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Abstract. We devise an algorithm to generate an alternating sign matrix(ASM)

with the same blue and green link pattern on the circle. We also find a char-
acterization of link patterns that are achieved by a unique ASM.
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1. Introduction

Alternating sign matrices (ASM) are in one-to-one correspondence with Fully
Packed Loop (FPL) states on the square ice lattice. A detailed introduction can be
found in [2],[4]. In this model, each of the 2n blue(green) vertices is connected to
one other blue(green) vertex by a path of blue(green) edges, or for short, vertex i
is linked to vertex j.

Definition 1.1. The blue link pattern πB of an ASM is a set of n unordered pairs
(rk, sk), where 1 ≤ rk < sk ≤ 2n, such that the blue external vertex rk is linked to
the blue vertex sk in the corresponding FPL model. The green link pattern πG is
defined similarly.

A blue or green link pattern of an ASM is equivalently realized as a link pattern
of 2n vertices, labelled clockwise from 1 to 2n, on the circle. In this case, each
vertex is connected to exactly one other vertex by a chord, and the n chords do not
intersect. It is an elementary fact that an odd-numbered vertex must pair up with
an even-numbered vertex. Also, it is known there are totally 1

n+1

(
2n
n

)
link patterns

of 2n vertices. An example of a link pattern on the circle is shown in figure 1.
Given a link pattern π0, we are interested in knowing whether there always exists

an ASM with both blue and green link patterns equal to π0. We are able to show
that this is true. To restate, our first main theorem is

Theorem 1.2. For any given link pattern π0 of 2n vertices on the circle, there
exists an ASM of order n such that πB = π0 = πG.

1
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Figure 1. A link pattern of 12 vertices

Two link patterns π0 and π1 are called antipodal if they differ by the 180 degree
rotation. Inspired by theorem 1.2, we state and prove that

Theorem 1.3. For any pair of antipodal link patterns π0 and π1, there exists an
ASM of order n such that πB = π0 and πG = π1.

We prove these two theorems by devising the respective algorithms to construct
the desired ASMs. Let us fix any link pattern π0 of 2n vertices. In section 2, we
will present the Skew Diagonal Algorithm(SDA), which generates an ASM(n) with
πB = π0 = πG. The proof of SDA is presented in section 3, and it consists of 2 big
steps:

(1) we prove that SDA produces an ASM with πB = πG, in section 3.1;
(2) we show that πB = π0 in section 3.2.

In section 4, we construct, similar to SDA, the Lattice Diagonal Algorithm(LDA)
to prove theorem 1.3. Since the proof of LDA is analogous to that of SDA, we will
note the similarities and outline the proof in later of the section.

A direct application of the two algorithms is to characterize link patterns on the
circle which are achieved by a unique ASM. To better describe these link patterns,
we need a definition.

Definition 1.4. In a link pattern π0 on the circle, an adjacent link is a link joining
2 adjacent external vertices.

Theorem 1.5. For a link pattern π0 of 2n vertices, there exists a unique ASM
having π0 as its blue link pattern if and only if π0 has exactly 2 adjacent links.

Zuber mentioned that Nguyen Anh-Minh proved the sufficient condition in [5].
In section 5, we prove that Zuber’s condition is also necessary, and we give an
independent proof of the sufficiency part.

In section 6 we will briefly discuss some possible generalization of our results.

2. ASMs with Identical Blue and Green Link Patterns

Before we start to present our first algorithm and the proof of theorem 1.2, we
need some definitions.

Convention 1. From now on, when we discuss a FPL model, we will use entries to
refer to internal vertices in the square ice lattice. Unless specified, vertices always
refer to either external vertices of the square ice lattice or vertices on the circle.
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2.1. Some Definitions.

Definition 2.1. A tour in an FPL state is a path of edges such that
(1) It starts from blue vertex 1;
(2) Blue and green edges in the path alternate;
(3) It only goes rightwards and upwards.

An entry in the tour is called a tour entry, and an edge in the tour is called a
tour edge.

By abuse of notation, a tour in an ASM is a path of matrix entries that can be
realized as a tour in the corresponding FPL state. Here the tour starts from the
bottom left entry.

Definition 2.2. We define a sequence of blue questions, Bπ = {be}, and a sequence
of green questions, Gπ = {gf}, where each question is a true or false question on
whether two blue(green) vertices on the circle, (i, j)(unordered pair), is in a link.
The notation for the pth blue question is bp =?(i, j), and for the qth green question
it is gq =?[k, l]. Each question is either blue or green and not both.

First, all questions of the form ?(q, 2n + 1− q), q = 1, ..., n are blue questions. If
?(q, 2n + 1− q) is true, then the next question is ?(q + 1, 2n− q).

Suppose the blue question ?(q, 2n + 1 − q) is false. Then we start to alternate
green and blue questions (green first) up to the next question of the form ?(p, 2n +
1− p), p > q. All questions in between ?(q, 2n + 1− q)(included) and ?(p, 2n + 1−
p)(excluded) are said to form a cancellation cycle, cycle for short. Thus, we form
the sequence of all color questions, Qπ = {qk} = {b1, ..., bp1 , g1, bp1+1, g2, ...}, by
the order of appearance of each color question. It suffices to define color questions
in a cycle.

Assume before the cycle starts, there are already t = e + f color questions, with
e blue questions and f green questions. The first green question in the cycle is
gf+1 =?[q, q + 1]. Assume the kth green question in the cycle, is gf+k =?[uk, vk].
Moreover, 2 ≤ vk < n, and k < n − q. Then the (k + 1)th green question (if
applicable) is gf+k+1 =?[uk+1, vk+1] where vk+1 = vk + 1 and

• if ?[uk, vk] is false, then uk+1 = vk;
• otherwise, starting from uk and going counterclockwise, uk+1 is the first

vertex belonging to no links confirmed by any previous blue and green
questions, i.e. the answers of all previous questions (if any) involving rk+1

are false.
The first blue question in the cycle is be+1 =?(q, 2n + 1 − q). Suppose the kth

blue question in the cycle, be+k =?(rk, sk), is asked, where n + 1 < sk ≤ 2n and
k < n− q. Then the (k + 1)th blue question (if it is not of type (p, 2n + 1− p)) is
be+k+1 =?(rk+1, sk+1), where sk+1 = sk − 1,and

• if ?(rk, sk) is false, then rk+1 = sk; and
• otherwise, starting from rk and going clockwise, rk+1 is the first vertex

belonging to no links confirmed by previous blue and green questions.
The inductive definition from kth to (k + 1)th blue question in a cancellation

cycle is illustrated in figure 2.
The last possible green question is when vk = n and the last possible blue

question is when sk = n + 1.

The well-definedness of definition 2.2 is only challenged when after the last green
question, we keep asking at least two blue questions not of the form (p, 2n+1− p).
But this is impossible, as follows from

Lemma 2.3. After the last green question ?[u, n] appears, the next question is the
last blue question ?(r, n + 1).
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Figure 2. The (k + 1)th blue question, ?(rk+1, sk+1) in the can-
cellation cycle. Left: ?(rk, sk) is true; Right: ?(rk, sk) is false.

Proof. Assume that the last green question ?[u, n] belongs to the cancellation cycle
starting from ?(p, 2n+1−p). Then the kth green question ?[uk, p+k] is followed by
the (k + 1)th blue question ?(rk+1, 2n + 1− k− p). In particular, ?[u, n] is followed
by ?(rn−p+1, n + 1), which by definition is the last blue question.

�

Moreover, a question is asked only once:

Lemma 2.4. A color question never repeats itself in later of the sequence.

Proof. The first question, ?(1, 2n) starts the first cancellation cycle. Assume the
cycle is terminated by ?(p, 2n + 1 − p), where p > 1. The kth green question is
?[uk, k +1] and the kth blue question is ?(rk, 2n+1−k). Then all vertices involved
in the previous 2k questions are in between the arc from k + 1 counterclockwise
to 2n + 1 − k. But the (k + 1)th blue question in the cycle is ?(rk+1, 2n − k), so
it is distinct from all previous questions. Also rk+1 6= k + 2, so it is also distinct
from the (k + 1) green question. Similarly, the green question ?[uk+1, k + 2] is not
repeated before.

Now at the end of this cycle, all vertices p − 1, ..., 1, 2n, ..., 2n + 2 − p have
been confirmed their link status; otherwise, let such vertex be r, then either the
green question at p is ?[r, p] or the blue question at 2n + 1 − p is ?(r, 2n + 1 − p),
contradiction. In particular, the question ?(p, 2n + 1 − p) is not repeated before.
Each subsequent blue question ?(s, t) has 2n+1−p ≥ t ≥ n+1, and each subsequent
green question ?[u, v] has p ≤ v ≤ n, so does not duplicate any previous question.

Now we can delete all vertices from the first cycle, relabel the remaining vertices
clockwise with p being 1 and 2n+1−p being 2n−2p, and start the above argument
over. Therefore no question repeats itself afterwards.

�

Convention 2. From now on through section 4, when we write a matrix A = [ai,j ],
the ith row is counted from the bottom row, i.e. the (n− i+1)th matrix row in the
usual sense.

Definition 2.5. In a square matrix of order n, a skew diagonal(SD) is a line
of matrix entries parallel to the matrix diagonal. The kth skew diagonal, k =
1, ..., 2n− 1, is the set of entries

• k = n : ar,n−r+1, r = 1, ..., n (the matrix diagonal)
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• k < n : ar,k−r+1, r = 1, ..., k
• k > n : ak−n+r,n−r+1, r = 1, ..., 2n− k

Here we note that, for any particular tour in an ASM, there is at most one tour
entry in each skew diagonal, since the tour only goes upwards and rightwards.

Definition 2.6. The positive direction of a skew diagonal is going from the bottom
right entry towards the top left entry.

Definition 2.7. In an incomplete matrix, if an entry ar,s with r ≤ s is determined,
then Skew Diagonal Filling(SDF) at ar,s is to set ap,q=ar,s if

(1) ap,q is on the SD of ar,s, and
(2) p ≤ q and p > r.

Definition 2.8. In a square matrix of order n, the standard lattice diagonal(SLD)
is the line of entries ar,r, r = 1, ..., n.

Definition 2.9. In an incomplete matrix, if an entry ar,s is determined, then the
Reflection Construction(RC) at ar,s is to set as,r = ar,s, i.e. the image of ar,s under
reflection by the standard lattice diagonal.

2.2. The Skew Diagonal Algorithm(SDA). Here we present the Skew Diagonal
Algorithm(SDA) that generates an ASM with πB = π0 = πG, given a link pattern
π0 on the circle.

The basic mechanism of SDA is as follows. First, we record the question se-
quence Qπ = {qk} in definition 2.2 on π0, and also the answers to all the questions.
Then starting from an empty matrix, we construct the tour and based on the tour,
construct the ASM. Once a matrix entry is determined, we do RC at this entry, and
an entry, once determined, will never change. For a tour entry ap,q, if it is the kth
tour entry below or on the SLD, then we check the answer of kth color question,
determine this entry, and decide what the next tour entry is. If ap,q is above the
SLD, we always proceed 1 entry rightwards to get back to below or on the SLD.
After a tour entry is determined, we do SDF.

If an ASM is invariant under reflection about the standard lattice diagonal, then
by reflecting the corresponding FPL state and switching the colors of all edges,
each blue link (i, j) is identified with the green link with same vertices, so πB = πG.
Therefore we stipulate

Convention 3. Throughout the algorithm, whenever an entry ap,q is determined,
do RC at ap,q as in definition 2.9.

We first start with the empty n × n matrix. Here we already have recorded
Qπ = {qk} and the answers of each qk.

Step 1. The first tour entry is a1,1. Here check the answer of the first question in
Qπ. If the answer is true, set a1,1 = 1, do SDF at this entry, set a1,j = 0 if j > 1,
and proceed to step 4. Otherwise, set a1,1 = 0, the next tour entry is a1,2, and
proceed to step 2.

Step 2. Suppose we are at the tour entry a1,m, m ≥ 2. Check the answer of the
mth color question. More explicitly, check the answer of the kth green question if
m = 2k, and check the (k + 1)th blue question if m = 2k + 1, for k ≥ 1. If the
answer is true, then set a1,m = 1, do SDF at this entry, set a1,j = 0 if j > m, and
proceed to step 4. Otherwise, set a1,m = 0, do SDF at this entry, the next tour
entry is a1,m+1, and go back to the beginning of this step.

Step 1 and 2 together determine the first row.
From step 3 through 7, assume at the tour entry ar−1,mr−1 , we already check

the answers of first (d − 1) questions. So the question checked at ar−1,mr−1 is
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the dth question where d = e + f , with e checked blue questions and f checked
green questions. Assume the dth question is TRUE and the entry ar−1,mr−1 is
determined, the eth blue question is ?(re, se) and the fth green question (if any)
is ?[uf , vf ]. These steps are to determine rth row and then set up new induction
from rth to (r + 1)th row.

Step 3. Do SDF at ar−1,mr−1 . Set ar−1,t = 0 if t > mr−1. The (r − 1)th row is
then determined.

Step 4. If mr−1 = r − 1, then the next two tour entries are ar,r−1 and ar,r, and
proceed to step 5. Otherwise the next tour entry is ar,mr−1 and proceed to step 6.

Actually, ar,r−1 = ar−1,r = 0 by RC.

Step 5. Now at ar,r, check the answer of (d + 1)th color question (in Qπ), which
is actually ?(r, 2n + 1 − r). If the answer is true, then set ar,r = 1, mr = r, and
go back to step 3, where r − 1 becomes r. The rth row is then determined. If the
answer is false, then set ar,r = 0, do SDF at this entry, the next tour entry is ar,r+1,
and proceed to step 7.

Step 6. At ar,mr−1 , check the answer of (d + 1)th color question, which is actually
the (f +1)th green question if dth question is blue, and the (e+1)th blue question if
dth question is green. If it is true, then set ar,mr−1 = 0, mr = mr−1, do SDF at this
entry, and go back to step 3 where r− 1 becomes r. If it is false, set ar,mr−1 = −1,
do SDF at this entry, and the next tour entry is ar,mr−1+1, then proceed to step 7.

Step 7. At ar,m, mr−1 < m ≤ n, check the answer of (d+m−mr−1+1)th question
in Qπ. If the answer is true, then set ar,m = 1 and mr = m, do SDF at ar,m, and go
back to step 3 where r− 1 becomes r. Otherwise, the answer is false, set ar,m = 0,
do SDF, and the next tour entry is ar,m+1, and go back to the beginning of this
step.

The algorithm terminates if all the questions in Qπ have been checked. However,
it is not entirely clear the SDA can even complete a matrix, or the matrix is an
ASM. We will devote the section 3.1 to prove this. We illustrate the SDA with the
following example:

Example 2.10. Let π0 = {(1, 2); (11, 12); (9, 10); (3, 8); (4, 7); (5, 6)}. We list the
sequential color questions and their answers in the following table:

Question Answer Tour entry Remark
Blue ?(1, 12) False a1,1 = 0
Green ?[1, 2] True a1,2 = 1 Set a1,m = 0 for m > 2
Blue ?(12, 11) True a2,2 = 1, a3,2 = 0 Set a2,m = 0 for m > 2
Blue ?(3, 10) False a3,3 = 0
Green ?[3, 4] False a3,4 = 0
Blue ?(10, 9) True a3,5 = 1 Set a3,m = 0 for m > 5
Green ?[4, 5] False a4,5 = −1
Blue ?(3, 8) True a4,6 = 1 π0 is determined
Green ?[5, 6] True a5,6 = 0
Blue ?(4, 7) True a6,6 = 0

Now we apply the SDA and obtain
0 0 0 1 0 0
0 0 1 −1 1 0
0 0 0 1 −1 1
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0


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The FPL state of this ASM is shown in the figure below. The edges with arrows
constitute the tour constructed by the SDA as realized in the FPL state.

3. Proof of the SDA

Our main theorem in this section, which directly implies Theorem 1.2, is

Theorem 3.1. Given a link pattern π0, the SDA generates an ASM with πB =
π0 = πG.

First, we will prove that the SDA always completes the matrix and the matrix
is an ASM with πB = πG. This is intimately related to how the answers of blue
and green questions determine π0. This part constitutes section 3.1.

Second, we establish an exact translation of the color questions to the construc-
tion of the FPL state of our ASM, so that πB = π0. This is treated in section
3.2.

Throughout this section, we will fix a link pattern π0 of 2n vertices, and the tour
always refers to the one concerned in the SDA. Whenever convenient, we will use
SD as an abbrievation of skew diagonal.

3.1. Determination of a Link Pattern. We first define

Definition 3.2. Consider the sequence of vertices r1 = 2n + 1−bn
2 c,...,rbn

2 c = 2n,
rbn

2 c+1 = 1,...,rn = dn
2 e. If a link (u, v) on the circle has at least a vertex in the

above sequence, then we call it a bottom adjacent link.

On the square ice lattice, the n vertices in above definition corresponds to the n
external vertices in the bottom, but undistinguished in their colors.

Lemma 3.3. There exists a blue or green bottom adjacent link.
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Proof. Suppose there is no bottom adjacent link, then any two of the vertices
r1, ..., rn cannot be linked. Then the remaining n vertices are sk = r1 − k, and π0

must be (r1, s1),...,(rn, sn). But (r1, s1) is a bottom adjacent link.
�

Actually, the above lemma corresponds to the situation that the answers of the
first (n − 1) color questions are all false. These answers uniquely determine π0 in
the above proof. The general condition to determine π0 through color questions is

Proposition 3.4. We ask blue and green questions as indicated in definition 2.2.
Then:

(1) There exists a color question in the sequence Qπ, such that when this ques-
tion is answered, we have obtained totally p true answers, and there are
exactly n − p consulted (i.e. involved in a previous question) but uncon-
firmed (i.e. involved in a previous true question) vertices.

(2) Assume (1) happens, then π0 is uniquely determined by the answers of all
previous questions;

(3) After the determination point in (1), there are n− p subsequent color ques-
tions and all of them are true.

Proof. Do induction on the total number p of true answers before (1) happens.
Let p = 0. Starting from the first question, we always get false answers. The first

question, ?(1, 2n), produces 2 consulted but unconfirmed vertices. Since then, any
two consecutive questions share a vertex. Therefore, after the (n − 1)th question,
we will obtain n consulted but unconfirmed vertices. This proves (1). For (2), by
lemma 3.3, the link pattern is determined as π0 = {(r1, s1), ..., (rn, sn)} in the proof
of lemma 3.3. For (3), the nth question and (n + 1)th questions are ?(r1, s1) and
?[sn, rn] (or reverse), etc. Each subsequent question matches a pair in π0, so is
true. On the other hand, in this case there are totally 2n − 1 color questions, so
there are n subsequent questions after the determination point in (1).

Assume the case p = l − 1 is true. For p = l, suppose the last true answer is
of blue question ?(u0, v0). Then all vertices clockwise from v0 to u0 are confirmed.
We delete the vertices u0 and v0 from the circle, and relabel the remaining 2n− 2
vertices. The number of consulted but unconfirmed vertices remain the same, while
there is one less true answers. Since n−p = (n−1)−(p−1), by induction hypothesis
the case p = l holds.

�

Lemma 3.5. When the tour proceeds to ap,q during the SDA, there are q − p + 1
consulted but unconfirmed vertices if q > p, or if q = p and the previous tour entry
is ap−1,p; otherwise, there is none at the tour entry ap,p.

Proof. Induction on the number p in ap,q. For p = 1, the latter statement is trivial,
and if the first question is false, there are 2 such vertices (namely, 1 and 2n). From
then, note that if the question at a1,q is false, then we obtain 1 new such vertex,
since this question shares a vertex with the previous question. Therefore the case
p = 1 is justified.

Assume the case p = s and the last tour entry in sth row is as,q0 . We delete
vertices confirmed in the first p − 2 true answers. By induction hypothesis, if
q0 = s, there is either none or only 1 consulted but unconfirmed vertex in the new
set of vertices. Then at as+1,s+1, there is no such vertex. If q0 > s, then the last
question introduces only one new vertex, thus there is one less unconfirmed vertex
at as+1,q0 . The same argument in the last paragraph can be used once we delete
the two vertices in the last true answer. This justifies the case p = s + 1.

�
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An important consequence of proposition 3.4 and lemma 3.5 is

Lemma 3.6. The tour always ends at an,n. Moreover, ap,n = 1 where ap,n is the
first tour entry in nth column, and ar,n = 0 if r > p.

Proof. Let the determination point in proposition 3.4 occur when we have obtained
p − 1 true answers. Then let the first tour entry in the pth row be ap,q, where
n > q > p. By lemma 3.5, at ap,q we only have q−p+1 consulted but unconfirmed
vertices. Since we have to go through all the questions, by proposition 3.4, n − q
more such vertices are required. This is equivalent to get n− q more false answers,
since two consecutive questions, with the first being false, share a vertex. By step
7 the tour reaches ap,n. This argument is the same for the case q = p and the last
tour entry is ap−1,p.

In the case q = p < n with the last tour entry being ap,p−1, we need n − p + 1
vertices, which are covered by the subsequent n−p false answers of color questions.
However, if p = n, then we are left with the last color question ?(n, n + 1), which
must be true. In this case, we arrive at the last tour entry an,n = 1.

Now by proposition 3.4, all the subsequent n − p questions are true, so by step
7 of the SDA, ap,n = 1, and ar,n = 0 if r > p.

�

In particular, the SDA always completes a matrix in the end. Now we note
that all entries below the tour are 0. Thus we reach our first goal by the following
proposition:

Proposition 3.7. The SDA generates an ASM with πB = πG.

Proof. πB = πG is obvious once we prove the matrix is an ASM, since by construc-
tion it is invariant under reflection about the standard lattice diagonal.

Consider the kth column for k = 1, ..., n. From the bottom, there exists a
tour entry in this column (lemma 3.6), and we turn rightwards, find the 1 at the
rightmost tour entry in this row, and pass it back to kth column. This is the first
nonzero entry from the bottom. Now starting from the rightmost tour entry in kth
row, we go backwards in the tour, find the first nonzero entry, and pass it back to
kth column. This nonzero tour entry is 1 and passes back as the first nonzero entry
from the top.

Now we prove 1 and −1 alternate. If there is a −1, pass it down to the tour,
go rightwards, find the 1 at the rightmost tour entry in this row, and pass it back.
This 1 is the next nonzero entry. If there is a 1 and still there is a nonzero entry to
follow, then again we pass it down to the tour. Starting from this tour entry, once
the tour arrives at the SLD, all the succeeding tour entries cannot be passed to the
kth column, and thus the entries above the 1 are all 0. So the next nonzero tour
entry to pass on to kth column is below the SLD, therefore it must be −1.

By reflection, every row satisfies the same conditions.
�

Note that to this stage, we don’t know whether πB = π0. The next section is to
prove this.

3.2. FPL Configurations on a Skew Diagonal. First we would like to realize
the tour constructed by SDA in the FPL model, as follows:

Lemma 3.8. The edges in the tour are sequentially constructed by the following
rules:

(1) Blue and green colors alternate;
(2) If a top tour edge appears at ar,r, then the next tour edge is on RHS of

ar+1,r (actually it is blue).
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(3) If the question checked at ap,q is true, then fill the next edge on top of the
entry; otherwise, fill it on the RHS.

Proof. Do induction on the cardinal k of the skew diagonal of a tour entry. The
tour starts with a blue edge connected to blue vertex 1 . For k = 1, either a1,1 = 1
(true answer) where the next tour edge is green on top of a1,1, or a1,1 = 0 (false
answer) where the tour edge is green on the RHS.

Now suppose it is true for k = l. Let the tour entry on (l + 1)th SD be ap,q.
First let q = p − 1. Then am,p−1 = 0 for all m > p − 1 by reflection of (p − 1)th
row, and the sum of all ar,p−1, r = 1, ..., p − 1, is 1. Therefore, from the bottom
vertical edge of (p− 1)th column in the square ice lattice up to the bottom edge of
ap,p−1, the color changes evenly many times if p− 1 is odd, and oddly many times
if p − 1 is even. So the bottom edge of ap,p−1 is always green. Therefore the next
tour edge is blue on RHS of ap,p−1.

Then let q ≥ p. WLOG, assume the preceding tour edge of ap,q is blue, otherwise
reverse all the colors below. If the answer at ap,q is true, we choose the top edge of
ap,q to go to the next tour entry ap+1,q by step 4. This edge is green, since either
ap,q = 1 and the preceding edge is on LHS, or ap,q = 0 and the preceding edge is at
the bottom. Otherwise the answer is false, and we would choose the RHS edge and
move rightwards by step 6 and 7. This edge is green both when ap,q = −1 (bottom
preceding edge) and when ap,q = 0 (LHS preceding edge).

�

Proposition 3.9. On the SD of a tour entry ap,q on kth SD:
(1) The blue paths that cross the kth SD at an entry between ap,q and aq,p are

disjoint from each other;
(2) The entries below ap,q belong to a single blue path.

In particular, if ar,n=1, then the entries on any SD on top of ar,n belong to
disjoint blue paths.

The situation is exactly the same for green paths.

Proof. Set up induction of the first assertion on the cardinal k of SDs. For k = 1
it is trivial. Suppose the result is true for k = s, and let ap0,q0 be the tour entry in
this SD. We claim that

(1) the edge configurations from ap0,q0 to aq0,p0 must be the same, and
(2) the 2 blue edges at each entry are on different sides of the SD.

We divide into 2 cases, illustrated below by figure 3.
The first case is ap0,q0 = 1 or -1. If not all the blue edges of the entries are

vertical or horizontal, then a pair of adjacent entries would be connected together,
contradicting induction hypothesis.

The second case is ap0,q0 = 0, the corner shapes formed by the blue edges must
agree. Otherwise, find a pair of adjacent entries, ap1,q1 and ap2,q2with distinct
corner shape in the SD. Then, the color of either their LHS edges or their bottom
edges are distinct. WLOG, assume the former possibility. Now going backwards
along the tour, we can find the first SD, say of cardinal k− t, with nonzero entries.
Consider ap1,q1−t and ap2,q2−t on this SD. Both of these entries are in between
the tour entry and its reflexive counterpart on (k− t)th SD. However, since all the
entries in between ap1,q1(included) and ap1,q1−t(excluded) are 0, the LHS edge color
alternates t times, and same for in between ap2,q2 and ap2,q2−t. So the colors of
LHS edges of ap1,q1−t and ap2,q2−t are distinct, contradicting the first situation.

Now if q0 > p0, then the 2 blue edges must be on different sides of the SD,
otherwise the (at least 2) entries in between would be in a single blue path. In
the case q0 = p0 and ap0,p0 6= 0, if they are on the same side, then the LHS edge
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Figure 3. FPL configuration on kth skew diagonal, between ap0,q0

and aq0,p0 . Left: ap0,q0 6= 0; Right: ap0,q0 = 0. The edges with
arrows refers to tour edges.

of ap0,p0−1 and the RHS edge of ap0−1,p0 will be the same, which contradicts the
switching of colors by the reflection.

Now let k = s + 1 and the next tour entry be ap,q, which is 1 edge away from
ap0,q0 . From ap,q to aq,p, the LHS and bottom edges have the same color, by
hypothesis. Since every entry is equal, their final edge configuration are the same.
But since all corresponding edges are parallel, the original blue paths still keep
disjoint. (1) is proved.

For (2), we set up induction hypothesis on cardinal k of skew diagonals, that all
blue edges of entries (and external vertices) below the tour entry ap0,q0 on the kth
SD are on the same side of kth SD, and so are all green edges. This time we start
from (2n− 1)th SD, which is trivial.

First note each entry below ap0,q0 on kth SD is 0. Assume the claim works for
k = r. Note that if k = r is even, then by simple odd/even parity argument, all
blue edges of entries below ap0,q0 are below the rth SD. Consider the entry ap0−1,q0 ,
on (r − 1)th SD. Then all entries on (r − 1)th SD below ap0−1,q0 have the green
edges below, and the blue edges above (r − 1)th SD. Divide into 2 cases:

(1) ap0−1,q0 is a tour entry, then we are done.
(2) Otherwise, the tour entry on (r− 1)th SD is ap0,q0−1, its RHS tour edge is

green, and the bottom edge of ap0,q0 is blue, by above proof of (1). Thus
both green edges of ap0−1,q0 are below (r − 1)th SD.

So the claim holds for k = r− 1, with the case k = r odd being the same except
reversing all the colors. Thus all blue edges of entries and external vertices below
ap0,q0 on kth SD are in a single blue path (same for green). An illustration is shown
in Figure 4.

�

Combining lemma 3.8 and proposition 3.9, we can easily see that the SDA is
equivalent to forming the tour by the rules in lemma 3.8, setting the entries below
the tour as 0, do SDF along the tour, and then do RC. From the above proof, we
also see that closed loops of blue(green) edges never appear.
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Figure 4. FPL configuration on a skew diagonal, for entries below
the tour entry. The edges with arrows refer to tour edges.

Lemma 3.10. Suppose a tour entry ap,q, q < n, is on kth SD, and the previous
tour entry is ap0,q0 . Then

(1) If the RHS edge of ap,q is blue, then the blue path γ1 at ap0,q0 is joined to
the blue path γ2 below the (k + 1)th SD.

(2) Otherwise, γ1 and γ2 never meet.
Blue can be replaced by green.

Proof. (1): ap0,q0 = ap−1,q or ap,q−1, so γ1 is 1 horizontal blue edge away from γ2.
By connecting this blue edge, the two blue paths are joined.

(2): Otherwise, the RHS edge is green, and they are not joined. The next tour
entry is ap,q+1, and both γ1 and γ2 cross the (k + 1)th SD above ap,q+1 and below
aq+1,p. By proposition 3.9, they never meet.

�

Adopting notations from lemma 3.10, we have

Proposition 3.11. For tour entry ap,q, 1 ≤ q < n, q ≥ p, suppose the previous
tour edge is blue(green). Then the two external vertices, one in γ1 and the other
in γ2, coincide with the blue(green) question checked at ap,q. Thus by lemma 3.10
the link status of the questioned pair on the FPL diagram agrees with the answer.
If p = q +1, then the RHS tour edge of ap,p−1 ensures that at ap,p, the two vertices
in γ1 and γ2 are p and 2n + 1 − p, coinciding with the question ?(p, 2n + 1 − p)
checked at ap,p.

Proof. Do induction on the number k of skew diagonals. For k = 1, it is the same
as ?(1, 2n). If it is false, the next tour entry is a1,2 with the green question ?[1, 2].
Otherwise, the next tour entry is a2,1, and a2,2 is joined by the blue edge to vertex
2. The blue path below the 4th SD is from blue vertex 2n− 1, so the next question
is ?(2, 2n− 1) by reflecting at a2,2. Suppose the theorem is true for k = l − 2 and
k = l − 1. We should prove it goes on to k = l and l + 1.

First assume both the tour entries at (l − 2)th and (l − 1)th SD are below or
on the SLD. Let the tour entry at (l − 1)th SD be ap0,q0 and the previous edge
is blue. The two blue paths γ1, γ2 come from blue vertices r0,s0 respectively. By
hypothesis, the blue question checked at ap0,q0 is ?(r0, s0).

If ?(r0, s0) is false, then the next tour entry is ap0,q0+1. Consider the blue path
γ3 from blue vertex s0 − 1, which is below (l + 2)th SD by proposition 3.9. At
ap0,q0+1, γ2 and γ3 are 2 horizontal edges apart. But regardless of the answer at
ap0,q0+1, the next tour edge is blue, and γ2 comes 1 horizontal edge closer to γ3.
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(False answer is obvious, and true answer is demonstrated in Figure 5.) By lemma
3.10, the two vertices concerned at the tour entry ap1,q1 on (l + 1)th SD coincide
with the blue question ?(s0, s0 − 1) checked at ap1,q1 .

Figure 5. The induction from (l−1)th SD to (l+1)th SD, ?(r0, s0)
false. ap0,q0 = 0, the question checked at ap0,q0+1 is true, i.e.
ap0,q0+1 = 1 and the shaded edges (with the dot) are thus deter-
mined.

Now let ?(r0, s0) be true. Then the next blue question would be at ap1,q1 on
(l + 1)th SD. Let γ1 be the blue path at ap1,q1 , and γ2 the blue path just below
(l + 2)th SD. Same as above, γ2 comes from s0 − 1. Suppose γ1 joins the blue
vertex r1. We claim that r1 is the first blue vertex clockwise from r0 that belongs
to no links confirmed by a question checked at any preceding tour entry . Then it
coincides with the blue question checked at ap1,q1 . In both cases, the link status
agrees with the answer as lemma 3.10 indicates.

To prove our claim, we see that r1 cannot be any of the confirmed vertices, by
part 2 of lemma 3.10. Now as we go along (l +1)th SD from ap1,q1 (positively), the
blue paths passing through each entry are below lth SD and disjoint. These paths
are all bounded below by γ1, which joins r1. This means r1 is the first unconfirmed
vertex clockwise from r0, as desired. This is illustrated in Figure 6.

The induction from l−2 to l of green questions is analogous, except the entry on
lth SD is above the SLD and the blue path passing through this entry joins ap1,q1 ,
and by above induction from l − 1 to l + 1 the blue path actually links vertex p1.

Then assume the tour entry on (l − 2)th SD is above the SLD. This entry is
ap,p−1. By induction hypothesis, the two desired vertices at ap,p on (l − 1)th SD
are p and 2n + 1 − p. Actually, l = 2p. If the answer is true, the next tour entry
is ap+1,p. The blue path γ1 passing through ap+1,p connects to vertex p + 1, since
the reflection image of γ1, which is a green path, passes through ap,p+1 and by
proposition 3.9 goes down to the green vertex p + 1. By the RHS blue edge γ1

connects ap+1,p+1, and γ2 below (l + 2)th joins 2n − p. Otherwise, the next tour
entry is ap,p+1. The color question to be checked is then ?[p, p + 1]. But the RHS
edge of ap,p is green, meaning that ap,p+1 is connected to green vertex p by a green
path. The green path below (l + 1)th SD links p + 1, so we are done.

�
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Figure 6. The induction from (l − 1)th SD to (l + 1)th SD, ?(r0, s0) true

Thus, before the tour reaches nth column, the ASM fits perfectly with all the
previous answers, which are independent in the sense of proposition 3.4. The last
step is to show the remaining construction of the ASM is in accordance with the
subsequent true answers.

Proposition 3.12. If ap,n = 1, then the n− p consulted but unconfirmed vertices,
labelled clockwise as t1, ...tn−p, are linked on the lattice to the vertices t1−1, ..., t1−
n + p respectively. This is consistent with π0 and thus πB = π0 = πG.

Proof. Just before the tour arrives at ap,n, by proposition 3.11 the link status of all
consulted vertices on the FPL agrees with π0. By proposition 3.4, these questions
and answers uniquely determine π0 and yield the subsequent blue or green links,
(t1, t1−1), ..., (tn−p, t1−n+p). By setting ar,n = 1, we confirm the link (t1, t1−1).
On (n + p − 1)th SD, all entries are 1, so by proposition 3.9, all entries belong to
disjoint blue paths, so the (n− p + 1) links must be arranged clockwise from t1 to
tn−p. Now proposition 3.11 continues to hold, except that γ2 from t1 − i consists
of a single blue or green edge from the vertex and is above the SD. ar,n=0 if r > p
since we always fill in vertical edges alternating in blue and green. This corresponds
to confirming a trivially true question.

�

Thus, theorem 3.1 is proved.

4. ASMs with Antipodal Blue and Green Link Patterns

Recall π1 is antipodal to π0 if π1 differs from π0 by the 180 degree rotation. By
reflecting a FPL diagram about the matrix diagonal, and switching the colors of
all edges, we switch blue pairings (r, s) to the antipodal green ones [r + n, s + n]
(mod 2n). In particular, if the ASM is invariant under reflection by the matrix
diagonal, then πB and πG are antipodal to each other. Therefore our algorithm to
construct ASMs with antipodal blue and green link patterns is essentially a vertical
reflection version of the SDA. But to make things precise, we need some definitions.

Definition 4.1. A lattice diagonal(LD) is a line of matrix entries parallel to the
standard lattice diagonal in definition 2.8. The kth lattice diagonal, k = 1, ..., 2n−1,
is the set of entries:
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• k = n: ar,r, r = 1, ..., n (the standard lattice diagonal)
• k < n: ar,n−k+r+1, r = 1, ..., k
• k > n: ak−n+1+r,r, r = 1, ...2n− k

The positive direction of a lattice diagonal is going from the bottom left entry
to the top right entry.

Definition 4.2. A pseudo-tour in an FPL state is a path of edges such that
(1) it starts from the external vertex opposite to the blue vertex 1;
(2) it only goes leftwards and upwards;
(3) blue and green edges in the path alternate.

A pseudo-tour entry(pseudo-tour edge) is an entry(edge) in the pseudo-tour.
The pseudo-tour can also be realized in the corresponding ASM, where the starting
entry is the bottom right entry.

Now for a link pattern π0, let π1 be its antipodal link pattern. From now on, let
β0 = bn

2 c+ 1 and α0 = β0 + n. Any number r referring to a vertex is realized as r
(mod 2n).

Definition 4.3. We define a sequence Bπ of pseudo-blue questions, ?(rk, sk), and
a sequence Gπ of pseudo-green questions, ?[uk, vk]. Both link patterns are on the
circle. Each pseudo-color question asks for whether two vertices i, j are in a link in
π0, and belongs to only one color. Similar to color questions, we define pseudo-color
questions within one cancellation cycle.

First, let n be odd. Then all questions ?(α0 + 1 − p, α0 + p) are pseudo-blue
questions. Otherwise n is even, and ?[α0−1+p, α0−p] are pseudo-green questions;
in both cases, p = 1, ..., n. Every cancellation cycle starts from a pseudo-color
question of these types and ends before the next such question arise. Bπ and Bπ

combine to form the pseudo-color question sequence Qπ by the order of appearance
of each question.

So now we fix a cancellation cycle. In the cycle, the first pseudo-blue question is
?(α0 + 1 − q, α0 + q). Suppose ?(rk, sk) is asked, where sk is between the circular
arc clockwise from α0 + 1 to β0 for n odd and to β0 − 1 for n is even. Then the
next pseudo-blue question (if applicable) is ?(rk+1, sk+1) where sk+1 = sk + 1, and

• rk+1 = sk if ?(rk, sk) is false;
• rk+1 is the first blue vertex counterclockwise from rk, such that rk+1 is

NOT confirmed by any previous pseudo-color question (not restricted in
this cycle);

The first pseudo-green question in the cycle is ?[α0− 1+ q, α0− q]. If ?[uk, vk] is
the kth pseudo-green question, where vk is between the arc counterclockwise from
α0−1 to β0 for n even and to β0+1 for n odd. Then the next pseudo-green question
(if applicable) is ?[uk+1, vk+1] where vk+1 = vk − 1, and

• uk+1 = vk if ?[uk, vk] is false;
• uk+1 is the first green vertex clockwise from uk, such that uk+1 is NOT

confirmed by any previous pseudo-color question.
If n is odd, the last possible pseudo-green question is when vk = β0 + 1 and the

last possible pseudo-blue question is when sk = β0. If n is even, the last possible
pseudo-green question is when vk = β0 and the last possible pseudo-blue question
is when sk = β0 − 1.

It is easy to see that pseudo-color questions are blue and green questions with dif-
ferent initial condition, with pseudo-blue(green) questions corresponding to green(blue)
questions. Therefore similar to color questions, no pseudo-color question repeats
itself.

Similar to the two constructions SDF and RC, we have
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Definition 4.4. In an incomplete matrix, if an entry ar,s is determined, then the
Lattice Diagonal Filling(LDF) process is to set ap,q = ar,s if

(1) ap,q is on the LD of ar,s, and;
(2) ap,q is above ar,s and below or on the matrix diagonal, i.e. p > r and

p + q ≤ n + 1.
And the Lattice Reflection Construction(LRC) is to set ap,q = ar,s where ap,q is

the image of ar,s under reflection about the matrix diagonal, i.e. p = n + 1− s, q =
n + 1− r.

Fixing a link pattern π0 of 2n vertices, we are now in a position to define the
Lattice Diagonal Algorithm(LDA). However, writing the algorithm in the form of
section 2.2 is clumsy and obscures the great similarities between these two algo-
rithms. Recall lemma 3.8, which provides a simple tic-tac-toe approach to define
SDA. We would like to include the LDA in the following theorem.

Theorem 4.5. Let π1 be the antipodal link pattern of π0. We construct an n× n
FPL state as follows. Before we start to work on an empty square ice lattice, record
the sequence of pseudo-color questions Qπ and the answers.

First, construct a pseudo-tour in the square ice lattice. The pseudo-tour starts
from a1,n, and check the answer of first pseudo-blue question ?(α0, α0 + 1) for n
odd; the first pseudo-green question ?(α0, α0 − 1) for n even. In general, at an
undetermined pseudo-tour entry, we check the kth pseudo-color question in Qπ if
it is the kth pseudo-tour entry below or on the matrix diagonal, and fill the next
pseudo-tour edge by the following rules:

(1) Blue and green colors alternate;
(2) If a top edge appears on top of ar,n+1−r, then the next tour edge is on the

LHS of ar+1,n+1−r (actually for n odd this edge is blue, for n even it is
green);

(3) If the question checked at ap,q is true, then fill the next edge on top of the
entry; otherwise, fill it on the LHS.

After the pseudo-tour in the square ice lattice is completed, all pseudo-tour en-
tries in the corresponding ASM are determined. Then do LDF along each pseudo-
tour entry, set all the entries below the pseudo-tour as 0, and then do LRC for all
entries.

Then the matrix so constructed is an ASM with πB = π0 and πG = π1.

The proof of theorem 4.5 imitates theorem 3.1, and most results can actually be
adopted by making analogues in this situation. First, determination of π0 and thus
π1 by pseudo-color questions are exactly the same, since pseudo-color questions are
basically color questions with different initial conditions. Second, the observations
in section 3.2 applies here, except to replace tour by pseudo-tour, questions by
pseudo-color questions, the skew diagonals by lattice diagonals(LD), the identical
blue and green pairings by antipodal ones, etc. We will not present the detailed
proof of these analogue propositions. Still, we need some counting lemma like
lemma 3.5 to prove that pseudo-tour always reach the top left corner an,1 and thus
LDA completes a matrix. We state the lemma as follows:

Lemma 4.6. When the pseudo-tour proceeds to ap,q, there are n+2−p−q vertices
if p+q < n+1, or if p+q = n+1 and the previous pseudo-tour entry is ap−1,n+1−p.
Otherwise, there is none at the pseudo-tour entry ap,n+1−p.

We reorganize the flow of proof in section 3 and outline the proof of theorem 4.5.

Proof of theorem 4.5. First, the rules of pseudo-tour implies the filling of pseudo-
tour entries in a matrix in the same way as section 2.2, except to replace rightward
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movement by leftward, and the next two pseudo-tour entries are ap+1,n+1−p and
ap+1,n−p if the answer of the pseudo-color question at ap,n+1−p is true. By analogue
of proposition 3.4, the counting lemma 4.6, and construction of LDA, the pseudo-
tour will have a first entry ap,1 in the leftmost column and then arrive at an,1, so
the matrix is complete. By similar entry chasing as in proposition 3.7, the matrix
is an ASM with πB and πG antipodal to each other.

Similar to proposition 3.9 and 3.10, we find that, on the lattice diagonal of a
pseudo-tour entry ap,q, entries below belong to a single blue(green) path and entries
between ap,q and an+1−q,n+1−p belong to disjoint paths, and a choice of LHS edge
of the pseudo-tour entry directly confirms or falsifies the link between two vertices.

We set up induction on the cardinal l of lattice diagonals (from l − 2, l − 1 to
l, l + 1) of pseudo-tour entries, and claim that, as long as q > 1,

(1) If the question checked at ap,q is pseudo-blue ?(r, s), r, s are the two vertices
from γ1 at ap,q and γ2 below the (l + 1)th lattice diagonal;

(2) If it is pseudo-green ?[u, v], then the two vertices above are u+n and v+n,
i.e. antipodal to u, v.

(3) If the pseudo-entry is above the matrix diagonal, then its LHS edge ensures
that the vertices in γ1 and γ2 are α0 +1−p and α0 +p for n odd; α0−1+p
and α0 − p) for n even.

Let ap0,q0 , ap1,q1 be the pseudo-tour entries on (l−2)th, (l−1)th LD respectively.
At most one of them is above the matrix diagonal. We can assume the pseudo-
tour entry ap1,q1 on (l − 1)th LD is below or on the matrix diagonal, since this
already contains the case when ap0,q0 is so. Let the question at ap1,q1 be ?(r0, s0)
if pseudo-blue, ?[u0, v0] if pseudo-green.

First let the pseudo-tour entry ap0,q0 on(l − 2)th LD be below or on the matrix
diagonal also. The color of question at ap2,q2 on (l +1)th LD is the same as that at
ap1,q1 (on (l− 1)th LD). We verify the induction from l− 1 to l + 1 by noting that
the blue(green) path γ1 at the pseudo-tour entry on (l + 1)th LD is the lowest one
among all disjoint paths above this entry. If the question is ?(r0, s0) at ap1,q1 , then
γ1 connects to the first unconfirmed vertex counterclockwise from s0+1 (in the blue
path below (l+2)th LD), so it coincides with the pseudo-blue question ?(r1, s0 +1)
checked at ap2,q2 . If the question is ?[u0, v0] at ap1,q1 , then γ1 connects to the first
unconfirmed vertex counterclockwise from v0 − 1 + n, which is then u1 + n. So it
coincides with the pseudo-green question ?[u1, v0 − 1] checked at ap2,q2 .

Then let ap0,q0 on (l − 2)th LD be above the diagonal. We have to separate
n being odd and even. Let n be odd. The question at ap0,q0−1 is by hypothesis
?(α0 +1−p0, α0 +p0). If the answer is true, the blue vertex α0−p0 is connected to
ap0+1,q0−1 and then by the LHS blue edge to ap0+1,q0−2. This matches the question
checked at ap0+1,q0−2 which is ?(α0 − p0, α0 + p0 + 1). If the answer is false, a
cancellation cycle starts and the next question is pseudo-green ?[α0+1−p0, α0−p0],
which is proved in the above paragraph.

Let n be even. The pseudo-green question at ap0,q0−1 is by hypothesis ?[α0 −
1 + p0, α0 − p0]. If the answer is true, then the green vertex β0 + p0 = α0 + p0 − n
is connected to ap0+1,q0−1 and then by the LHS green edge to ap0+1,q0−2, and this
matches the next question ?[α0 + p0, α0 − p0 − 1] checked at ap0+1,q0−2. The false
answer is same as above.

Finally, the situation after the first column is reached by the pseudo-tour is again
analogous to proposition 3.12.

�
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5. Application of the Results

Given a link pattern π0, we already have SDA and LDA in our disposal. If π0 is
not antipodal to itself, then obviously these two algorithms generate distinct ASMs.
However, this is far from imposing strong enough restrictions on π0 to be achieved
by a unique ASM.

A wonderful tool to simplify our investigation is a weak form of the Wieland’s
theorem [4]:

Theorem 5.1. For link patterns π0 and π1, if π1 is obtained from π0 by a dihedral
action, i.e. composition of a rotation of kπ/n with a reflection, then the set of
ASM(n) with πB = π0 is in bijection to the set of ASM(n) with πB = π1.

We recall and adopt the notation in 3.3. It is trivial to see each link pattern has at
least 2 adjacent links. On the other hand, the link pattern π0 = (r1, s1), ..., (rn, sn)
has exactly 2 adjacent links, and indeed, up to dihedral symmetry, this is the unique
pattern that has such a property:

Lemma 5.2. A link pattern π1 has exactly 2 adjacent links if and only if π1 and
π0 differ by the action of a suitable rotation composed with a reflection.

Proof. Suppose π1 has exactly 2 adjacent links. By a dihedral action, we may
assume one of the adjacent link to be (1, 2n). This is exactly the first color question
defined in definition 2.2. We claim that all subsequent n − 1 color questions are
true, and this directly implies the lemma.

From the first question (1, 2n), let the first false answer appear at the pth ques-
tion. Here p < n. Then the next true answer, which exists by virtue of proposition
3.4, confirms an adjacent link. Now if this is the point of determination of π1, then
by proposition 3.4, there is another adjacent link, namely, (t1−n+p, t1−n+p+1),
distinct from the previous 2. This is impossible. Otherwise, continue asking ques-
tions up to the determination point, and same as above, we will find another adja-
cent link distinct from the previous 2.

�

Definition 5.3. A link is called strictly bottom adjacent link if it is a bottom
adjacent link and both vertices belong to the set r1, ..., rn defined in definition 3.2.

Lemma 5.4. Suppose π1 has more than 2 adjacent links, and let π2 be the antipodal
link pattern of π1 (they can be the same). Then either π1 or π2 has 2 bottom adjacent
links and one of them is strictly bottom.

Proof. Let T = {s1, ..., sn} be the set complement to the set of bottom vertices
B = {r1, ..., rn}. T is indeed the set antipodal to B. If π1 has at least 3 adjacent
links, then there exists 2 adjacent links with vertices in either T or B, and one of
them has both vertices in the set chosen above. If this set is T , then we choose π2,
otherwise we choose π1.

�

Proposition 5.5. If π1 has more than 2 adjacent links, then it is achieved by at
least 2 distinct ASMs.

Proof. By theorem 5.1, the number of ASMs with πB = π1 is equal to that with
πB = π2, and by lemma 5.4, we may, WLOG, consider π1 having a strictly bottom
adjacent link. The SDA generates a 1 at the closest adjacent link to blue vertex
1, and all other bottom row entries 0. But the LDA generates a 1 at the farthest
adjacent link from blue vertex 1. The location of the corresponding entries for these
two adjacent links are distinct, so the resultant ASMs are distinct.

�
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Thus the necessary part of theorem 1.5 is established.

Remark 1. The proof of proposition 5.5 does not contradict the case of exactly 2
adjacent links, since either there is only 1 strictly bottom adjacent link, or the 2
non-strictly bottom adjacent links coincide at the corner. Thus SDA and LDA do
not produce distinct ASMs.

Now we move on to prove the sufficiency part of theorem 1.5.
First we need the definition of gyration operation, which is due to Wieland [4].

Definition 5.6. Gyration is an operation G: ASM(n) 7→ ASM(n) defined as follows.
First we label the unit squares created in the square ice lattice. Label each vertex

(i, j) 1, where the bottom left vertex is (1, 1) and numbers increase as you move
up and right. A unit square is labeled by parity of i + j, where (i, j) is the box’s
bottom left vertex. So now the unit squares are divided into even and odd boxes.

First define Geven. Visit every even box. If one pair of opposite edges in the box
is blue and the other pair is green, then switch the colors of all edges. Otherwise,
the box remains the same. Godd is defined in the same way, except by acting on
the odd unit squares. Then the gyration is defined as G = Geven ◦Godd.

Lemma 5.7. Let A ∈ ASM(n) such that it is the only ASM with its specific blue
link pattern π0. Then the blue link pattern of A′ = G(A) can be achieved only by
A′.

Proof. Let the blue link pattern of A′ be π1. Suppose that π1 can be achieved by
B distinct from A′. But that means that both G−1(A′) and G−1(B) must have
the same blue link pattern, namely π0. But since π0 can only be achieved by A,
G−1(A′) = G−1(B) = A. This is contradiction, since G is a bijection. So π1 is
achieved only by A′.

�

Now we are ready to prove the following theorem.

Theorem 5.8. There exist at least n blue link patterns such that it is achieved by
a unique ASM(n).

Proof. Note that in any FPL of size n, there are exactly n(n−1) blue edges. Using
this fact, we will prove Theorem 5.8.

Lemma 5.9. The fewest number of blue edges necessary to achieve a blue pairing
with two adjacent links can be realized in the following way. First create the two
adjacent links in the simplest way. After creating link (i, j) with i < j, link (i −
1, j + 1) in the shortest way that fits.

Proof. Assume that pair (i, j) is not drawn in the shortest way possible, and that
all links nested within it are. That means that this blue edge must extend further
into the middle of the diagram. But that means that, in order to avoid two blue
edges crossing, (i-1,j+1) must also bulge outward and no longer take it’s shortest
path. This will continue until you reach the other adjacent link, which is already as
short as possible. It cannot become any shorter because of some other edge being
longer. Thus, this is not the smallest possible blue edges. So the greedy algorithm
does produce the fewest blue edge segments. �

We first find one ASM with a unique matching in four distinct cases.

Case 1. n ≡ 0 mod 4.

1Please note this is not to be confused with the link notation.



20 FRASER CHIU KIM HONG, ALEX CLONINGER, AND NOAH STEPHENS-DAVIDOWITZ

Start with a blank square ice lattice and draw the shortest path linking (n
4 , n

4 +1).
After linking (i, j) with j > i, link (i − 1, j + 1) with shortest possible path. The
first link has 2 blue edges, and the next link must have 8, etc. In general, it is easy
to check that the ith link for i <= n/4 (the left side) will have (6i− 4), making the

total for the left side
n/4∑
i=1

(6i− 4) = 3
(n

4

)2

− n

4
. By symmetry, the sum will be the

same on the left.

Reindex the links so that links 1 through n
4 are the leftmost links between the

top and bottom of the FPL. Then it is easy to see that the ith link will have
(n

4 − i + 1) + (n
4 − i) + (n − 1) edges, making the total contribution from top-to-

bottom links

2
n/4∑
i=1

[
(
n

4
− i + 1) + (

n

4
− i) + (n− 1)

]
= 2

[(n

4

)2

+
n

4
(n− 1)

]
.

Then the total number of blue edges is

2
[(

n
4

)2 + n
4 (n− 1)

]
+ 2

[
3

(
n
4

)2 − n
4

]
= n(n− 1).

But this is the maximum blue edges allowed, and since the shortest link paths
are unique, there can only be one ASM with this link pattern.

Case 2. n ≡ 2 mod 4.

Start with a blank FPL and draw the shortest path linking (n+2
4 , n+2

4 + 1).
Continue adding loops as in Case 1. It is easy to check that the ith link for i < n/4
(the left side) will have (6i−4) edges and the (n+2

4 )th loop has 6
(

n+2
4

)
−5, making

the total for the left side(n−2)/4∑
i=1

(6i− 4)

 + 6
(

n + 2
4

)
− 5 = 3

(
n + 2

4

)2

− n + 2
4

− 1.

By symmetry, this number will be the same for the right side.

Reindex the links so that links 1 through n−2
4 are the leftmost links between the

top and bottom of the FPL. Then it is easy to see that the ith link will have
(n+2

4 −i−1)+(n+2
4 −i)+(n−1) edges, making the total top-to-bottom contribution

2

n−2
4∑

i=1

[
(
n + 2

4
− i− 1) + (

n + 2
4

− i) + (n− 1)
]

= 2

[(
n + 2

4

)2

+
n + 2

4
(n− 5)− n + 2

]
Adding them all together,
2

[(
n+2

4

)2 + n+2
4 (n− 5)− n + 2

]
+ 2

[
3

(
n+2

4

)2 − n+2
4 − 1

]
= n(n− 1).

Again, this is the maximum number of blue edges allowed, and since the short-
est link paths are unique, there can only be one ASM with this link pattern.

Case 3. n ≡ 1 mod 4.

Start with the blank square ice lattice and draw the shortest path to link
( 3n+1

4 , 3n+1
4 + 1). Continue adding links as in Cases 1 and 2. It is easy to check

that the ith link for i < (n − 1)/4 (the top side) will have (6i − 4) edges, making

the total contribution
(n−1)/4∑

i=1

(6i− 4) = 3
(

n− 1
4

)2

− n− 1
4

.
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By symmetry, this number will be the same for the bottom.

Reindex the links so that links 1 through n−1
4 are the highest links between the

left and right of the FPL. Then it is easy to see that the ith link will have
(n−1

4 − i + 1) + (n−1
4 − i + 1) + (n − 1) edges and the middle link will have n − 1

edges, making the total contribution

2

n−1
4∑

i=1

(
n− 1

4
− i + 1) + (

n− 1
4

− i + 1) + (n− 1)

 + (n− 1)

= 2

[(
n− 1

4

)2

+
n− 1

4
(n)

]
+ n− 1.

This again sums to n(n − 1), and by the same argument, the described link
pattern gives a unique ASM.

Case 4. n ≡ 3 mod 4 and n > 3 1

Start with the blank square ice lattice and draw the shortest path to link
(n+1

4 , n+1
4 + 1). Continue adding links as in the previous cases. It is easy to

check that the ith link for i ≤ (n+1)/4 (the left side) will have 6i−4 lines, making
the total contribution
(n+1)/4∑

i=1

(6i− 4) = 3
(

n + 1
4

)2

− n + 1
4

By symmetry this number will be the same for the right side.

Reindex the links so that links 1 through n−3
4 are the leftmost links running from top

to bottom. Then it is easy to see that the ith link will have (n−3
4 −i+1)+(n−3

4 −i+1)
and the center link will have n− 1, making the total contribution

2

n−3
4∑

i=1

(
n− 3

4
− i + 1) + (

n− 3
4

− i + 1) + (n− 1)

 + (n− 1)

= 2

[(
n− 3

4

)2

+
n− 3

4
(n)

]
+ n− 1

Summing these, we again find that the shortest paths take a total of n(n−1) edges.
So by the argument used earlier, the ASM with this link pattern is unique.

Note that in all of our examples, the link pattern is invariant under 180◦ rotation
(i.e. self-antipodal), but not invariant under any smaller rotation. Gn defines a 180◦

rotation of the pairing, so A,G(A), ...Gn−1(A) are n distinct matrices. By Lemma
5.7, the link patterns of these matrices can be achieved only by the corresponding
matrices.

�

6. Possible Directions

Given a link pattern π1, it is a natural question to ask for which link pattern π2

does there exist an ASM(n) with πB = π1 and πG = π2. We are far from starting
to solve this, but inspired by the theorem 1.2 and 1.3, we conjecture that

1The theorem can be checked for n = 3, but the proof fails.
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Conjecture 1. For two link patterns π0 and π1, if there exists an ASM with
πB = π0 and πG = π1, then there also exists one with πG = π2 and π2 is antipodal
to π1.

Note that Wieland’s result in [4] does not apply, since πB is not rotated accord-
ingly. We further conjecture, based on empirical evidence, that

Conjecture 2. The set of ASM(n) such that (πB , πG) = (π1, π2) is bijective to the
set of ASM(n) with (π1, π3), where π3 is antipodal to π2.
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