vectors we are using. The (ordinary) Laplacian matrix L(Γ̃) acts on the module Z[E]Ṽ . We have been
implicitly writing this matrix with respect to the standard basis {vgi }i∈[∣V ∣],g∈G. We now want to enforce an
ordering on the vertices of Γ̃, and thus on these basis vectors. Fix an ordering on the vertices V of Γ, and
fix an ordering of the elements of G such that the identity of G is first. Then order the basis vectors in
colexicographic order based on their labeling (v, g), so that the first ∣V ∣ basis vectors are b1G1 , . . . , b1Gn .

It is also beneficial to write an explicit basis for the Z[E]-module of rank (∣G∣− 1)∣V ∣ that L (Γ) acts on via
restriction of scalars from Z[G][E] to Z[E]. The Z[G][E]-span of a vector m is equal to the Z[E]-span of the
set {gm}g∈G,g≠1G : note that m = −∑g∈G,g≠1G gm by the definition of the reduced group algebra. Therefore,
given the standard Z[G][E]-basis {vi}∣V ∣i=1 corresponding to the vertices of Γ , we derive a standard Z[E]-basis
{vgi }i∈[∣V ∣],g≠1G . Again, we order this basis in colexicographic order. Note that this basis corresponds to the
last (∣G∣ − 1)∣V ∣ vectors in the standard basis we have defined for L(Γ̃).

Having written L(Γ̃) with respect to our ordering of basis vectors, we wish to perform the change of basis
described by the following lemma:

Lemma 5.5. Let G and Γ be as in Theorem 1.4. Write L(Γ̃) with basis vectors ordered as above. Let

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

id∣V ∣ 0∣V ∣ . . . 0∣V ∣
id∣V ∣
⋮ id(∣G∣−1)∣V ∣

id∣V ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Then the change of basis given by S yields the following block triangularization of L(Γ̃):

S−1L(Γ̃)S = [L(Γ) ∗
0 [L (Γ)]Z

](6)

Proof. Let βi = ∑g∈G vgi . Conjugation by S−1 corresponds to a change of basis that maps v1Gi ↦ βi and
vgi ↦ vgi when g ≠ 1G. Therefore, all we need to do is examine the action of the linear transformation
corresponding to the matrix L(Γ̃) on this new basis. Denote this linear transformation as T .

First, we show that

T (βj) =
∣V ∣

∑
i=1

ℓijβi

where ℓij is the i, j-entry of L(Γ). To see this, consider the ∣G∣ columns of L(G̃) corresponding to the fiber
{vj,g}g∈G of vj . The sum of these columns is equal to T (βj), expressed as a column vector with respect to
the standard basis. If we have an edge e = (vi, vj), and if ν(e) = g, then we have a term of wt(e) in each
(i, h) × (i, h)-entry of L(Γ̃) for each h ∈ G, as well as a term of −wt(e) in each (i, h) × (j, gh)-entry of L(Γ̃)
for each h ∈ G. Thus, the sum of the ∣G∣ columns of L(G̃) corresponding to the fiber {vj,g}g∈G is precisely

T (βj) =
∣V ∣

∑
i=1
∑
g∈G

ℓijv
g
i =

∣V ∣

∑
i=1

ℓi,jβi

as desired. Therefore, the left block column of (6) is correct.

The effect of our change of basis on the lower-right (∣G∣− 1)∣V ∣× (∣G∣− 1)∣V ∣ block of L(Γ̃) is to add the i-th
row of L(Γ̃), for i ∈ [∣V ∣], to rows i + ∣V ∣, i + 2∣V ∣, . . . , i + (∣G∣ − 1)∣V ∣—that is, we add the 1G-components of
the linear transformation of L ′(Γ) to the g-components for each g ≠ 1G in G. But this mimics the structure
of the reduced group algebra; that is, what we have actually done in the lower-right hand block is to write
L (Γ) as a Z-matrix, as desired. ∎
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Here is an alternative description of the lower-right hand matrix above.

Definition 5.6. Let {v1,⋯, vn} be the set of vertices of our graph Γ, let Γ̃ be a k-fold cover of Γ, where vertex
vi is lifted to v1i ,⋯, vki . Define n(k−1)×n(k−1) matrices D and A with basis v21 ,⋯, v2n, v31 ,⋯, v3n,⋯, vk1 ,⋯, vkn
as follows.

A[vti , vrj ] = ∑
e=(vt

i ,v
r
j )
wt(e) − ∑

e=(v1
i ,v

r
j )
wt(e)

D[vti , vti] = ∑
e∈Es(vt

i)
wt(e)

for 1 < t, r ≤ k. Finally, we define
[L (Γ)]Z[E] ∶=D −A.

Note that this interpretation works even for non-regular cover, though in this case the matrix cannot be
interpreted as the Z-linearization of a voltage Laplacian. Nevertheless, we can use this alternate description
to extend the definition of [L (Γ)]Z to account for even the case of non-regular covers, which will make
Lemma 5.5 true for arbitrary covers, and thus will make Theorem 1.4 true for arbitrary finite covers—the
remaining lemmata do not make use of regularity. Thus, we have the most general form of the main theorem:

Theorem 1.4. (General version). Let Γ = (V,E,wt) be an edge-weighted multigraph, and let Γ̃ be a k-fold
covering graph of Γ. Then for any vertex v of Γ and any lift ṽ of v, we have

Aṽ(Γ̃)
Av(Γ)

= 1

k
det[L (Γ)]Z[E]

with [L (Γ)]Z[E] defined in definition 5.6.

This proof of Lemma 5.5 finally explains why it is necessary to go through the trouble of working in the
reduced algebra all this time, rather than the ordinary group algebra—we need to lower the Z-rank of our
algebra by 1 in order to get the triangularization described by the lemma. This triangularization is very
close to giving us what we want for Theorem 1.4, but unfortunately taking minors and change of basis do not
commute. Besides, we need to find a factor of ∣G∣ somewhere along the way. Define U = S−1L(Γ̃)S. Without
loss of generality, assume that we want to root our arborescences of Γ at vertex v1 and our arborescences of
Γ̃ at vertex v1,1G . Then want to show that

detU1
1 = ∣G∣detL1

1(Γ̃),

for then the theorem follows from the lemma, since L1
1(Γ̃) = A(1,1G)(Γ) and detU1

1 = A1(Γ)detZ[E]L (Γ).
We do so by performing the change of basis S into two steps:the first will multiply the minor by ∣G∣, and the
second will leave it unchanged.

5.4. The two-step change of basis. Here is the first step:

Lemma 5.7. Let L be the Laplacian matrix of some graph Γ = (V,E,wt). Let P be the change of basis
matrix that maps vi ↦ vi +∑j∈J αjvj, for some J ⊆ ∣V ∣ ∖ {i} and αj ∈ R for j ∈ J , but leaves all other basis
vectors unchanged. That is, P is the identity matrix but with αj in entry (i, j) for each j ∈ J . Then

det(P −1LP )ii = Avi(Γ) +∑
j∈J

αjAvj(Γ)

Proof. Without loss of generality, let i = 1. We first consider the case that ∣J ∣ = 1, and we will assume J = {2}.
P −1L(Γ̃) differs from L(Γ̃) in that the second row of P −1L(Γ̃) is the second row of L(Γ̃) with α2 times the
first row of L(Γ̃) subtracted from it. P −1L(Γ̃)P differs from P −1L(Γ̃) in that the first column of P −1L(Γ̃)P
is the first column of P −1L(Γ̃) with α2 times the second column of P −1L(Γ̃) added to it. However, since we
are finding the determinant of P −1L(Γ̃)P with the first row and column removed, we are only interested in
the lower-right hand (∣V ∣ − 1) × (∣V ∣ − 1) submatrix and can ignore this column operation.
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We may interpret (P −1LP )11 as a submatrix of the Laplacian of a different graph, which we will denote as
Γ′. We construct Γ′ as follows. The vertices of Γ′ are v′1, ..., v

′
∣V ∣. If there is an edge vr → vs in Γ, then there

is an edge v′r → v′s in Γ′, so Γ′ contains Γ as a subgraph. For each edge e ∈ Ei(v1) that is not a loop, if
et ≠ v2, we add the edge (v′2, e′t) to Γ′ with weight −α2wt(e) and the edge (v′2, v′1) with α2wt(e). The first
of these edges will be called an edge of type 1 and the second an edge of type 2. For each edge e ∈ Ei(v1)
where et = v2, we add the edge (v′2, v′1) with weight α2wt(e). Call this an edge of type 3. We can see that
L1
1(Γ′) = (P −1LP )11, so det(P −1LP )11 counts the arborescences of Γ′ rooted at v′1.

We will divide the arborescences of Γ′ into four categories (See Figure 4).

(1) Arborescences that do not contain any type 1, type 2, or type 3 edges. The weighted sum of these
arborescences is counted by Av1(Γ) because they are exactly the arborescences that use only edges
in the subgraph Γ of Γ′.

(2) Arborescences that contain a type 1 edge and arborescences that differ from these by replacing the
type 1 edge with a type 2 edge of the same weight with opposite sign. For every type 1 edge, there
is a type 2 edge of the same weight with opposite sign. This means that for every arborescence that
contains a type 1 edge, there is an arborescence that is the same, except instead of the type 1 edge it
has a type 2 edge of the same weight with opposite sign. The weights of these arborescences cancel
out, so the weighted sum of all of these arborescences is 0.

(3) Arborescences that contain a type 3 edge. By removing the edge of type 3 and replacing it with
the corresponding edge pointing in the opposite direction, we obtain an arborescence with weight
divided by α2 rooted at v′2. This arborescence does not contain any edges of types 1, 2, or 3, so it
corresponds to an arborescence in Γ rooted at v2. Similarly, given an arborescence in Γ rooted at v2
with an edge from v1 to v2, we can reverse this process. So, the weighted sum of these arborescences
is α2 times the weighted sum of arborescences rooted at v2 in Γ that contain an edge from v1 to v2.

(4) Arborescences that contain an edge of type 2 that are not counted in (2). These are arborescences
where removing the edge of type 2 and replacing it with the corresponding edge e′ = (v′2,w′) of type
1 does not give an arborescence. This means the only path in the arborescence from w′ to v′1 goes
through v′2. Removing the type 2 edge gives two disconnected components, one directed towards v′1
and one directed towards v′2. The edge e′ originally came from the edge e = (v1,w) ∈ Γ. Consider
our arborescence without the type 2 edge but with the edge (v1,w) that has the weight of our type
2 edge divided by α2. We now have an arborescence rooted at v′2 that has no type 1, 2, or 3 edges.
This arborescence corresponds to an arborescence in Γ rooted at v2. Similarly, given an arborescence
in Γ rooted at v2 with no edge from v1 to v2, we can reverse this process. So, the weighted sum
of these arborescences is α2 times the weighted sum of arborescences rooted at v2 in Γ that do not
contain an edge from v1 to v2.

Adding the weighted sums of the arborescences in these four categories, we find Av1(Γ′) = Av1(Γ)+α2Av2(Γ).

We will proceed by induction. To do this, we first need to show that for Γ′ as constructed above, Avℓ(Γ′) =
Avℓ(Γ) whenever ℓ ≠ 1. This is true when ℓ = 2, since every new edge we have added is in Es(v2). For
ℓ ≠ 1,2, note that Lℓ

ℓ(Γ′) differs from Lℓ
ℓ(Γ) only in the second row: the second row of L(Γ′) is the difference

of the first two rows of L(Γ). Thus, we may expand the determinant along the second row to write

detLℓ
ℓ(Γ′) = detLℓ

ℓ(Γ) + detM

where M is the matrix obtained by replacing the second row of Lℓ
ℓ(Γ) with −α2 times the first row of

Lℓ
ℓ(Γ). Since M has two rows that are scalar multiples of each other, it has determinant zero. Therefore,

detLℓ
ℓ(Γ′) = detLℓ

ℓ(Γ) and, by the Matrix Tree Theorem, Avℓ(Γ′) = Avℓ(Γ).

We now perform the change of basis one step at a time. Let J = {j1, . . . , jn}. Suppose that when Pk is
the change of basis matrix mapping bv1 ↦ bv1 +∑

k
m=1 αjmbvjm , we know that det(P −1k L(Γ)Pk)11 = Av1(Γ) +

∑k
m=1 αjmAvjm (Γ), and that (P −1k L(Γ)Pk)11 is the submatrix of the Laplacian of some graph Γ′ that satisfies

Av1(Γ′) = Av1(Γ) +∑
k
m=1 αjmAvjm (Γ) and Avℓ(Γ′) = Avℓ(Γ) for ℓ ≠ 1. Let P ′k be the change of basis matrix
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mapping bv1 ↦ bv1 + αjk+1bvjk+1 . Then applying our construction from the first part of the proof on Γ′, we
conclude ((P ′k)−1P −1k L(Γ)PkP

′
k) is the submatrix of the Laplacian of some graph Γ′′ satisfying

Av1(Γ′′) = Av1(Γ′) + αjk+1Avjk+1
(Γ′)

= Av1(Γ) +
k+1
∑
m=1

αjmAvjm

and also Avℓ
(Γ′′) = Avℓ(Γ′) = Avℓ(Γ) for ℓ ≠ 1.

Therefore, by induction on the size of J , we conclude that
det(P −1L(Γ)P )11 = Av1(Γ) +∑

j∈J
αjAvj(Γ)

as desired. ∎

Here is the second step of the change of basis:

Lemma 5.8. Let R be a commutative ring and let M ∈ Matn(R). Let Q ∈ GLn(R) such that Q fixes the
i-th unit basis vector ei. Then

det(Q−1MQ)ii = detM i
i

In other words, the change of basis given by Q commutes with taking the minor of M corresponding to
removing the i-th row and column.

Proof. Let V be the free R-module of rank n on which M acts. Taking the minor detM i
i corresponding to re-

moving the first row and column is equivalent to evaluating the determinant of TM , the linear transformation
corresponding to M descended to the quotient space V /⟨ei⟩. That is, ignoring a row and its corresponding
column is equivalent to considering the transformation on this quotient space. Thus, if a change of basis
leaves the basis vector corresponding to the i-th row and column unchanged, the determinant on this quo-
tient space will not change either, since the relevant quotient space will not change, and detTM does not
depend on the basis chosen for V /⟨ei⟩. Thus, the minor remains unchanged under this change of basis. ∎

5.5. Proof of Theorem 1.4.

Proof. In Lemma 5.7, let P be the change of basis that maps v1G1 ↦ β1 ∶= ∑g∈G vg1 , and let Q be the change
of basis that maps v1Gi ↦ ∑g∈G vgi for i > 1, which satisfies the hypotheses of Lemma 5.8. Letting S be the
matrix from Lemma 5.5, we have S = QP . Thus, by Lemmata 5.7 and 5.8,

detU1
1 = det(QPL(Γ̃)P −1Q−1)11
= det(PL(Γ̃)P −1)11
= ∑

g∈G
Av1,g(Γ)

By symmetry,
∑
g∈G

Av1,g(Γ) = ∣G∣Av1,1G
(Γ)

However, from the triangularization given by Lemma 5.5, and by the Matrix Tree Theorem, we know that
detU1

1 = Av1(Γ) detZ[E]
L (Γ)

detL1
1(Γ̃) = A(v1,1G)(Γ̃)

Therefore,
∣G∣A(v1,1G)(Γ̃) = Av1(Γ) detZ[E]

L (Γ)
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Figure 4. Types of arborescences for Γ’
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as desired. ∎

6. Further Discussion and Questions

6.1. Possible Combinatorial Interpretation. Theorem 1.4 makes it clear that the ratio Aṽ(Γ̃)
Av(Γ) is a ho-

mogeneous polynomial with integer coefficients—writing Aṽ(Γ̃) = 1
∣G∣Av(Γ)detZ[E]L (Γ), the factor of 1

∣G∣
must divide detZ[E]L (Γ) because every coefficient of Av(Γ) is 1. We further conjecture:

Conjecture 6.1. The ratio Aṽ(Γ̃)
Av(Γ) has positive integer coefficients.

Corollary 3.4 along with Theorem 1.3 proves the conjecture in the 2-fold case, and yields a nice combinatorial
interpretation of our result: we obtain several arborescences of Γ̃ by combining an arborescence T of Γ with
a negative vector field γ of Γ. More precisely, if γ has k cycles, then the pair (T, γ) corresponds to 2k−1

arborescences of Γ̃ each with weight wt(T )wt(γ). However, it is not clear how to explicitly exhibit this
correspondence. Our original method of trying to prove Theorem 1.3 was to derive such a correspondence,
which ultimately failed. The following is a plausible but incorrect candidate for the desired correspondence
between pairs (T, γ) and arborescences of T̃ of Γ̃: Given (T, γ), construct T̃ by taking the unique lift of T
into Γ̃ and then letting the outedges of the remaining vertices of T̃ come from γ. We then need to apply some
free action of Z/2Zk−1 to obtain all 2k−1 corresponding arborescences. Candidates for this action included:

● Swapping the lifts of edges the components of γ not containing v.
● Swapping the lifts of edges in the cycles of the components of γ not containing v.
● In either of the above, swapping only negative edges.

However, regardless of which action we choose, this construction fails to be injective even at the first step—
that is, there exist examples of distinct pairs (T, γ), (T ′, γ′) both mapping to the same T̃ .

Consider the following Z/2Z-voltage graph, where every edge has trivial voltage unless labeled with −1:

-1

-1

We have the following pairs (T, γ) and (T ′, γ′), with the arborescences rooted at the upper-right vertex:

T : -1
γ:

-1
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T ′: γ′: -1

-1

Both of these pairs give rise to the following arborescence in the covering graph:

Another potential candidate would be to perform a similar construction by first lifting γ rather than T—the
connected lift of a negative vector field is always acyclic—any cycle without repeated lifts in Γ̃ necessarily
descends to a positive cycle in Γ. We have not explored this candidate in depth, since we eventually shifted
our focus away from the 2-fold case. There may be a similarly easy counterexample for this construction.

Thus, the problem remains:
Problem 6.2. Let Γ be a Z/2Z-voltage graph and let Γ̃ be its derived cover. Find a combinatorial corre-
spondence between:

(1) Pairs (T, γ) of arborescences and negative vector fields of Γ; and
(2) Arborescences T̃ of Γ̃,

where each pair (T, γ) corresponds to C(γ) arborescences T̃ , with C(γ) being the number of cycles of γ.

In the case of general regular covers, we do not even have a concrete combinatorial interpretation of
detZ[E]L (Γ). Such an interpretation would probably be the cleanest way to prove Conjecture 6.1.

Problem 6.3. Find a combinatorial interpretation of the polynomial detZ[E]L (Γ) = Aṽ(Γ̃)
Av(Γ) , assuming

Conjecture 6.1 is true. Then find an explicit combinatorial construction that yields a correspondence as in
Problem 6.2.

6.2. Interpreting the restriction-of-scalars determinant. In the case where the voltage group G is
prime cyclic, Corollary 5.3 yields a computationally nice interpretation of Theorem 1.4: the Z-determinant
is really a field norm, which may be computed in ways other than restriction of scalars—for example, as a
product of Galois conjugates. This result could be extended if there existed an analogue to the field norm
for arbitrary reduced group algebras, or indeed for general free algebras of finite rank. If this is too hard,
we could instead focus on the reduced group algebras of abelian groups only.
Problem 6.4. Let R be a commutative ring, and let A be a free algebra over R of finite rank. Let α ∈ A.
Find an alternative expression or interpretation of detR α, where the multiplicative action of α is viewed as
a linear transformation on the R-module A, analogous to a field norm. Useful special cases include R = Z
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or Q, when A is commutative, and/or when A is the group algebra or reduced group algebra of some finite
group G.

6.3. Iterated covers for solvable voltage groups.

Theorem 6.5. [Tan] (Galois Theory of Covering Spaces) Let X be a topological space, and let X̃ be a regular
(Galois) covering space with covering map p ∶ X̃ →X. Suppose that the deck group G = Aut(p) acts properly
discontinuously on X̃. Let H be a subgroup of G. Then:

(1) The space X̃ is a regular covering space of the quotient space X̃/H (obtained by identifying the
elements in each orbit of H), and its deck group is H.

(2) If H is a normal subgroup of G, then X̃/H is a regular covering space of X with deck group isomorphic
to G/H.

Due to Theorem 2.12, the voltage group G plays the role of the deck group in our discussion of covering
graphs. Thus, if G is not simple, we can factor the ratio of arborescences even further by constructing an
intermediate covering graph. In particular, if G is solvable, we can use the Jordan-Hölder series of G to
construct a series of regular covers of prime degree to obtain Γ̃, with p-prime, so that at each step we use a
Z/pZ-voltage graph. This may simplify the calculation of Theorem 1.4, since we may apply Corollary 5.3 to
each step, with the ratio Aṽ(Γ̃)

Av(Γ) telescoping along the way.

6.4. Random covers.

Conjecture 6.6. Let Γ = (E,V ) be a graph, fix a vertex v with non-trivial arborescence. Let Γ′ be a random
k-fold cover of Γ, assuming uniform distribution. Then the expected value of the ratio of arborescence is

E [Av′(Γ′)
Av(Γ)

] = 1

k
∏
w∈V

⎛
⎝ ∑
α∈Es(w)

wt(α)
⎞
⎠

k−1
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