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Abstract. For a partition λ = (λ1, . . . , λn), one can construct a Gelfand-Tsetlin polytope
GTλ associated to λ. For all GTλ, we give a formula for the diameter of the 1-skeleton
and exactly describe the combinatorial automorphism group Aut(GTλ). Letting m be the
number of distinct λi, we give an alternate proof of the formula in [GKT13] counting the
number of vertices form ≤ 3, and we describe a general approach form ≥ 4. In a special case,
we can combinatorially describe the face poset, and use this to compute the f -polynomial.
We conclude with some observations and a re-derivation of a known formula.

1. Introduction and Main Results

Gelfand-Tsetlin polytopes are constructed according to a partition λ and are of combinato-
rial interest for many reasons. Their integer points are in bijection with semi-standard Young
Tableaux of shape λ, which have applications in representation theory. In this paper, we
describe the diameter of the one skeleton of GT polytopes and the combinatorial automor-
phism group of GT polytopes. Our main theorems are stated below. We also examine some
of the combinatorial properties of the GT polytopes including the enumeration of vertices
and the special case when λ = 12n−23. First, we formally define GT polytopes and introduce
some quick notation.

A partition λ of s is a sequence of weakly increasing positive integers λ = (λ1 ≤ λ2 ≤ λ3 ≤
. . . ≤ λn) such that ∑

n
i=1 λi = s. We will often use multiplicative notation for λ and write

λ = (λa11 , λ
a2
2 , . . . , λ

am
m ) for a1, . . . , am ∈ Z≥0 to denote a partition with a1 copies of λ1, a2 copies

of λ2, and so forth. We may omit writing the term λaii if ai = 0.

Definition 1.1 (GT Polytope). Given a partition λ = (λ1, λ2, . . . , λn), the Gelfand-Tsetlin
Polytope GTλ is the set of points x⃗ = (xi,j)1≤j≤i≤n ∈ Rn(n+1)/2 with xi,i = λi satisfying the
following inequalities:

(1) xi−1,j ≤ xi,j ≤ xi+1,j,
(2) xi,j−1 ≤ xi,j ≤ xi,j+1.

Suppose for some i < j that λi = λj. Then for every i′ ≥ i and j′ ≤ j, we are forced to have
xi′,j′ = λi. Whenever such a situation occurs, we say that xi′,j′ is fixed. In general, GTλ will
be a polytope in Rd where d is at most n(n − 1)/2.
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These constraints can be visualized in a triangular array as shown in Figure 1. The polytope
GTλ corresponds to all sets of real numbers that can fill this triangular array with columns
and rows weakly increasing.

λ1

≤

x2,1 ≤ λ2

≤ ≤

x3,1 ≤ x3,2 ≤ λ3

≤ ≤ ≤

x4,1 ≤ x4,2 ≤ x4,3 ≤ λ4
⋮ ⋮ ⋮ . . .

xn,1 ≤ xn,2 ≤ . . . ≤ xn,n−1 ≤ λn

Figure 1. Inequality constraints of GT polytopes.

We specify some notation and introduce two ways to model the faces of GTλ: GT tilings
and ladder diagrams.

Definition 1.2 (Notation). We adopt the following conventions:

● n denotes the length of λ.
● m denotes the number of distinct values of λ.

● d denotes the dimension of GTλ. It is easy to see d = (
n
2
) −

m

∑
i=1

(
ai
2
).

● If λ = (λ1, . . . , λn), define its reversal λ′ ∶= (λn, . . . , λ1).
● F(GTλ) denotes the face poset of GTλ ordered by inclusion.
● In = {(i, j) ∶ 1 ≤ j ≤ i ≤ n} denotes the triangular grid with shape shown in Figure 1.

For any polytope P , the 1-skeleton of P is a graph obtained by taking the vertices and edges
of P . The diameter of a connected graph G is the minimum number of edges it takes to
connect any two vertices. For GT polytopes, this combinatorial diameter is surprisingly low,
and we have an exact formula for it’s value given a partition λ.

Theorem (3.5). For any GT polytope GTλ, diam(GTλ) = 2m − δ1,a1 − δ1,am

We also completely describe the combinatorial automorphism group of GTλ, and discuss
when such automorphisms are can be thought of as affine transformations or as purely
combinatorial functions on the faces.

Theorem (4.18). Suppose λ = (1a1 ,2a2) and a1, a2 ≥ 2. If a1 = a2 = 2, then

Aut(GTλ) ≅D4 ×Z2.

Otherwise,

Aut(GTλ) ≅D4 ×Z2 ×Zδa1,a22
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Theorem (4.19). Suppose λ = 1a1 . . .mam and m ≥ 3. Let t = 1 if λ = λ′ and let t = 0
otherwise. Let j be the number of pairs ak, ak+1 ≥ 2. Then

Aut(GTλ) ≅ Zt2 ⋉ϕ (S
δ1,a1
a2 × S

δ1,am
am−1 ×Zj+12 ).

We conclude with some remarks on enumerative questions concerning these polytopes, such
as counting vertices or computing f -vectors. We show that any GT polytope decomposes as
a Minkowski sum of GT polytopes of part size 2, which themselves are notable because they
are isomorphic to order polytopes of the product of two chains.

2. Preliminaries

In this section, we give two ways to combinatorially describe F(GTλ), both of which have
distinct advantages in describing the facial structure of GTλ.

2.1. GT Tilings. It will be useful to think of the triangular array in Figure 1 as a triangular
grid In, whose squares are partitioned into tiles.

Definition 2.1 (GT Tilings, Definition 4.11 in [McA06]). Given a partition λ of length n
and the triangular grid In = {(i, j) ∶ 1 ≤ j ≤ i ≤ n}, a GT tiling is a partition T of In into
disjoint nonempty sets, called tiles, such that each tile T is connected (squares are adjacent
if they share an edge) and that if (i1, j1), (i2, j2) ∈ T , then (i, j) ∈ T if i1 ≤ i ≤ i2, j1 ≤ j ≤ j2
and i ≥ j.

These tilings form a poset ordered by refinement i.e. T1 ≤ T2 if T2 is a refinement of T1. Note
that this poset is also graded by number of tiles.

Theorem 2.2 (Theorem 4.14 in [McA06]). Let λ = (λ1, λ2, . . . , λn). Let Tλ denote the set of
tilings such that (i, i) and (j, j) are in the same tile if and only if λi = λj. Then F(GTλ) ≅ Tλ.

Proof. The isomorphism between the two is given by taking a valid point in GTλ, drawn
in the diagram depicted in Definition 1.1, and placing the diagram to fit inside In. Then,
adjacent boxes with equal entries are placed into the same tile. Figure 2 shows an example
of such transformation. For more details, see [McA06].
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Figure 2. Left: example of mapping a GT pattern to a GT tiling. Right:
the GT tiling.
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Remark 2.3. Given a point x ∈ GTλ, this theorem gives us a way to determine the dimension
of the minimal face containing x. Namely, map x to it’s tiling, and the dimension of this
minimal face will be the number of tiles - m. One way to see this is that Tλ is graded by
number of tiles, and the minimal number of tiles is m.

2.2. Ladder Diagrams. For every λ, we define a graph Γλ such that faces of GTλ cor-
respond to subgraphs of Γλ with certain restrictions. These subgraphs were introduced in
[ACK16] as ladder diagrams and will be helpful combinatorial models for the faces of GTλ.

Let Q be the infinite graph corresponding to first quadrant of the Cartesian plane, i.e. let
Q have vertices (i, j) for all i, j ≥ 0 and edges ((i, j), (i + 1, j)) and ((i, j), (i, j + 1)). For
convenience, define a0 = 0 and sj = ∑

j
i=0 ai for 0 ≤ j ≤m.

Definition 2.4 (Ladder Diagrams). For λ = (1a1 , . . . ,mam), the grid Γλ is an induced sub-
graph of Q constructed as follows. Let the origin be the vertex (0,0). Define terminal
vertices tj = (sj, n − sj) for 0 ≤ j ≤m. Γλ consists of all vertices and edges appearing on any
North-East path between the origin and a terminal vertex.

A ladder diagram is a subgraph of Γλ such that

(1) the origin is connected to every terminal vertex by some North-East path.
(2) every edge in the graph is on a North-East path from the origin to some terminal

vertex.

An example of the grid Γλ and some of its ladder diagrams are shown in Figure 3. All fixed
entries are shaded. The terminal vertices lie along the main diagonal of Γλ.
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Figure 3. Let λ = (12,21,42,73,81). From left to right: Γλ with origin and
terminal vertices in red and a dashed line indicating the main diagonal, ladder
diagram for a point in GTλ, ladder diagram for a 0-dimensional face (vertex),
and ladder diagram for a 2-dimensional face.

Definition 2.5 (Face Lattice of Ladder Diagrams). The face lattice of Γλ, denoted as F(Γλ),
is the set of all ladder diagrams ordered by inclusion.

Note that F(Γλ) is graded by number of bounded regions.

Theorem 2.6 (Theorem 1.9 in [ACK16]). F(GTλ) ≅ F(Γλ).
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Proof. An isomorphism is given by taking a point in GTλ and drawing lines around adjacent
groups of xi,j with equal value will produce a face of Γa. For more details, see [ACK16]. �

As with GT -tilings, given a point x ∈ GTλ, we can determine the dimension of the minimal
face containing x. Map x to it’s corresponding ladder diagram, and the number of bounded
regions will be the dimension of this minimal face. Again, to see this note that the minimal
elements of F(Γλ) are trees with 0 bounded regions.

Remark 2.7. Note that the posets Tλ and F(Γλ) only depend on the multiplicities ai and
not on the values of λi themselves. So when examining the purely combinatorial properties
of GTλ, it suffices to consider λ = (1a1 ,2a2 , . . . ,mam)

3. Combinatorial Diameters

In this section, we give an exact formula for the diameter of the 1-skeleton of GTλ, denoted
diam(GTλ). We use diameter to refer to the smallest number of edges required to connect
any two vertices. As explained in Remark 2.7, it suffices to consider λ = (1a1 , . . . ,mam) where
a1, . . . , am ∈ Z>0.

In order to study the diameters of the 1-skeleton of GTλ, we need to first understand what
a vertex is in terms of ladder diagrams and under conditions two vertices are connected.

Definition 3.1. We say that two paths in a ladder diagram from the origin to terminal
vertices are noncrossing if they do not meet again after their first separation.

In particular, vertices of GTλ have lattice diagrams consisting of m + 1 noncrossing paths.
However, two of these paths go directly up and directly right from the origin, and are present
in every ladder diagram so we usually ignore them. Two vertices are connected by an edge
if the union of their ladder diagrams has exactly one bounded region.

Figure 4. Left: 3 non-crossing paths. Middle and Right: 2 Crossing paths

Lemma 3.2. Any two vertices v and w of GTλ are separated by at most 2m−2−δ1,a1 −δ1,am
edges.

Proof. We give an algorithm to find a path between v and w of length at most 2m−δ1,a1−δ1,am .
Assume that in the ladder diagram representation, vertex v corresponds to noncrossing paths
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v1, . . . , vm−1 where vj connects the origin (0,0) to terminal vertex tj = (sj, n − sj) where

sj = ∑
j
i=0 ai. Similarly denote the noncrossing paths corresponding to w as w1, . . . ,wm−1.

Essentially, we want to change v1 to w1, v2 to w2, . . ., vm−1 to wm1 and making sure that the
m − 1 paths we have are always noncrossing, and the common refinement before and after
changing some paths has exactly one bounded region.

Phase 1: If a1 = 1, then v1,w1 are paths that go from (0,0) to (1, n − 1). Therefore, there
exists a unique index rv such that path v1 passes through both (0, rv) and (1, rv). In other
words, rv is the vertical index for v1 to go from column 0 to column 1. Similarly we can
define rw. WLOG, assume that rv ≥ rw. Because of this inequality, we know that path w1

is contained inside of v1 and therefore, the ladder diagram consisted of w1, v1, v2, . . . , vm−1
have exactly 1 bounded region and it is thus an edge e of the GT polytope containing v. Let
v′ = (v′1, . . . , v

′
m−1) be the other side of this edge (one side is v). Notice that the inner edge

((0, rw), (1, rw)) is in the ladder diagram of e but not in the ladder diagram of v′. Therefore,

((0, rw), (1, rw)) must be in the ladder diagram of v′ and it means v′1 = w1 since a1 = 1.
Similarly, we can use one move to make vm−1 and wm−1 equal if am = 1.

Figure 5. Phase 1 of the algorithm for Lemma 3.2. From left to right: the
ladder diagram for v, w, v′, w′(= w).

Phase 2: Now we describe an algorithm that take v′ to some vertex u in at most m−1−δ1,a1−
δ1,am steps. The algorithm works as follows: for each i = 1 + δ1,a1 , . . . ,m − 1 − δ1,am , change
path vi so that it starts at terminal vertex ti, goes horizontally to the left until it meets and
merges with path vi−1. First, the ladder diagram after this change is clearly a vertex. Also,
if we take the common refinement of the two ladder diagrams before and after the change,
or equivalently, start with the old ladder diagram and add a new path v′i described above,
then this new path simply cuts the tile bounded by vi−1 and vi into two parts and thus there
exists an edge between these two vertices. Figure 6 shows an example of this algorithm.

Similarly, we can apply the same algorithm to w′ to get to the same vertex u in the same
number of steps. And finally, the total number of steps is at most

(δ1,a1 + δ1,am) + 2(m − 1 − δ1,a1 − δ1,am) = 2m − 2 − δ1,a1 − δ1,am .

�

Lemma 3.3. There exist two vertices separated by at least 2m − 2 − δ1,a1 − δ1,am edges.

In order to prove this lemma, we need to first construct vertices in terms of ladder diagrams.
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Figure 6. Phase 2 of the algorithm for Lemma 3.2. The first line shows steps
that move from v′ to u; the second line shows steps that move from w′ to u.

Definition 3.4 (Zigzag lattice path). We construct two vertices zh and zv that will be used
in the proof for Lemma 3.3. Let λ = (1a1 , . . . ,mam). If a1 > 1, meaning that (1, n − 1) is not
a terminal vertex, we call (1, n− 1) a virtual terminal vertex. Similarly, if (n− 1,1) is not an
actual terminal vertex, meaning that am > 1, we call it a virtual terminal vertex.

We will consider the ladder diagram for a vertex of GTλ as m − 1 southwest lattice paths
from terminal vertices to the origin. For j = 1, . . . ,m − 1, define a horizontal zigzag path,
hj, to be the path that starts at terminal vertex tj, goes horizontally left until reaching a
column where there exists a terminal vertex or a virtual terminal vertex on it, then goes
vertically down until reaching a row where there exists a terminal vertex or a virtual terminal
vertex, and so on and so forth until the paths reaches column 0 or row 0 so that it will then
go to the origin in a unique way. Similarly define a vertical zigzag path, vj, with the only
difference that it will start vertically instead of horizontally. Finally, let zh be the vertex
of GTλ represented by the ladder diagram (h1, . . . , hm−1) and let zv be the vertex of GTλ

represented by (v1, . . . , vm−1). Figure 7 shows the construction of an example.

Figure 7. Vertices zh (left) and zv (right) of GTλ with λ = (12,21,31,42,52).
Virtual terminal vertices are labeled as green dots.

Proof of Lemma 3.3. We will first consider the case where a1, am ≥ 2 so that the idea of the
proof can be shown clearly. Afterward, we will deal with the details coming from either of
them being 1.
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Consider the vertices given in Definition 3.4. Assume that there is a sequence of vertices
zh = y0, y1, . . . , y` = zv in GTλ such that yk and yk+1 are connected by an edge. Since
we can uniquely represent each vertex in this sequence as a union of m − 1 lattice paths
from the original to each terminal vertex, each step yk → yk+1 can be thought of as simply
changing these paths, such that the union of yk and yk+1 has at most 1 bounded region.
For convenience of notation, for each i = 1, . . . ,m − 1, let pi be the path that goes from
the origin to the terminal vertex i generically for all yk’s. For k = 1, . . . , `, define Xk =

{i ∶ pi changes as we go from yk−1 to yk}. Since in each step we can have at most 1 bounded
region between yk−1 and yk, it is clear that Xk is of the form {i, i + 1, . . . , j} for some i ≤ j.

We will now show that X1, . . . ,X` must have the following conditions:

(1) For each s ∈ [m − 1], s appears in at least two of the sets Xi’s. In other words, for
each s ∈ [m − 1], there exists 1 ≤ i < j ≤ ` such that s ∈Xi, s ∈Xj.

(2) For each s ≠ s′ ∈ [m − 1], the last time s appears in any of the sets (which is the
unique index bs such that s ∈ Xbs and k ∉ Xi for all i > bk) is different from the last
time that k′ appears.

(3) If Xk = {i, i+ 1, . . . , j}, then at least j − i of i, i+ 1, . . . , j must appear in some Xk′ for
k′ < k

(4) If Xk = {i, i + 1, . . . , j} and it is the last time that s appears, then each one of
{i, i + 1, . . . , j}/{s} must appear in (possibly different) Xk′ for k′ < k.

Notice that if the last time s appears is in some Xk, it means that ps has already become
vs (Definition 3.4) in yk and stays the same for the rest of the steps. We will then explain
these conditions in details one by one.

Condition (1). If for some s ∈ [m − 1], it appears in only one set Xk, then it means when
we go from vertex yk−1 to yk, the path ps is changed from vs to hs in exactly one step. But
by construction, superimposing hs and vs will create at least 2 bounded regions, instead of
one. Therefore, yk−1 and yk are not connected by an edge, a contradiction. Therefore, each
s ∈ [m − 1] appears in at least two sets.

Condition (2). If Xk is the last time that both s and s′ appears, then it means that from
yk−1 to yk, paths ps′ and ps are changed to vs′ and vs simultaneously. However, vs′ and vs
do not have any intersection in the interior of In. So if we want to go back from yk to yk−1,
we have to change v′s and vs simultaneously, which will create two bounded regions when we
superimpose yk−1 and yk, which is a contradiction.

Condition (3). Since initially, hi and hj do not have any intersection in the interior of
In, in order to change multiple paths at the same time, we need to merge these paths first.
Specifically, if we want to change paths i, i + 1, . . . , j simultaneously, we need to modify at
least all but one of these paths to join them together.

Condition (4). This condition is crucial and it justifies our choices for zh and zv. Assume
that Xk = {i, i + 1, . . . , j} is the last time that s appears, meaning that when we go from
vertex yk−1 to yk, we change ps to vs. If there exists s′ ≠ s ∈ Xk, such that path s′ hasn’t
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changed before, meaning that ps′ = hs′ . Notice that since we change paths i, i + 1, . . . , j
simultaneously, all of these paths before and after the change will have an interior vertex in
In in common. Therefore, vs and hs′ must have a common interior vertex. Since s ≠ s′, we
must have s′ = s + 1. As we have assumed a1, am ≥ 2, superimposing the ladder diagram of
yk−1 and yk will create at least 2 bounded regions, because of the definition of vs and hs+1.
Therefore, we have a contradiction and thus all s′ ≠ s must have already appeared at least
once.

As we have proved all these conditions, we will jump out of the general setting of GT
polytopes and look at any sequence of sets X1, . . . ,X` that satisfies all these four conditions.
We will show that any such sequence will have length ` ≥ 2m − 2.

To do this, for i = `, . . . ,1, we look at the first set Xi that is not a singleton. Say that it is
Xk. If Xk is the last time that some s ∈ [m − 1] appears, then we claim that changing Xk

to {s} will still satisfy all four conditions. According to Condition (4), for each s′ ≠ s that
is in Xk, s′ must have appeared before. According to Condition (2), for each s′ ≠ s, this is
not the last time that s′ appears so s′ will appear sometime later. Therefore, condition (1)
still holds after changing Xk to {s}. Condition (2) also holds because this change does not
modify the indices of the sets where each s′ ∈ [m − 1] appears last. Condition (3) and (4)
hold trivially because we have less non-singleton sets to worry about. Another case is that
Xk is not the last time that any of the path appears last. According to condition (3), there
exists s ∈ Xk such that each one of Xk/{s} has appeared before. Similarly, we claim that
all these four conditions will hold after changing Xk to {s}. For each one of s′ ∈ Xk/{s}, as
it appears before and Xk is not the last time that it appears, we know that s′ will appear
at least twice even after this change. The number of appearance of s does not change.
Therefore, condition (1) is satisfied. Condition (2) holds because each one of s′ ∈ Xk will
appear sometime later. Condition (3) and (4) hold trivially because similarly we have less
non-singleton sets to worry about.

Continuing this procedure inductively, we will eventually end up with a sequence of sets
Y1, . . . , Y` where each one is a singleton. As Condition (1) still holds, we conclude that
` ≥ 2m − 2 as desired.

Now we consider the case where a1 and am may be 1. We claim that if a1 = 1, then {1}
must appear as a singleton as one of the term in X1, . . . ,X` and if am = 1, then {m−1} must
appear as a singleton as one of the term in the sequence. Notice the reasons are slightly
different.

If a1 = 1, path h1 has only 1 interior edge, namely (0, n − 1) − (1, n − 1). In order for it
to merge with other paths, it must change on its own first, meaning that {1} will appear,
because h1 and p2, . . . , pm−1 will never have any interior intersection. If it never merges with
other paths, then it must appear as {1} at some point so that p1 can be actually changed
from h1 to v1. If am = 1, at some point, path pm−1 must be changed to vm−1, which has only
1 interior edge. This change is recorded as {m − 1} because p1, . . . , pm−2 cannot have any
interior intersection with vm−1.
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Therefore, if a1 = 1 (or/and am = 1), in the sequence X1, . . . ,X`, we can take out the
singleton {1} (or/and {m − 1}) and delete all other 1’s (or/and m − 1’s) in the sets. The
remaining sequence will satisfy the four conditions mentioned above. We have taken out
at least δ1,a1 + δ1,am singletons of {1} and {m − 1} and there are m − 1 − δ1,a1 − δ1,am paths
remaining. So by the same argument, the total length of the sequence

` ≥ (δ1,a1 + δ1,am) + 2(m − 1 − δ1,a1 − δ1,am) = 2m − 2 − δ1,a1 − δ1,am

as desired. �

Theorem 3.5. diam(GTλ) = 2m − 2 − δ1,a1 − δ1,am.

Proof. By combining the upper and lower bounds in Lemma 3.2 and Lemma 3.3, we are
done. �

4. Combinatorial Automorphisms

In this section, we completely describe the combinatorial automorphisms of GTλ, denoted
Aut(GTλ). A combinatorial automorphism of GTλ is a permutation of its vertices that pre-
serves F(GTλ), and we will refer to combinatorial automorphisms simply as automorphisms.
In Section 4.1 we exhibit generators for the automorphism group and use relations between
them to describe the group structure. In Section 4.2 we develop some necessary background
and use it in Section 4.3 to show that these generators in fact generate the entire automor-
phism group. As explained in Remark 2.7, it generally suffices to consider λ = (1a1 , . . . ,mam)

where a1, . . . , am ∈ Z>0, but we make note of special properties arising from particular values
of λi.

4.1. Symmetries. We begin by identifying the generators of Aut(GTλ). By Theorem 2.6,
it suffices to show that these maps are automorphisms of F(Γλ) to show that they are
automorphisms of GTλ. We also examine these maps beyond their purely combinatorial
properties.

Proposition 4.1 (The Corner Symmetry). For any λ, there is a Z2 automorphism µ on
F(Γλ) given by swapping two pairs of edges in any positive path leaving (0,0): ((0,0), (1,0))
is swapped with ((0,0), (0,1)) and ((1,0), (1,1)) with ((0,1), (1,1)).

Proof. Consider the linear map µ ∶ R
n(n+1)

2 → R
n(n+1)

2 that acts as the identity on all the
xi,j, except maps xn,1 ↦ xn,2 + xn−1,1 − xn,1. Note that xn−1,1 ≤ xn−1,1 + xn,2 − xn−1 ≤ xn,2,
and µ2 = Id, and so µ(GTλ) = GTλ. This linear map thus induces a combinatorial Z2

automorphism, which we will abuse notation and call µ. Checking the cases when the above
inequalities are equalities shows that µ acts on ladder diagrams in the described fashion. �

As demonstrated in the proof of the previous proposition, this combinatorial automorphism
µ is always affine (in fact, linear) regardless of λ.
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Figure 8. Action of µ on a ladder diagram

Proposition 4.2 (The k-Corner Symmetry). Label the kth terminal vertex tk = (n−i, i), and
suppose that ak, ak+1 ≥ 2. There is a Z2 automorphism µk on F(Γλ) given by swapping two
pairs of edges, ((n− i, i)(n− i, i−1)) with ((n− i, i)(i−1, i) and ((n− i, i−1), (n− i−1, i−1))
with ((n − i − 1, i), (n − i − 1, i − 1)) in any positive path going to tk.

Proof. Let xi′,j′ be the coordinate in 1 which is immediately adjacent to the values λk and

λk+1. Consider the linear map µk ∶ R
n(n+1)

2 → R
n(n+1)

2 which acts as the identity on the xi,j,
except xi′,j′ ↦ xi′,j′−1 + xi′+1,j′ − xi′,j′ . Since ak, ak+1 ≥ 2, we have λk ≤ xi′,j′−1 ≤ xi′,j′−1 +
xi′+1,j′ −xi′,j′ ≤ xi′+1,j′ ≤ λk+1, so all 4 constraints on the coordinate xi′,j′ are satisfied. Noting
that µ2

k = Id, we conclude that µk(GTλ) = GTλ. This linear transformation induces a
combinatorial automorphism on GTλ, which we again refer to as µk. Examining when the
above inequalities are equalities shows µk has the required description in terms of ladder
diagrams. �

Figure 9. Action of µk

This map is very similiar to the Corner Symmetry, only occuring at the kth terminal vertex
instead of at the origin. It also shares the property that it can always be thought of as a
linear map, regardless of the values of λ.

Proposition 4.3 (Symmetric Group Symmetry). Suppose that a1 = 1. Then Sa2 ⊂ Aut(GTλ).
Similiarly if am = 1, Sam−1 ⊂ Aut(GTλ).

Proof. It suffices to describe the action of Sa2 on ladder diagrams. Take the first column of
possible horizontal edges, and label the top a2 edges 1 though a2. Sa2 then acts by if σ(i) = j,
any path with an edge corresponding to i is mapped to a path with an edge corresponding to
j. This map preserves inclusions, and since only the first a2 edges are permuted, the number
of bounded regions is also preserved. �
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Figure 10. Action of (123) ∈ S4 on a ladder diagram. Note that if (15) were
applied, there would be an extra bounded region

Proposition 4.4 (The Flip Symmetry). Suppose that λ = (1a1 ,2a2 , . . . ,mam) = (1am ,2am−1 , . . . ,ma1).
Then there is a Z2 automorphism ρ of GTλ which reflects a ladder diagram over the line y = x.

Proof. Since ai = am−j+1, the terminal vertices of any Γλ are symmetric about the y = x axis,
so reflection about this line gives another ladder diagram with the same number of bounded
regions. �

Figure 11. Action of ρ on ladder diagram.

Whenever λ satisfies the required condidition in Prop. 4.4 we say that λ is reverse symmetric.
When λ = (1a1 ,2a2 , . . . ,mam), this symmetry is actually affine– it can be realized as the map
f(x) = −Px +m ⋅ 1, where P is a permutation matrix, and 1 is the all 1’s vector. However,
for λ of a different form, this is no longer true, even in small cases. For example when
λ = (1,2,4), a straightforward computations shows that this symmetry is no longer affine.

Proposition 4.5 (The m = 2 Rotation Symmetry). Suppose that m = 2. Note that any
ladder diagram only has 3 terminal vertices, two on the the x or y axis and one not on the
axes, call it v. There is a Z2 automorphism τ on F(GTλ) taking paths from (0,0) to v and
rotating them 180○ so that they are paths from v to (0,0).

Proof. Clear from the description of τ . �

Proposition 4.6 (The m = 2 Vertex Symmetry). When m = 2, there are two paths p1 and
p2 to the terminal vertex t1 that turn exactly once. The map α sending these two paths to
each other is a Z2 automorphism of GTλ.

Proof. Suppose without loss of generality that a ladder diagram contains p1 but not p2. Note
removing p1 will unbound exactly 1 region, the south-eastmost bounded region. Adding in
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Figure 12. Action of τ on a ladder diagram

p2 will create exactly one bounded region in the north-west corner of the diagram, so α
preserves number of bounded regions. �

Figure 13. Paths p1 and p2

Note that these two paths themselves correspond to vertices in our polytope that are con-
nected to every other vertex by an edge. This symmetry corresponds to exchanging these
two vertices.

It is clear that the group formed by these possible generators is contained in Aut(GTλ). Note
that if m = 1, the polytope is a single point with only the trivial automorphism. If m = 2
and either λ = (1,2a2) or λ = (1a1 ,2), then the polytope is a simplex and its automorphism
group is the symmetric group. In all other cases, either m = 2 with a1, a2 ≥ 2, or m ≥ 3.
For both cases, we describe the subgroup generated by these symmetries, and postpone the
proof that this subgroup is in fact Aut(GTλ) to Section 4.3.

Theorem 4.7 (m=2 Automorphisms). Suppose λ = (1a1 ,2a2) and a1, a2 ≥ 2.

If a1 = a2 = 2, then
D4 ×Z2 ⊆ Aut(GTλ).

Otherwise,

D4 ×Z2 ×Zδa1,a22 × ⊆ Aut(GTλ).

Proof. Suppose a1 ≠ a2. Collecting the generators applicable in this case from previous
propositions, we have the subgroup of automorphisms ⟨µ,µ1, τ, α⟩, and note these generators
satisfy the following relations µ2 = µ2

1 = τ
2 = α2 = 1, µτ = τµ1 and all other variables commute.

It is not hard to recognize the subgroup ⟨τµ,µ⟩ as D4. Adding in the generator α, will
generate the entire group, and α commutes with all generators, so the resulting group is
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isomorphic to D4 ×Z2.
Assuming a1 = a2 ≥ 4, we have the subgroup described in the previous case a1 ≠ a2, but with
the additional generator ρ. Note ρ commutes with all of these generators from the previous
case, so the resulting group is D4 × Z2

2. When a1 = a2 = 2, note that ρ = τ , resulting in a
smaller subgroup. �

Theorem 4.8 (m ≥ 3 Automorphisms). Suppose λ = 1a1 . . .mam and m ≥ 3. Let t = 1 if λ is
reverse-symmetric and let t = 0 otherwise. Let j be the number of pairs ak, ak+1 ≥ 2. Then

Zt2 ⋉ϕ (S
δ1,a1
a2 × S

δ1,am
am−1 ×Zj+12 ) ⊆ Aut(GTλ).

Where ϕ(1) acts on S
δ1,a1
a2 × S

δ1,am
am−1 ×Zj+12 via

ϕ(1)(σ1, σ2, z1, . . . , zj, zj+1) = (σ2, σ1, zj, zj−1 . . . , z2, z1, zj+1)

Proof. From the previous propositions, we have as possible generators µ,µ1, . . . , µ1, Sa2 , Sam−1 ,
with Sa2 , Sam−1 possibly omitted. However, whichever symmetries are present commute, as
they permute disjoint sets of edges in the ladder diagram.

If λ is reverse symmetric, we also have the generator ρ. Note that since ρ flips every ladder
diagram about y = x, ρ satisfies the following commutation relations: ρµ = µρ, ρµi = µl−iρ,
and for σ1 ∈ Sa2 , σ2 ∈ Sam−1 , where σ1 and σ2 have the same cycle notation, ρσ1 = σ2ρ. These
relations are enough to give a subgroup of the stated form. �

In the following sections, we will show that the groups described in Theorems 4.7 and 4.8 are
in fact all of Aut(GTλ). We will do this by showing the size of Aut(GTλ) agrees with the size
of these subgroups. Specifically, we will bound the size of Aut(GTλ) by closely examining
the action of this group on the facet structure of GTλ and applying the Orbit-Stabilizer
theorem. In order to do this, we need a few ways to classify and partition facets in GTλ.

4.2. Chains of Facets. In this section, we study the facet structure of GTλ in preparation
for Section 4.3. The facet’s of GTλ will be in bijection with certain edges of ladder diagrams,
which will allow us to analyze the action of Aut(GTλ) on these facets, motivated by the
following lemma.

Lemma 4.9. An automorphism of GTλ is completely determined by where it sends the facets
of GTλ.

Proof. This follows from the fact that for a general polytope P , every face of P can be
written as an intersection of the facets of P �

In particular, if an automorphism of GTλ fixes every facet, it must be the identity.

Definition 4.10. We define the interior edges of Γλ to be the edges lying inside Γλ and any
edges of the form ((sj, n − sj+1), (sj, n − sj+1 + 1)) and ((sj, n − sj+1), (sj + 1, n − sj+1)). All
other edges of Γλ are considered boundary edges.
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Figure 14. Left: interior edges of Γλ. Interior edges of the form ((sj, n −
sj+1), (sj, n−sj+1 +1)) and ((sj, n−sj+1), (sj +1, n−sj+1)) are in green. Right:
boundary edges of Γλ.

Observe that interior edges are exactly the edges that can be erased from Γλ and still have
a valid ladder diagram.

Proposition 4.11. The facets of GTλ are in bijection with the interior edges of Γλ.

Proof. Since ladder diagrams in F(Γλ) are graded by number of bounded regions, any facet
will correspond to a ladder diagram with all possible edges except one, which will be an
interior edge as defined in Definition 4.10. The bijection is given by mapping a facet F to
the edge not contained in Γλ(F ). �

This proposition gives us an easy way to think about the facets of GTλ, so for most arguments
we will simply refer to a facet by it’s corresponding interior edge.

Figure 15. Left: ladder diagram of a facet. Right: complement of ladder diagram.

Definition 4.12. Two facets are called dependent if their intersection is a d−3 dimensional
face.

There is a way to visualize the intersection of two facets. Remove both of their corresponding
edges from Γλ, and then remove any necessary edges to create a ladder diagram. In most
cases, no edges will require removal, meaning the intersection of the two facets is d − 2
dimensional. However, if the removed edges are arranged fully as in Figure 16 and fully
in the interior of Γλ, extra edges will require removal, implying the intersection is d − 3
dimensional.

15



Figure 16. The gray boxes indicate entries xi,j that are equal on each facet.
The red box indicates the entry forced to be equal to the other three.

Facets being arranged as in Figure 16 is a necessary condition for being dependent, from
which we can see that any facet will be dependent on at most 2 other facets. However,
towards the boundary of Γλ there are edges which are arranged as in Figure 16 which are
not dependant.

Figure 17. Examples of facets that are not dependant.

Facet dependency naturally partitions facets of GTλ into visually simple sets called chains
that will allow us to determine the orbits of facets under Aut(GTλ) and various stabilizers.

Definition 4.13 (Facet Chains). We can form maximal facet chains Ci = {Fi,1, ..., Fi,l(i)}
consisting of facets Fi,1, ..., Fi,l(i) such that Fi,j+1 is dependent on Fi,j. Visually, a chain is
the set of edges e(Fi,j) of Γλ and these edges form a zig-zag pattern. Let C = {Ci} denote
the set of these facet chains. These chains partition the interior edges of Γλ.

Figure 18. Left: a facet chain. Right: the partition of interior edges of Γλ.

Note that the condition of being a chain relies only on the dimension of an intersection
of facets. In particular, if φ ∈ Aut(GTλ), and Ci is a chain, then φ(Ci) is a chain. One
should also note that any chain Ci has exactly two facets, usually denoted Fi,1, Fi,l(i) that
are dependent on exactly one other facet in the chain.
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Definition 4.14 (Adjacent Facets). Two pairs of facets {F1, F2} and {J1, J2} are adjacent
if F1⋂F2 = J1⋂J2.

Definition 4.15 (Adjacent Chains). Two chains Ci,Cj ∈ C are adjacent if there exists
{F1, F2} ⊂ Ci, {J1, J2} ⊂ Cj such that {F1, F2} and {J1, J2} are adjacent.

Again, the condition of chain adjacency is given by intersection, so if chains Ci,Cj are
adjacent then φ(Ci), φ(Cj) must be adjacent. Visually, adjacency occurs iff one chain sits
directly to the North-East of the other chain.

Figure 19. Left: example of adjacent chains. The purple, red, and green
chains are each adjacent to the blue chain and are not adjacent to each other.
.

We now state two useful lemmas that will determine how automorphisms act on chains and
pairs of adjacent chains.

Lemma 4.16. Let C = {F1, F2, . . . , Fk} be a chain of facets, with F1, Fk dependent on exactly
one other facet, and suppose φ(C) = C. Then either φ(Fi) = Fi for all i, or φ(Fi) = Fk+1−i
for all i.

Proof. If φ(F1) = F1, the chain of dependencies of the Fi will determine the image of each
Fi, so φ(Fi) = Fi. If φ(F1) ≠ F1, the assumption of F1 being dependent on exactly on facet
means we must have φ(F1) = Fk, and again the chain of dependencies means that φ(F2)

must be dependent on φ(F1), so φ(F2) = Fk−1, etc. �

Whenever φ(C) = C with φ(F1) = Fk, we will say that φ flips C, and otherwise we say that
C is not flipped by φ.

However, chains cannot always be flipped independently of other chains, as the following
lemma demonstrates.

Lemma 4.17. Suppose Ci and Cj are adjacent chains of facets each with two distinct pairs of
facets {F1, F2},{F ′

1, F
′
2} ⊂ Ci,{J1, J2},{J ′1, J

′
2} ⊂ Cj such that {F1, F2},{J1, J2} are adjacent

and {F ′
1, F

′
2},{J

′
1, J

′
2} are adjacent. Then φ ∈ Aut(GTλ) flips Ci iff φ flips Cj.

Proof. Suppose φ does not flip Ci, so φ(F1) = F1 and φ(F2) = F2. Since F1⋂F2 = J1⋂J2, and
the intersection of any pair of facets in a chain is unique, we must have φ(J1), φ(J2) ∈ {J1, J2}.
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Suppose for contradiction that φ(J1) = J2 implying Cj is flipped. Note flipping can preserve
at most one adjacent pair of facets in a chain, we must have φ({J ′1, J

′
2}) ≠ {J ′1, J

′
2}. Again

the intersection of two facets in a chain is unique, implying φ(J ′1)⋂φ(J
′
2) ≠ J ′1⋂J

′
2, but

φ(J ′1)⋂φ(J
′
2) = φ(F

′
1)⋂φ(F

′
2) = F

′
1⋂F

′
2 = J

′
1⋂J

′
2, a contradiction. The reverse direction is

similar. �

4.3. The Automorphism Group. We now show that the groups described in Theo-
rems 4.7 and 4.8 form the entire automorphism group. We begin with the case when m = 2,
and then prove the general case when m ≥ 3.

Theorem 4.18 (m = 2 Automorphism Group). Suppose λ = (1a1 ,2a2) and a1, a2 ≥ 2. If
a1 = a2 = 2, then

Aut(GTλ) ≅D4 ×Z2.

Otherwise,

Aut(GTλ) ≅D4 ×Z2 ×Zδa1,a22

Proof. For convenience, define G ∶= Aut(GTλ), Ga ∶= the stabilizer of a in G, Ga,b ∶= the
stabilizer of a, b, etc. and finally OrbH(a) ∶= the orbit of a with respect to a (sub)group H.

We will use the Orbit-Stabilizer theorem to show that ∣Aut(GTλ)∣ = 16 ⋅2δa1,a2 when a1, a2 ≥ 3,
which will suffice to show equality of the groups in Thm. 4.7. There are two unique facets
that are in maximal dependent chains of length 1, corresponding to the edges ((a1,0), (a1,1))
and ((0, a2), (1, a2)). Label these facets F1 and F2

Figure 20. F1 and F2 drawn in blue.

These two facets are mapped to each other under α, and they cannot map to any other
facets. Thus ∣OrbG(F1)∣ = 2, and if F1 is fixed, F2 must also be fixed.
Now consider the four facets contained in maximal chains of length two. Denote them
J1, J2, J3, J4, where {J1, J2} is the south-western chain and {J3, J4} is the north-eastern chain.

These facets can only be mapped to each other. Note that µ,µ1, ατ ∈ GF1 , the compositions
of which demonstrate that ∣OrbGF1

(J1)∣ = 4. Now, µ1 ∈ GF1,J1 , which demonstrates that

∣OrbGF1,J1
(J3)∣ = 2. The results of Section 4.2 show that fixing J1 fixes J2, and similarly
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Figure 21. J1, J2, J3, J4 drawn in green.

fixing J3 fixes J4
Consider the chain K1 immediately north-east of {J1, J2}, and label it’s north-westernmost
facet K ′

1. Note that when a1 = a2 = 2, this chain is the chain {J3, J4}, so the following
discussion will not apply.

Figure 22. Chain K1 drawn in red

Assuming J1, J2 are fixed, the discussion in Section 4.2 shows that K1 can only be mapped
to itself or its flip. If a1 = a2, the map ραµµ1 ∈ GF1J1J3 flips K1, and in particular shows
that ∣OrbGF1J1J3

(K ′
1)∣ = 2. So now we must show that if a1 ≠ a2, then K1 cannot be flipped.

Note we have a sequence of chains K1,K2, . . . ,Kn, where the chain Kn is defined as follows.
Usually the length of Ki+1 is the length of Ki + 2. Kn will be the first chain such that the
length of Kn = length of Kn−1 + 1. See Fig. ??.

We will show that Kn cannot be flipped. There is a facet in Kn has exactly one dependent
facet, and the intersection of these two facets is not equal to the intersection of any two
pairs of facets in Kn−1, a property not other facet in Kn has (This corresponds to the south-
easternmost facet of Kn in Fig. 23). Thus Kn is fixed. By lemma 4.17, this implies that K1

is fixed, and we have shown that ∣OrbGF1J1J3
(K ′

1)∣ = 2δa1,a2 when a1, a2 ≥ 3.
Combining the results so far, we have that

∣G∣ = ∣OrbG(F1)∣∣OrbGF1
(J1)∣∣OrbGF1J1

(J3)∣∣OrbGF1J1J3
(K ′)∣∣GF1J1J3K′ ∣ = 16 ⋅ 2δa1,a2 ∣GF1J1J3K′ ∣

so it remains to show that GF1J1J3K′ is the trivial group. So suppose φ ∈ G fixes F1, J1, J3
and K ′. As remarked above, φ then fixes every facet in every chain of length ≤ 2. Since φ
fixes the facet K ′, φ must also fix K1. Every chain of length ≥ 3 is connected to K1 by a
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Figure 23. Chain Kn drawn in purple, which is K3 in this example. Note
this chain only exists if a1 ≠ a2. Set of adjacent chains (in this case, just K2)
drawn in grey.

sequence of adjacent chains all of length ≥ 3, so φ maps every chain to itself and by Lemma
4.17, no chain can be flipped by φ, so φ in fact fixes every facet. �

Remark. Considering λ = (a1, a2), denote Gλ to be the graph corresponding to the 1-skeleton
of GTλ, we can observe that Aut(GTλ) ⊆ Gλ, and it is natural to ask when we have equality.
Numerical computations suggest that we have equality whenever a1, a2 ≠ 3. However, the
approach of computing orbit sizes for Aut(Gλ) is exceedingly difficult in general.

Theorem 4.19 (m ≥ 3 Automorphism Group). Suppose λ = 1a1 . . .mam and m ≥ 3. Let t = 1
if λ = λ′ and let t = 0 otherwise. Let j be the number of pairs ak, ak+1 ≥ 2. Then

Aut(GTλ) ≅ Zt2 ⋉ϕ (S
δ1,a1
a2 × S

δ1,am
am−1 ×Zj+12 ).

Proof. For convenience, let Hλ ∶= Zt2⋉ϕ (S
δ1,a1
a2 ×S

δ1,am
am−1 ×Z

j+1
2 ). Theorem 4.8 shows that Hλ is

a subgroup of Aut(GTλ). Now we show that the order of Aut(GTλ) is at most the order of
Hλ. By Lemma 4.9, it suffices to consider the possible ways an automorphism φ ∈ Aut(GTλ)

can permute the facets of GTλ.

The action of φ on the facets of GTλ can be extended naturally to the facet chains in C as
defined Definition 4.13. In particular, φ must send every chain to another chain of the same
length.

Assume a1 ≠ 1 and am ≠ 1. Then there are two chains consisting of a single facet. Denote
these as C1 = (F1,1) and C2m−1 = (F2m−1,1). These facets are the uppermost horizontal edge
and the rightmost vertical edge respectively.

Now consider the chains of length 2. Let C0 denote the length 2 chain near the origin. Let
C2, . . . ,C2m−2 denote the length 2 chains that occur along the border of Γλ where C2k occurs
near terminal vertex tk and C2k−1 occurs at the corner of the kth shaded triangular subgrid
corresponding to iai in the the partition λ. Finally, we call the C2k−1 type A chains and the
C2k type B chains. Note that some type B chains may not exist if some ai = 1. See Figure 25
for an example of this. When referring to all type B chains, we only refer to those that exist.

A type A chain C2j−1 = (F2j−1,1, F2j−1,2) and a type B chain C2k = (F2k,1, F2k,2) are called
incompatible if there does not exist a vertex containing both e(F2j−1,1), e(F2j−1,2) and at least
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Figure 24. Length 1 chains shown in blue. Type A chains shown in green.
Type B chains shown in red.

one of e(F2k,1), e(F2k,2). C1 (resp. C2m−1) is incompatible with type B chain (F2k,1, F2k,2) if
there does not exist a vertex containing both e(F2k,1), e(F2k,2) and e(F1,1) (resp. e(F2m−1,1)).

C0 is compatible with all type A chains. For 1 ≤ k ≤ m − 1, the type B chain C2k is
incompatible with its neighboring type A chains C2k−1 and C2k+1.

C0 must be mapped to itself since all other type B chains are incompatible with some type
A chain. (This is not true if m = 2 which is handled below.) The map φ must send C1 to
itself or to C2m−1. If the former occurs, then φ(C2) = C2 and so on, such that φ(Ci) = Ci for
all 1 ≤ i ≤ 2m − 1. If the latter occurs, then φ(Ci) = C2m−i for all 1 ≤ i ≤ 2m − 1.

Assume φ(Ci) = Ci for all 1 ≤ i ≤ 2m − 1, i.e. the order of the sequence of type A and type B
chains is preserved. Facets in chain Ci must be mapped to other facets in Ci so φ(F1,1) = F1,1

and φ(F2m−1,1) = F2m−1,1. For each 0 ≤ k ≤ m − 1, either C2k is flipped or not flipped. These
two possibilities account for whether φ contains any of µ,µ1, . . . , µm−1. On the other hand,
φ cannot interchange F2k−1,1 and F2k−1,2 because there exist vertices containing e(F2k−1,2)
and one of e(F2k,1), e(F2k,2), but there do not exist vertices containing e(F2k−1,1) and one of
e(F2k,1), e(F2k,2). If φ(Ci) = C2m−i for all 1 ≤ i ≤ 2m − 1, the analysis is similar with each C2k

being sent to C2m−2k of the flip of C2m−2k.

Say Clong has endpoints at (0, a) and (a,0). For 1 ≤ i ≤ a, define C ′
i ∈ C to be the chain with

endpoints at (0, i) and (i,0). Then C ′
1 = C0 and C ′

a = Clong. For i ≤ a− 1, C ′
i is only adjacent

to C ′
i−1 and C ′

i+1. The map φ must preserve adjacencies between chains. Since φ(C ′
1) = C

′
1,

φ(C ′
2) = C

′
2 and either C ′

2 is flipped or not flipped. In either case, C ′
k has the same orientation

as C ′
k−1 for all 3 ≤ k ≤ a.

We have four cases:

(1) φ(Ci) = Ci for all 1 ≤ i ≤ 2m − 1. All of C ′
k for 2 ≤ k ≤ a are flipped.

(2) φ(Ci) = Ci for all 1 ≤ i ≤ 2m − 1. All of C ′
k for 2 ≤ k ≤ a are not flipped.

(3) φ(Ci) = C2m−i for all 1 ≤ i ≤ 2m − 1. All of C ′
k for 2 ≤ k ≤ a are flipped.

(4) φ(Ci) = C2m−i for all 1 ≤ i ≤ 2m − 1. All of C ′
k for 2 ≤ k ≤ a are not flipped.
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We show that cases (1) and (4) lead to contradictions and that case (3) occurs only if λ = λ′,
accounting for a factor of 2 due to ρ.

Consider all the chains above Clong. Starting with the chains adjacent to Clong, we note that
all chains are of length ≤ 2 which have been accounted for. All chains of greater length share
at least 2 vertices with Clong so their position is already determined by Clong’s orientation. If
Clong is not flipped, then all of its adjacent chains are not flipped. We continue this argument
with each of Clong’s adjacent chains, moving towards the main diagonal. After all chains have
been dealt with, note that the adjacencies of type A and type B chains with chains below
them are only preserved if φ(Ci) = Ci for all 1 ≤ i ≤ 2m − 1. This shows case (4) cannot
occur.

If Clong is flipped, then for every chain C ′′ above Clong that is adjacent to Clong, there must
a chain of the same length that is a reflection of C ′′ across x = y. Again, we continue this
argument upwards moving towards the main diagonal. By looking at adjacencies of type
A and type B chains with chains below them, we conclude that case (1) cannot occur. In
order for reflections of chains to exist as each step, Γλ must be symmetric about x = y which
occurs iff λ = λ′. This accounts for case (3).

If WLOG am = 1, then we have additional type 1 chains as shown in Figure 25. If any length
1 chain in the bottom right is sent to a length 1 chain in the upper left, then all of them are.
The set of length 1 chains in the bottom right can only be sent to the set of length 1 chains
in the upper left if a1 = am = 1 and a2 = am−1. Following the argument above shows that this
can only occur if λ = λ′.

If the set of length 1 chains in the bottom right is sent to itself, then accounting for any
permutation of the am−1 length 1 chains gives us a factor of am−1! in the order of Aut(GTλ).
Similarly for chains in the upper left. Then we can fix any permutations in Sa2 , Sam−1 for the
length 1 chains and apply the same argument above.

Figure 25. Length 1 chains shown in blue. Type A chains shown in green.
Type B chains shown in red.

Note that for each factor of 2 or a2! or am−1!, the conditions under which we include the
factor in the order of Aut(GTλ) exactly match the conditions under which we include Z2’s
or Sa2 or Sam−1 in Hλ. Thus we have bounded the order of Aut(GTλ) by the order of Hλ.
Since Hλ is contained in Aut(GTλ), we have Aut(GTλ) ≅Hλ, as desired. �
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5. Enumerating Faces

Computing the number of vertices in GTλ is a difficult question, and one that is addressed in
both [GKT13] and [ACK16]. When m = 3, this question actually has a complete answer. For
the purposes of this discussion, let V (GTλ) denote the number of vertices in GTλ, and recall
that n = a1 + a2 + a3. Gusev-Kiritchenko-Timorin originally derive the following expression
analytically from a generating function. However, there is a combinatorial proof of this
formula, which we give here.

Theorem 5.1 (Theorem 1.4 in [GKT13]). If λ = (1a1 ,2a2 ,3a3), then we have the following
equality

V (GTλ) = (
n

a1
)(
n

a2
) + 2

a1

∑
i=1

(−1)i(
n

a1 − i
)(

n

a2 − i
)

Proof. The ladder diagram of a vertex will be a tree with root (0,0) and 4 terminal vertices.
The paths to (n,0) and (0, n) are always straight lines, but the middle paths form a tree,
branching at a single node and having these two branches never intersect again. We can
interpret this as the number of pairs of positive paths that both start at (0,0), never intersect
once they diverge, and have endpoints (a1, a2+a3) and (a1+a2, a3) respectively. The number
of all pairs of paths from (0,0) to (a1, a2 +a3) and (a1 +a2, a3) is exactly (

n
a1
)(

n
a2
), so now we

must subtract off the paths that diverge and then intersect again.
♠ To do: Add in rest of proof �

Using this combinatorial interpretation, we hoped find a similar formula when m = 4. In this
case however, there is one common base point for 3 paths which branch at 2 distinct points.
It’s not clear how to pull apart one pair without accidentally intersecting with the other
path. There is another approach that this problem to a question about non-intersecting
lattice paths, which is well-studied and may eventually give an answer.

Proposition 5.2. When m = 4, let NI(p1, p′1, p2, p
′
2, p3, p

′
3, p4, p

′
4) denote the number of

quadruples of non-intersecting positive lattice paths starting at pi and ending at p′i. Let
x, y and z denote the terminal vertices (a1, n− a1), (n− a4, a4) and (n− a1 − a2, a3 + a4). We
have the following equality

V (GTλ) = ∑
0≤i≤a1
0≤j≤a4

(
i + j

i
)( ∑

i+1≤k≤a1+a2
j≤l≤a4

NI((i + 1, j), (k, l), (i, j + 1), x, (k + 1, l), y, (k, l + 1), z)

+ ∑
i≤k≤a1

j+1≤l≤a3+a4

NI((i, j + 1), (k, l), i + 1, j), y, (k + 1, l), z, (k, l + 1), x))

Proof. The ladder diagram of a vertex in GTλ is the union of positive paths that diverge
into two paths at (i, j) and diverge into two more paths at (k, l). Note at the divergence
at (i, j), there are two types of vertices. The path that diverges to the right from (i, j) can
either diverge once more and go to y and z or not diverge and just go to y. The first inner
sum corresponds to the former, and sums over all possible places this right path can diverge.
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The second sum computes the latter case, so the path going up from (i, j) is the one that
must diverge. �

Figure 26. The sums count the possible placements of the blue dots where
the paths diverge. The left figure corresponds to the first inner sum.

Remark 5.3. For some configurations of points, it is possible to count the number of non-
intersecting lattice paths between them. However, this is only doable when the paths meet
certain conditions. Label the start points of the paths 1,2, . . . , n and the endpoints 1,2, . . . , n.
We can think of a valid set of paths as giving a permutation on [n] in 1-line notation,
where the ith position is given by the endpoint of the path that begins at i. The usual
determinant formula for non-intersecting lattice paths will give the correct answer provided
that all arrangements of paths give a permutation having the same sign. Unfortunately
this condition is not met in the previous proposition, which is why we have a formula in
terms of this NI function. Note that this proposition can theoretically be generalized to any
m by summing over all cases of points where paths can diverge and those possible sets of
endpoints. However, the final answer will always rely on some version of this NI function,
which we cannot in general compute.

6. A Special Case: λ = 12n−23

As we can see in the previous section, the enumeration of vertices and faces in general is
difficult. However, in the special case when λ = (1,2n−2,3), the face poset of GTλ admits
a fairly simple combinatorial description, from which we can write down a nice expression
counting the number of faces of each dimension.

Proposition 6.1. For λ = (1,2n−2,3), F(GTλ) is isomorphic to the set of pairs (A,B) ⊆

[n] × [n] ordered by inclusion with the following conditions

(1) A = ∅ iff B = ∅

(2) n − 1 ∈ A⋂B iff n ∈ A⋂B
(3) The rank of an element ρ((A,B)) is given by

ρ((A,B)) = {
∣A∣ + ∣B∣ − 2 {n − 1, n} /∈ A⋂B

∣A∣ + ∣B∣ − 3 {n − 1, n} ∈ A⋂B

Proof. Note that any tiling of GTλ has exactly one column and one row of unforced squares
that intersect at exactly one tile. Label the borders between squares of the column 1, . . . , n
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going down and the borders between the squares of the rows n,n−1, . . . ,1 going left to right.
So note the bottom-left most square has all of its edges labeled either n − 1 or n. Given a
tiling of GTλ, read off the labels in the column that are borders between tiles. Stop if you
reach a tile of width > 1. These labels will be the set A. Note if the bottom-most square
in the column is reached, the label n is included. Repeat this same algorithm starting from
the right in the last row, checking to make sure that the tiles are now of height 1. These
labels will be the set B. Note that if n has been included in A but n − 1 has not been, the
bottom-leftmost square is in a tile of size > 1 extending into the column, and so cannot be
in B, so B cannot have the label n. Now if n− 1, n ∈ A, the bottom-leftmost square must be
in it’s own tile. If this tile borders a tile of height > 1, B contains neither n or n − 1. If this
tile borders a tile of height ≤ 1, B will contain both n − 1 and n. Noting that the number
of tiles, and thus the dimension, increases for every additional label added to either A or B
except when n is added to B completes the proof. See Figure 27. �
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Figure 27. The sets (A,B) for these tilings are ({3},{4,6}), ({3,5},{4,6})
and ({3,5,6},{4,5,6})

Remark. Note that the face poset for ∆n × ∆n (the cross product of two simplices on n
vertices) is exactly the poset described in Prop. 6.1, except without condition (2) and with
condition (3) being changed to ρ((A,B)) = ∣A∣ + ∣B∣ −2. This is not a coincidence, as we will
see in the next section.

Using this simple combinatorial description of the face poset of GTλ, we can derive a simple
expression counting the number of faces of each dimension in GTλ.

Definition 6.2. Given a polytope P , the f -polynomial f(P ) is defined as

f(P ) = ∑
e∈F (P )

tdim(e) =
dim(P )
∑
i=0

∣faces of dimension i∣ti

Proposition 6.3. If λ = (1,2n−2,3), the following holds

f(GTλ) = ∑
∅≠A⊂[n]
∅≠B⊂[n]

t∣A∣+∣B∣−2 − ∑
A⊂[n−2]
B⊂[n−2]

t∣A∣+∣B∣−2(2t2 + 4t3) + ∑
A⊂[n−2]
B⊂[n−2]

t∣A∣+∣B∣−2(t3 − t4)

= (
(1 + t)n − 1

t
)2 − (t2 + 3t + 2)(1 + t)2n−4
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Proof. Note the term ∑∅≠A⊂[n]
∅≠B⊂[n]

t∣A∣+∣B∣−2 corresponds to the poset in Proposition 6.1 without

conditions (2) and (3). To exclude all pairs (A,B) not satisfying (2), there are a few cases
that we must account for:

(1) n − 1 ∈ A⋂B but n /∈ A⋃B
(2) n ∈ A⋂B but n − 1 /∈ A⋃B
(3) n − 1 ∈ A⋂B and n ∈ A but n /∈ B
(4) n ∈ A⋂B and n − 1 ∈ A but n − 1 /∈ B
(5) n − 1 ∈ A⋂B and n ∈ B but n /∈ A
(6) n − 1 ∈ A⋂B and n ∈ B but n /∈ A

For every pair (A′,B′) ⊂ [n − 2] × [n − 2], we can extend it to a subset of [n] × [n] falling in
cases 1 or 2 by adding 2 elements, and extend it to a subset in cases 3, 4, 5 or 6 by adding
3 elements. Thus the sets (A,B) not satisfying (2) can be accounted for by the term

∑
A⊂[n−2]
B⊂[n−2]

t∣A∣+∣B∣−2(2t2 + 4t3)

Now we must take all subsets (A,B) affected by condition (3) and change their rank. For
every pair (A′,B′), we can extend it to a set with n − 1, n ∈ A⋂B by adding 4 elements.
However, this should count the rank as ∣A∣ + ∣B∣ − 3, instead of ∣A∣ + ∣B∣ − 2. So we subtract
off every such pair, and add it back with the correct rank. This gives the term

∑
A⊂[n−2]
B⊂[n−2]

t∣A∣+∣B∣−2(−t4 + t3)

From here, the binomial theorem gives that

∑
∅≠A⊂[n]
∅≠B⊂[n]

t∣A∣+∣B∣ = ( ∑
∅≠A⊂[n]

t∣A∣)2 = (1 + t)n − 1

∑
A⊂[n−2]
B⊂[n−2]

t∣A∣+∣B∣ = ( ∑
A⊂[n−2]

t∣A∣)2 = (1 + t)2n−4

completing the proof. �

Remark. From the poset in Prop. 6.1, one could write down expressions for the flag-f vector
as well, as sums of products of multinomials. Essentially, a face corresponds to a pair of sets
(A,B). A chain of faces corresponds to a sequence of pairs of sets (Ai,Bi)1≤i≤k such that
A1 ⊆ A2 ⊆ . . . ⊆ Ak and B1 ⊆ B2 ⊆ . . . ⊆ Bk. By doing casework on when n first appears in the
sequences {Ai} and {Bi}, we can explicitly count the number of such chains where each set
has a specified size. However, this expression is fairly complicated and un-enlightening, and
it is unknown if there is a concise way to describe it in a nicer form.
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7. Observations, Rederived Results, and some Failed Ideas

As remarked in the previous section, it is not a coincidence that λ = (1,2n−2,3) the face poset
of GTλ closely resembles that of ∆n ×∆n. This GT polytope can be realized as a Minkowski
sum of two simplices with a certain embedding. In fact more is true– any GT -polytope can
be realized as a sum of smaller GTλ, a notion we make precise here.

Definition 7.1. Given polytopes P,Q ⊂ Rd, the Minkowski sum of P and Q is defined as

P +Q = {p + q∣p ∈ P, q ∈ Q}

Proposition 7.2. Let λ = (0a0 ,1a1 , . . . ,mam). Let GTλk be the GT polytope corresponding
to λk = (0a1+a2+...+ak ,1ak+1+...+am). Then GTλ = GTλ1 +GTλ2 + . . . +GTλm−1

Proof. Note the set on the right hand side has fixed xi,i coordinates, and that xi,i = λi.
Furthermore, any point on the right hand side is a sum of points which satisfy the inequalities
in Figure 1, and so satisfies the inequalities in Figure 1. Since the Minkowski sum preserves
convexity, it suffices to show that this sum surjects onto the vertices of GTλ. Consider the
tiling T of a vertex v of GTλ. It must have exactly m + 1 tiles, each correspoding to the
values 0 to m. Consider the tiling in each GTλk that has every tile in T corresponding to a
value > k in one tile (corresponding to 1), and every tile in T corresponding to a value ≤ k in
another tile (corresponding to 0). These vertices in each GTλk corresponding to these tiles
sum to v, so this sum is indeed surjective. �

To be quite honest, we are currently unsure if this is useful or not– still wading through the
literature on that. It is interesting though.

Proposition 7.3. A (known) formula for the number of SSYT of shape λ in terms of non-
intersecting lattice paths.

Proof. Add in counting integer points in terms of non-intersecting lattice paths �

Proposition 7.4. When λ = (0a1 ,1a2), GTλ is isomorphic to the order polytope for the
product of a chain of length a1 and a chain of length a2.

Proof. Talk a bit about order polytopes and how GT-polytopes are related. �

Proposition 7.5. The following idea to compute the f -vector for GTλ when λ = (0a1 ,1a2)
fails.

Proof. Talk about stripping away columns, idea to keep track of ’heights’ of paths. �
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