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ABSTRACT. In 2003, Fomin and Zelevinsky proved that finite type clus-
ter algebras can be classified by Dynkin diagrams. Then in 2013, Barot
and Marsh defined the presentation of a reflection group associated to
a Dynkin diagram in terms of an edge-weighted, oriented graph, and
proved that this group is invariant (up to isomorphism) under dia-
gram mutations. In this paper, we extend Barot and Marsh’s results to
Artin group presentations, defining new generator relations and showing
mutation-invariance for these presentations.

1. INTRODUCTION & MOTIVATION

In [FZ02], Fomin and Zelevinsky first introduced the concept of clus-
ter algebras. Barot and Marsh extended Fomin and Zelevinsky’s results
in [BM13], providing a presentation of the reflection group associated to a
Dynkin diagram with generators that correspond to elements of a compan-
ion basis associated to a seed of a finite type cluster algebra. They define
generator relations corresponding to chordless cycles arising in diagrams of
finite type in order to give a Coxeter group presentation for these diagrams.
They also proved that this Coxeter group presentation is invariant up to
isomorphism under the mutation equivalence relation. That is, given a dia-
gram I’ and a diagram mutation equivalent to T', denoted T = ux(T"), they
proved that Wr = W/, where Wr and Wrs are the group presentations
corresponding to I" and I, respectively.

In our paper, we define Ar to be the Artin group presentation arising
from a cluster algebra, where I' is the diagram associated to the cluster
algebra. We provide the necessary relations for the generators of the group,
and show that these relations hold under mutations of vertices in a diagram.
Our main result is to show that this Artin group presentation is invariant,
up to isomorphism, under the mutation equivalence relation. We state the
result here, but present the detailed proof in Section 6.

Theorem 1.1 (Theorem 6.1). Let I be a diagram of finite type, and let
I = pup(T) be the mutation of T at vertex k. Then Ar = Arr.

Section 2 provides the necessary definitions and fundamental results from
[BM13] to motivate our own results. For further definitions and references
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on the topic, we refer the reader to [FZ02]. Section 3 will review theory
from [FZ02], [FZ03] as well as review the classifications (from [BM13]) of
mutations of diagrams and their oriented chordless cycles. In Section 4, we
define the appropriate relations for our Artin group presentations. Section
5 specifies how certain relations in chordless cycles imply other relations in
those chordless cycles. Section 6 will provide the proof that the Artin group
defined for a diagram I' is invariant up to isomorphism under mutations of
I". Finally, in Section 7, we will state a conjecture which could extend the
main result to diagrams of affine type.

2. BACKGROUND

We begin by introducing some preliminary notations and definitions which
will aid the reader in understanding the results in the following sections. For
further references on cluster algebras, we refer the reader to [FZ02, FZ03],
and for a more detailed description of Artin group presentations, we di-
rect attention to [FN61]. We also provide references to several lemmas and
propositions from [BM13] which were helpful in formulating our own results.

The initial introduction of cluster algebras by Fomin and Zelevinsky was
aimed at making further strides in the areas of representation theory, Lie
theory, and total positivity. Since then, the study of cluster algebras has
provided a motivation for applications in various other areas of mathemat-
ics, including quiver representations. Of particular interest were finite type
cluster algebras, those with a finite number of distinguished generators. In
the sequel to their introductory paper ([FZ03]), Fomin and Zelevinsky intro-
duce the concept of mutation equivalence between diagrams, proving that
a connected graph is mutation equivalent to an oriented Dynkin diagram if
and only if all mutation equivalent graphs have edge weights not exceeding
3. In particular, this proves that finite type cluster algebras can be classified
by Dynkin diagrams.

A cluster algebra is an integral domain which can be generated by a set
of elements called cluster variables that satisfy certain exchange relations.
Following the style of [FZ02] and [BM13], we will define cluster algebras in
terms of skew-symmetrisable matrices (that is, a matrix B such that there
exists a diagonal matrix D of the same size with D;; > 0 such that DB is
skew-symmetric). Let F = Q(uq,us2,...,u,) be the field of rational functions
in n indeterminates over Q. We will define an initial seed for the cluster
algebra to be a fixed pair (x, B), where x = {z1,...,z,} is a free generating
set of F and B is an n x n skew-symmetric matrix. Define z} € F by the
exchange relation

B; -B;
wpap= [ o7+ [ ;7%
Bik>0 sz<0
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Then, given an initial seed (x, B) and k € 1,2, ...,n, we can define a mutation
of the seed at k, denoted u(x, B) = (x', B") where:

ng:{—Bij ifi=korj=k;

Biy|Byi+Big|Brs )
Bij+—| ikl 1”2 il Bril  therwise.

and x’ = {1‘1,$2, ey Tl Ty Th 1 - - - ,xn}. Such a mutation or a sequence
of such mutations generate seeds which in turn generate all cluster variables
in that, for each x = {x1,...,2,} corresponding to a seed of the cluster al-
gebra, the entries z; are the cluster variables.

A cluster algebra is said to be of finite type if the number of cluster vari-
ables that generate it is finite (if it has finitely many seeds). For each
finite type cluster algebra, we can associate to its corresponding skew-
symmetrisable matrix an edge-weighted, oriented graph, called a diagram.
We will often denote this diagram by I', and the vertex set of I" by V(T).
We will denote two connected vertices by ¢ — j, or by ¢— j if the orientation
is not specified. The diagram is determined by the following: for i, j € V(I"),
i = j if and only if B;;j >0 and w = |B;;Bj;| is the weight of the edge. A
skew-symmetrisable matrix B is 2-finite if |B;; Bj;| < 3 for 4,5 € {1,...,n}.
By [FZ02, 7.5], we have that if B is 2-finite, all 3-cycles in the unoriented
graph underlying our diagram must be oriented cyclically.

Just as we can define mutations of the seeds of a cluster variable, we can
also define mutations of a diagram associated to a cluster algebra of finite
type by the following set of rules:

Proposition 2.1. [FZ03] Let B be a 2-finite skew-symmetrisable matrix.
Then T'(ui(B)) is uniquely determined by T'(B) as follows:

e Reverse the orientations of all edges in I'(B) incident to k (leaving
the weights unchanged)

e For any path in T'(B) of form i Sk ij (i.e. with a,b positive), let
c be the weight on the edge j — i, taken to be zero if there is no such
arrow. Let ¢ be determined by ¢’ >0 and +/c £\/¢ = Vab, where
the sign before \/c (respectively, Vi ) is positive if the arrows form
an oriented cycle and negative otherwise. Then I'(B) changes as in
Figure 1, taking the case ¢’ =0 to mean no arrow between i and j.

Notation 2.2. We notate this mutation of I'( B) at vertex k by pu(T).
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A

FIGURE 1. Mutation of " at a node k

Notation 2.3. Given a diagram I', Barot and Marsh define for ¢, j € V/(T),

if 7 and j are not connected;
if ¢ and j are connected by an edge of weight 1;
if ¢ and j are connected by an edge of weight 2;

S =W N

if 7 and j are connected by an edge of weight 3.

Then, they define W(T') to be the group generated by s;, for i € V(T),
under the following relations. Note that e will denote the identity element
of W(T').

(1) s? = ¢ for all 7;
(2) (sisj)™i =e for all i # j;
(3) For any chordless cycle (as defined in Definition 3.1) C' in I', where

.o w1 . w2 Wg-1 . wo .
C=ig—i1—>—— g1 —> 1o

and all of the weights wy are 1 or wgy = 2, we have
(Sio Si17"Sig_oSig_1 Sig_2"""Si1 )2 =e.
Using this group presentation, Barot and Marsh state the following result:

Theorem 2.4. [BM13, Theorem A] Let I' be the diagram associated to a
seed in a cluster algebra of finite type. Then W(T') is isomorphic to the
corresponding reflection group.

In Section 3 of [BM13], Barot and Marsh provide an alteration of the
group W(T") in order to extend the group definition to any diagram of finite
type. More specifically, they provide relations such that Wr, as defined
below, is isomorphic to W (I") ([BM13, Proposition 4.5]).

Definition 2.5. Let W be the group with generators s;,7 = 1,2,...,n,

subject to the following relations:

e (R1) s?=¢ for all i

e (R2) (s;8j)™ =eforalli+j
Furthermore, for a chordless cycle C : ig — i1 - - —» i4_1 — ip and for
a=0,1,2,...,d-1, define 7 (iq, la+1) = SipSigs1**Siy g1 Sigra-s Sigs1-

Then we have the following relations:
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e (R3)(a) If all the weights in the edges of C are 1, then r(iq,i.:1)% = €
e (R3)(b) If C has some edges of weight 2, then r(i4,i4:1)" = € where
k=4-w, and w, is the weight of the edge i, — 74-1

Defining the group Wt with relations as shown above allows them to prove
certain characteristics of the interaction between the relations in this group
for the chordless cycles underlying the diagrams in question. In particular,
they prove the following result.

Theorem 2.6. [BM13, Theorem 5.4a] Let T be a diagram of finite type and
I = u(T) the mutation of T' at vertex k. Then Wr = Wrpr.

The rest of the paper will be devoted to building up analogous relations,
defined in Definition 4.5 to prove a similar result in the case of Artin groups.
For I' a diagram of finite type, we define the Artin group associated to I' as
in Section 4. We will then use the group relations presented in this definition
to prove the mutation invariance of Ar in Section 6.

3. DiAGrRAMS OF FINITE TYPE

In this section, we shall review the structure of diagrams of finite type,
and how their cycles are affected by mutation. This section is simply a
recap of [BM13, Section 2]. First, in Proposition 3.2, all types of chordless
cycles in diagrams of finite type are classified. Second, in Corollary 3.3 all
possible local pictures between a mutated vertex and two adjacent vertices
are drawn. Finally, in Lemma 3.4, all chordless cycles introduced from a
mutation are drawn. These three lemmas will be crucial in proving the
main result Theorem 6.1, as they will allow us to inspect precisely which
relations are added and removed after mutating at a prescribed vertex.

Definition 3.1. A chordless cycle of an unoriented graph G is a connected
subgraph H c G such that the number of vertices in H is equal to the
number of edges in H, and the edges in H form a single cycle.

Proposition 3.2. [BM13, Proposition 2.1] Let T be a diagram of finite type.
Then, a chordless cycle in the unoriented graph of I is cyclically oriented in
I'. Furthermore, the unoriented graph underlying the cycle must either be a
cycle such that all edges have weight 1, a square with two opposite edges of
weight 2 and two opposite edges of weight 1, or a triangle with two edges of
weight 2 and one of weight 1, as pictured in Figure 2.

Corollary 3.3. [BM13, Corollary 2.3] Let I be a graph of finite type and
suppose there are three vertices, labeled 1,7,k with both i,j connected to k.
Then mutation at k on the induced subdiagram appear as in Figure 3, either
from left to right or right to left, up to switching i and j,

Lemma 3.4. [BM13, Lemma 2.5] Let T be a diagram of finite type with
I = ug(T), the mutation of T' at vertex k. In Figure 4 and Figure 5 we list
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FIGURE 2. Possible chordless cycles in a diagram of finite
type, as found in [BM13, Figure 2]

induced subdiagrams in I' on the left and the resulting induced subdiagrams
in T with chordless cycles C' on the right, after mutation at k. We draw
the diagrams so that C' always has a clockwise cycle. Furthermore, in case
(i), we assume C' has at least three vertices, while in case (j), we assume
C" has at least four vertices.

Every chordless cycle in T is of one of the types listed in Figure 4 or
Figure 5.

4. THE ARTIN GROUP OF A DIAGRAM

In order to prove our main result, Theorem 6.1, we must first define
the Artin group associated to a finite type diagram. This definition will
be similar to that made in [BM13] at the beginning of Section 3, except
that we shall not require relation (R1), i.e., 312 = e. Since Artin Groups are
very similar to Coxeter groups, with the caveat that the generators are not
involutions, we will be able to use these modified relations to great effect.

4.1. Artin Groups.
Notation 4.1. Let

i (:cz-:vj)g, if k=0 (mod 2)

(xiaxj> = k-1
(rixzj) 2 x; ifk=1 (mod?2)

That is, (x;, ;) is just an alternating sequence of x; and x; of length k. We
also write (z;,2;)7* to denote ((xi,mj)k)_l
Definition 4.2. [Cha06, Beginning of section 1.2] Let Sym,,(R) denote the
set of n x n symmetric matrices with entries in R. For M € Sym,(Zu ) a

symmetric matrix whose entries can take values in the integers or infinity,
we define the associated Artin group in terms of generators and relations by

A= (w1, . xn)(zg, 2)M00 = (x5, 2:)M59 for all 4, j with M; ; < oo),
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FIGURE 3. Local picture of the mutation of a finite type
diagram, as found in [BM13, Figure 4]

Remark 4.3. Each Artin group has an associated Coxeter group defined
by adding in the additional relations s? = e for all . An Artin group is said
to be of finite type if its associated Coxeter group is of finite type. To each
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FIGURE 4. Induced subdiagrams of I' and corresponding
chordless cycles in TV = p(T'), as found in [BM13, Figure
5]
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(k) C is an oriented cycle in I" not connected to k and C' is the corre-
sponding cycle in T".

INVARNYRNY.

11 .2 11 2
1 1
) Q/' \ ) g/’
(1) ke —— c’ : ke «—— C’
1 O ¢—— O XO(*
h-11 h-2 h-11 h-

FiGUurRE 5. Induced subdiagrams of I' and corresponding
chordless cycles in IV = p(T'), as found in [BM13, Figure
6]

Artin group of finite type we can assign to it the same Dynkin diagram
which is assigned to the Coxeter group associated to the Artin group.

One of the most well-known Artin groups is the braid group on n strands,
which was shown to have an Artin group structure in [FN61]. The associated
Coxeter group is the symmetric group S,.

4.2. The Group associated to Diagram. We are now ready to define
the Artin group we associate to a diagram of finite type.

Definition 4.4. Let (ig,...,iq-1) be an ordered tuple such that the sub-
graph of I" on the vertices ig,...,74q_1 is a chordless cycle, with edges of
nonzero weight from iy to ix,1, where subscripts are taken (mod d). Call
such an ordered tuple a chordless cycle tuple. Then, denote

s _ 1 -1 -1 .. . . .
P(laytar1) = 85,1810 SinoSiq-15iq-25ias -+ - Sige1-
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Additionally, let
t(iaai(ﬁl) = [Siavp(iav'ia+1)]
where [a,b] = aba™1b7! is the commutator.

Definition 4.5. The associated Artin group to a diagram I' of finite type,
denoted Ar, is generated by s;, where there is one s; for each vertex ¢ in I'.
These generators are subject to the following relations

(T2) With m;; as defined in Definition 2.3, for all ¢ # j, we add the rela-
tions (s;,5;)™9 = (s, ;).

(T3) Let (ig,%1,-..,i4-1) be a chordless cycle tuple, as defined in Defini-
tion 4.4. If additionally one of the following two conditions hold,
(1) All edges in the chordless cycle are of weight 1 or 2 and the edge

i4-1 = 1o has weight 2,

(2) All edges in the chordless cycle have weight 1,
then, we include the relation t(ig,7;) = e. That is, s;, and p(io,i1)
commute.

Remark 4.6. In the above definition, the chordless cycle tuple is ordered,
and so we may have other relations corresponding to chordless cycle tuples
which are cyclic reorderings the chordless cycle tuple (ig,...,i4-1). However,
we shall see in Section 5 that many of these relations are redundant.

Remark 4.7. We purposely include relations (7'2),(7'3) but not (7'1) in
order to make our relation labeling analogous to that of [BM13] at the
beginning of Section 3. Note that if we add the additional relation (R1) as
defined at the beginning of Section 3 of [BM13] (namely, if we add s? = e for
all vertices i in I'), then we will precisely obtain the group Wr as defined at
the beginning of Section 3 in [BM13].

Remark 4.8. Throughout the remainder of the paper, we shall frequently
discuss relations on one diagram of finite type, I', and another diagram of
finite type I''. In order to distinguish the relations in these two groups, we
shall refer to the relations on I' as (72),(73) and the relations on I'" as
(T2"),(T3").

Example 4.9. The relations (72), (7'3) in that I" is a square with all edges
of weight 1 are as follows:

1 .2
o o
r=1 1
o o
4 1 3
(TQ) (Sl, S92 3 = (82731>3, i.e., S§18981 = S25152

. )
o (s2,53)% = (s3,82)>, i.e., 528382 = s35253
. )? = (s4,83)°, L.e., 835483 = S45354
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o (s4,51)° = (s1,84)°, i.e., 545154 = 15451
(T3) e s1857 53 84835257 85 8375, 8380 = ¢

[ 8285’18218184838518{:}15118118483 =€

U] 83821SII8281848518215115518184 =e

U 34311351333231sfs[lsglsglstl =e

Example 4.10. The relations (72),(7'3) in that T' is a triangle with two
edges of weight 2 and one of weight 1 are as follows:

1
o)
T= %\2
O —— O
3 1 2

(51,82)% = (s2,51)%, i.e., 51525152 = 52515251

(T2) o
o (s9,53)% = (s3,52)3, i.e., 595389 = 535953
o (Sg, 84)4 = (84,83)4, i.e., 53548384 = $45354S83
(T3) o 51551551525115518382 =e
. 32551511535518518183 =e

Remark 4.11. Note that if I" is the graph associated to a Dynkin diagram,
then Wr as we have defined it is precisely the Artin group corresponding to
that Dynkin diagram. This occurs because, in this case, we have no cycles
in I', and so we only have relations of the form (7'2), which define the Artin

group.
5. SYMMETRY AMONG THE (R3) RELATIONS

Given the relations (T2), many of the relations in (T3) become redundant.
For example,

Lemma 5.1. Let I' be a diagram of finite type which contains a chordless
cycle C:

19 11 ig-1 — 10

so that all edges have weight 1. Then if W is a group generated by s1,...,Sn
satifying the relations (T2) and t(ig,iq+1) = € for some a € {1,...,d}, all of
the relations in (T3) hold for C.

In the proof of this Lemma and throughout the rest of the paper, we
will frequently employ the following relations, which follow from the (T2)
relations.

Lemma 5.2. Let I' be a diagram of finite type, and let Ar be generated by
S1,...,8n. Then we have that

(a) sisjsi—l = sjflsisj if there is an arrow of weight 1 from i to jin I’
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(b) sisjsitsit=sts;!

; ; sjs; if there is an arrow of weight 2 from i to j in I’

Proof of 5.2. The relation in (a) follows immediately from the (T2) relation
57885 = 5;5;5; by left multiplying both sides by s;-l and right multiplying
both sides by s;!. Similarly, the relation in (b) arises from the (T2) rela-
tion s;s;5;8; = 8;555;5; by left multiplying both sides by 3;15;-1 and right
multiplying both sides by s;lsi’1 ([

Proof of 5.1. Tt suffices to prove that the relation t(0, 1) = e implies that
t(d-1, 0) = e, as the other relations will follow by induction. So suppose Ar
satisfies the relation t(0, 1) = e. Then we have

-1 -1 -1
Sg-1p(d—1,0) = 84-15)" 81 - .- Sg_35d-25d-3 - - - S150

-1 -1_-1 -1 -1
=59 S08d-1S9 S1 ---54-35d-25d-3---5154-15d-150

-1 -1 -1 -1 -1
=50 54-1505d-151 - --54-35d-25d-3 - - - S154-15d-150 by (T2)

-1_-1 -1 -1 -1
=50 54q-15081 ---54-35d-15d-253-15d-3 - - - 515d-150

-1 -1 -1 -1 -1

=55 5;-1(508]" - - Sy_3S4-25d-15d-25d-3 - - - 1) Sd-150 by (T2
“1.-1 (-1 -1 -1

=50 S5-1(81 -+ Sg_354-95d-15d-25d-3 - - - S0)Sd-150 by t(0, 1) =
1.-1 ;-1 -1 -1

=5y S521(87 -+ Sg-35d-15d-254-15d-3 - - - 50)Sd-150 by (T2

“1,.-1 -1 -1 -1
=50 (87215d-1)S1 - --S7-35d-25d—3 - - - S157-1505d-150

-1_-1 -1 -1
=8y S1 ---50-35d-25d-3 - --51543-1505d-150

-1_-1

-1 -1
=580 8] -..54.354-25d-3 - - - 51505d-150 " S0 by (T2)

-1 -1 -1
=50 8] ---54.35d4-25d-3 - - - $15054-1 = p(d —1,0)54-1

as required. Note that line 3 is equal to 4 and line 7 is equal to line 8
since the cycle is chordless, meaning that s;_1; commutes with every element
except sg and s4_o. O

Furthermore, we obtain similar results for cycles containing edges of
weight 2.

Lemma 5.3. Let I be a diagram of finite type containing the following
3-cycle:

ko
v\
Jo # Y
and let A be the group with generators si,...,S, defined by I'. Then the re-

lations t(i, j) = e and t(k, i) = e are equivalent.
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Proof. The lemma follows from the fact that

st si(sip(i, 5)s7 ' p(i, 5) ") s7 s,
-1
J

J
1

5155575 51;153‘)8]_‘181@

1

_ -1
s, sj(sis
j Sj

-1
Sk SjSiS j

8kS;8;

-1_-1 -1_-1
Sk‘ S’i SjSiSkSZ' Sj

sy p(k,i)spp(k,i) "

S

]

In the setting of the previous lemma, we also obtain the following relation,
which will play an important role in later proofs.

Lemma 5.4. Suppose I' contains a 3-cycle with edges of weight 2, labeled
as in 5.3, and suppose that Ar is generated by si,...s,. Then we have that

1_-1

s;p(4,k)sjp(d, k)_ls]_-lp(j, k) L= sjsglsisksjsglsglsks; sptsitsy = e.

Proof. We show that
-1
J

1_-1

s sglsisksjsglsisks; S s{lsk =e.
The result then follows by inverting the relation and conjugating by s;. In
the following computation, we will underline the terms being manipulated

in each line for emphasis.
11 -1 11 -1,y -1 -1 -
SkSjSk(8; Sk SiSkSjSk SiSkS; S 8; Sk)Sg S; Sk

-1
J

1

= sksjsks]_~18;1sisksjs,;lsisksjflsgls;lskséls sgl

sksjsisksjsglsisks;

= sksglsj !

1 -1 -1 -1
Sj

1

Sk Si Sj Sk

-1

sksjsksjsglsisks;lsg

1
= SZ'S]

-1 -1 -
S S; Sy

1.-1_-1_-1

= sisksjsksjflsjsglsisksgls; S; s;- S,

1.-1_-1_-1

1 -1 -1 -1 -
=Si§5k$j81'$k-8j Sk S; Sj Sk

Cecale aiaa alomlo—1 -1 -1
—SZSJS]‘ SijSszSj Sk S; Sj Sk
= 515555} sksjsksj_-lslglsi_ls;-lsgl
ceceala o omlo=l =1 1 -1
= 55i8jS; SkSjSkS; S S; Sj Sy
S B DS s B

= 5;5iSkSy S; SkSjS; Sj Sy

R S |

= 8548:5; Sj Sk-S]Sj Sk

— . -1 -1

= 5;5; SkS

=e
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Lemma 5.5. Let I' be a diagram of finite type containing the following 4-
70 —— oj
cycle: 2‘ JQ

lo —— ok
and let A be the group with generators si,...,s, defined by I'. Then the re-
lations t(i, j) = e and t(k, |) = e are equivalent.
Proof. We have that
skosp s (sip(is )i p(in ) )85 sisw

_'1
J

“1 -1 -1 1 -1 -1 -1 -1
=5 8, 5j(8i5; Sy, S15KSjS; Sj S S| SkSj)S; SISk

= 3;13[1(sjsis]_~1)(sglslsk)(sjsglsjfl)s;ls[lskslsk
i

J

“1 -1 -1 -1 -1 “1/ -1
=S5, 8] S, SjSiS|SkS] S; S; 8iSy (8] SkS1)Sk

1

-1_.-1_-1 -1_-1
=S8k S1 S 858iSISkS; S; S

= si'p(k,Dskp(k, 1)

S5iS1

O

Finally, we conclude the section by establishing a relationship between the
groups defined by I' and I'°P, the diagram obtained by reversing all arrows
inT.

Lemma 5.6. Let Ar be generated by si,...,5n, and let Apop be generated
by r1,...,mn. Then the map
Acsp =yt
defines an isomorphism between Ar and Arop.
Proof. It suffices to show that the map is well-defined, or that the elements
s7l,...,s,! satisfy the relations (T2) and (T3) of Arer. One can see that
the inverse elements satisfy (T2) in Apop by taking the inverse of both sides
of the corresponding relation in Ap. To see that the elements satisfy (T3)
in Arop, note that for a chordless cycle in I' with all weights equal to one,
we have
-1 -1 _ 1 -1
5051 +--859-25d-15d-2.--51 =81 -..84-95d-15d-2---5150
by the relation t(0,1) = e in (T3) in Ap. But then applying relations from
(T2), we have that
sosfl - 3513sd_1sd_28(}}18d_3 ...81 = s[l - sd_lsd_zsil ...8180,
and since the cycle is chordless, we then have

sosd_l.s[l e 5313861_2565_3 .. slsgil = sd_lsfl e s§}3sd_25d_3 ... slsgflso.

Repeating this process, we find that

-1 -1 -1 -1 -1 -1
808d-15d—2 - - - 525189 .. .84_954-1 = 8d-15d-2 - - - 825189 . ..84.95,4-150-
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But this occurs if and only if s7%,...,s.! satisfies the relation t(0, d-1) = e
in Al"op.
For a triangle labeled as in 5.3, by the relation t(k, i) = e we have

sksi_lsjsisgl = s{ls]‘si.

Hence
sksjsisj_-lsgl = sjsisj_»l.

-1 -1

But as before, this can occur if and only if s;°, s; ,s;l satisfy the relation

t(k, J) =ein A[‘op.
Finally, given a square labeled as in 5.5 and the relations t(1, 2) = e and
t(3, 4) = e, we have

sjsislsksl_lsi

= sisl-_lsjsislsksl_lsi_l
-1 -1 -1
j Sk SI1SKS;
J

= SZ'SjSiS
1

1 -1 -
= 5;55(8i8; S, 815K55)S; S;

sisjs;1 (sglslsk)sj(sisglsgl)

sislsksl_lsjsj_»lsglsj

= sislsksl_lsi_lsj

But this relation holds if and only if s;!,. .., sl‘1 satisfy t(j, 1) = e in Apop.
Therefore, we are done. ([

6. MAIN RESULT

In Section 6.1 we prove our main result:

Theorem 6.1. Let T’ be a diagram of finite type, and let T’ = p(T) be the
mutation of I' at vertex k. Then Apr = A

The structure of the proof will be analogous to the structure of the proof
of Theorem A in [BM13], but with most of the details changed to account
for the fact that the (R1) relations are not included. In particular, many of
the computations used to prove the supporting lemmas and propositions of
Theorem A rely heavily on the (R1) relations and therefore do not apply to
the supporting lemmas and propositions of Theorem 6.1.

Throughout the section we will fix a diagram of finite type I', a vertex k
of I, and write IV = p(T"). We will write s;, i, ¢;, and u; for the generators
corresponding to vertex i of Ap, Ars, Aror, and A(pryer, respectively. Note
that the u; are generators Aoy as well, since (I')” = (T°?)". In the proof
of Theorem 6.1 we will use Lemma 5.6 along with the following proposition,
which we prove in Section 6.2.
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Proposition 6.2. The map @: Ay - Ar defined by

(r1) sksisy’ if there is a (possibly weighted) arrow i -k in T
r;) =
e S; otherwise

s a group homomorphism.

6.1. Proof of Main Result.

Proof of Theorem 6.1. By Proposition 6.2 ¢: Ar» — Ar is a group homomor-
phism and @,p: Apor — A(Fop)f defined by

ugpusuy'  if there is a (possibly weighted) arrow i — k in (I'?)’

Soop(%') = {

U; otherwise

is a group homomorphism as well. By Lemma 5.6, there exist two well-
defined homomorphisms A: Ap - A defined by A(s;) = ¢; ' and A": Apryor >
Ar defined by A’(w;) = ;. We then have a homomorphism

= Aoy 0 A AT) > A(T) > A((T)') > A(T")

Suppose that there is an arrow ¢ — k in I'. Then there will be an arrow
k — i in I'°? and hence an arrow i — k in (I'°?)’, so we have that

bop(ri) = A(pop(A(p(r:)))) = A'(op(A(sksisy ) = A (wop(ay ¢ ar)) = A'(u; ') =7

Similarly if there is an arrow k& — i or no arrow between i and k in I’
then there will be an arrow k — i or no arrow between i and k in (T'°P)’,
respectively. In each of these cases we have that

Yop(ri) = A(pop(A(p(14)))) = A'(wop(A(s:))) = A(pop(a; 1)) = A (w7 ') = 1

In other words, starting at any node in the square below and following
the maps around gives the identity map.

14
Al“op o ﬁ) OA(F,)op

A 14

AFO

OAF'

Thus v o ¢ is the identity map on Ap/. By a similar argument @ o1) is the
identity map on Ar, and hence Ar = Ap. O
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6.2. Proof of Proposition 6.2. We prove Proposition 6.2 by showing that
that the elements ¢(r;) € Ar satisfy the (72") and (T'3") relations in Apr.
The proof that the ¢(r;) satisfy these relations is divided among Lemmas
6.3, 6.4, and 6.5. Throughout the proofs we write ¢; = p(r;) and m;j for the
weight of the edge between ¢ and j in I".

Lemma 6.3. Let i,j be distinct vertices of I
(a) Ifi=k orj=k, then (tit;)™i = (t;t;)™.
(b) If at most one of i,j is connected to k in T, then (titj)m;f = (tjti)m;f.

Proof. For case (a), suppose without loss of generality that ¢ = k. Note that
mgj = m;;. The only nontrivial case is when there is an arrow j — k = ¢.
Since ¢ and j are connected in this case, m;; is one of 3, 4, or 6.

Case m;; = 3. Here (Sjsi)?’ = (sisj)g, SO 855 = sjsisjsi_l and we have

(tit]’>3 = tﬂfjti = SZ'SZ'SjSz-_lSZ' = 8i5iS5 = SiSjSiSjSZ-_I = tjtitj = <tjti>3

Case m;j = 4. Here (sisj)‘1 = (sjsi)‘l, so sisisjsisjsi_l = 5;5;5;5; and therefore

4_ e o lece ol C o cc.cc.aT
(tit;)" = 5iSiSjs; SiSiSjS; = SiSiSjSiSjs;

Case m;; = 6. Here (sisj)ﬁ = (sjsi)G, SO sis,-sjs,-sjsisjsi_l = 5i5;8iS;SiS;. As

in the previous case, we add and remove pairs sisl-_l as necessary, giving

6 _ ¢ ccoclecceclececloceclecceclecc ol — (+.4.\6
(tit;)” = 5iSiSjs; SiSiSjS; SiSiSjS; = SiS;S; SiSiS;S; $isis;S; Si = (tit;)

For case (b), the only nontrivial case is when there is an arrow 7 - k or
j = k. Without loss of generality, suppose there is an arrow i — k. Since j
is not connected to k, we know that s;s; = s5;.

Case m;; = 2. Here s;sj = 5;5;, so s; commutes with both s; and s; and we
have that

-1 -1
tz’tj = SkSiSE S5 = SjSkSiS = tjti
R e \3 — L e.\3
Case m;; = 3. Here (s;55)° = (s;5i)°, so we have that
3 -1 -1 -1 -1 -1 3
(tit;)” = SkpSiSy SjSkSiSp = SkSiS;jSiS, = SkSjSiSjSy = SjSkSiSy S; = (tjt;)

Case m;j = 4. Here (s;s;)* = (sjs;)*, so we have that

4 -1 -1 -1 -1 -1 -1
(tit]’> = SEgSiSE SjSkSiSy Sj = SgSiSjSiS;jSE = SkS;jSiS;jSiSy = SjSkSiSp SjSkSiSk

Case m;; = 6. Here (s;5;)° = (s;5;)°, so we have that

1 -1 -1 4
= 5;8jSiSj = 5;SjS; SiSiSjS; Si = (tjt;)

= (tt;)"
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6 -1 -1 -1 -1 -1 6
(tit;)” = SkSiSy SjSkSiSy SjSkSiSy Sj = SkSiS;jSiS;SiS;Sy = SkS;jSiS;jSisjsisy = (tit;)
O

Lemma 6.4. Leti,j be distinct vertices of I' such that i and j are connected.
Then <titj)mij = <tjti>mij.

Proof. The possibilities for the subdiagram induced by ¢, j, and k are enu-
merated in Figure 3. We show that ¢; and ¢; satisfy the (7T'2") relations by
checking each case. Within each case, subcase (i) is when the subdiagram
of T' is the diagram on the left in Figure 3, and subcase (ii) is when the
subdiagram of I' is the diagram on the right in Figure 3.

Throughout the proof we will make frequent use of the fact that if m and
n are vertices of I', then

SmSnSm = SnSmSn < smsns;nl = sglsmsn <= smsgls;nl = sﬁls;nlsn = s;nls;bls;ll = S;Lls;nls;bl
When helpful, we underline the sections of an expression that are about

to be manipulated. We also frequently combine two applications of Ar

relations when one manipulation is simply commuting pairs of variables.

a) 1) We have (titj)Q = sksisglsksjsgl = sksisjs,gl = sksjsisgl = (tjti)2.
ii) We have <titj>2 = SZ‘SJ' = sjsi = <L‘jti>2.
b) i) We have

3 -1 -1
<titj> = SkSiSE SjSkSiSk

sksisjsksjflsis;l

-1 -1
i Sk

sksjsksisksglsgl

SkSjS8iSkSiS

= SjSKS;jSiS; S Sj
— 5:6.5:5 Lg.
= 8j5kSiSE” Sj

(tjti)°

-1
J

-1

-1
Ji SkSjSi = SkgSjSE S =

ii) We have (titj)2 = sisksjsgl = 55, SpSj = S

(tit:)?
c) 1) We have (titj)z = sksisglsksjsgl = sksisjsgl = sksjsislzl = (tjti)Q
11) ‘We have <tit]’>2 = 8455 = 555 = <tjti>2
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d) i) We have

(tit;) (tit) " = tatytit ity e !

sksisglsjsksisglsjsksi_lsgls;-lsks;

1

1 -1 -1
Sj

Sk

1

sksisglsjsksisjsksgls;

- 1
SjSk.

1.-1

- -1.-1
Sj Sk‘ Sj

1

S

1.-1

= sksisglsksjsksisksgls; 5; 1

S; Sk 35-1
1o-1.-1.-1.-1_-1

= SKSjSiSkSiSkS; Sp Si Sk Sj Sk
4 4 -1 -1
= 555;(sis5)"(s5si) 5; 8k
=e
ii) We have (titj)2 = sisksjsgl = sisjflsksj = sj_-lsksjsi = sksjsglsi =

(tti)”
e) 1) We have

(tit;) (tits) ™t = tatytat ity "

1.-1 1.-1.-1

= sksisglsjsksisglsjsksgls; 5;

-1
J

5j
-1 -1 -1
S; Sk SiSj

SES; Sk

-1 -1 -1 -1
=S5; SkSiSjSZ' SkSiSjSZ- S S¢S

-1
J

18;18i

-1 -1 —
S; SkSjSkSjSE S; Sk

-1 4 -4
si (tetj) (titk) s
=e
ii) Since sjsglsisk = sglsisksj, we have that sjslglsi_lsk = s,;lsi_lsksj,
hence

(tit;)*(tits) > = tatjt; 't

1.-1

sisksjsglsglsks; Sk

18;1

siskslglsi_lsksjs;

=e€

f) i) We have that

sp(tit) > (titi) sk

s ittt sk

-1 -1_-1_-1
j SkSi Sk} Sj Sk;

= sisglsjsksisgls
=e
Where the second equality follows from Lemma 5.4. It follows that
(tit;)* = (t;t:)*.
ii) This follows from part (i) by symmetry.
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Lemma 6.5. The elements t; satisfy the (T3") relations in I".

Proof. We know that every chordless cycle in I arises from a subdiagram
of I' in the form of one of the cases of Lemma 3.4, so we simply need to
check that a cycle relation holds in each case. We follow the labeling of the
vertices used in Lemma 3.4. We denote by t'(m,n) the expression given by
replacing the generators r; in the corresponding expression t(m,n) in Ap
with ¢, When helpful we note uses of (7'3) relations in Ar by referencing
the particular cycle relation used next to the manipulation.

a) We have t1t5 t3to
t'(1,2) =e.

b) We have t1t5 t3to
t'(1,2) =e.

81851828385152

81851828385152

5183

5183

5351

5351

t§1 tstot1, hence

t§1 tstot1, hence

c) We have t1t5 t3ts = 51551525355 89 = 8351 = t5 t3taty, hence t'(1,2) = e.

d) We have

sytt'(3,1)s0

sy taty ot itz syt so

= 333513I15251525515515115518182

= 3381525I13518155

1

$1

1

= 83813113513182851811

=€

Hence t'(3,1) =e.
e) We have

tity t3 tatsts

-1 -1_-1 -1
= 8189 51 S3 545352515254

= 81851811851848381828;181

= t5 5 tytstoty

Hence t'(1,2) =e.

313513I1525§154535152511

51551511Sl525155151155184838182811

by t(2,1)

-1.-1 -1 -1.-1.-1 -1
(s1557 8] S1525] )S151S5 S] S3 S45351525]

by £(2,3)
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f) We have
tity 3 tatsty = 5155 5253 55 54525355 82
= 315515453
-1
= 537545351 by ¢(1,3)

= (s3'52)s3" (53" 52)54(s53" 52)53(53 " 5251
1

Sq 325513513452538518281

ty 3 tatstaty

Hence t'(1,2) =e.
g) We have

t'(3,4) = taty totaty 'ty 5 g
= 8381sfsIl323134311351313218113513134311
3133311s[l3231343513;13113513134311

s1t(3,4)s7"

= 81811
=e
h) We have
t3t11t1t4 = 83821828185184

_ -1 _-1
= 8354 51 825154
= 82181182818483 byt(3,4)
_ .1 -1
=84 525189 S453
=ty t1tyts

Hence t'(3,4) =e.
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i) We have
t'(1,2)
= tyty g ety bttty -t
= slsglsglu-5;_111skshsglsh_l"'@s[lsgl--‘Sﬁllsksglsglsh_lmsQ
= 31351351---s,}llsglskshsh,l'--823I1351---sﬁ}lsﬁlsglshsh,lmsQ
t(1,2)

e

j) Here s commutes with s; for all ¢ # 1, h, so we have

t'(h,1)

=ttt et gt ottty i ey et ot L ottt

= shsgl_sksilsilsgl---Sglgsh_lsh_g---%slﬁsglﬁsilisgl-~sﬁ£23ﬁlsh_2---szs_kslsgl_%

-1_-1 -1 -1_.-1_-1 -1 -1
=S8pS1 SS9 *Sp_9Sh-1Sh-2"""5251S8p S1 S9 **Sp_9Sp_1Sh-2'""S251
_ (k1)

=e€

k) Here t; = s; for all vertices i in C’, so the case is trivial.

1) If the edge between k and h points towards h, then t; = s; for all i € C’
and the case is trivial. If the edge points towards k then t;, = skshslgl and
s, commutes with s; for all vertices 7 # h in C’, so we have

-1 -1 -1 -1 -1
t1to by 1thth—1-"T2 = 159 ***S;,_15KShSE Sh—1'""S2

-1 -1 -1
= 815189 ***S,_1ShSh-1"""525},

= 83,55 8 SpSh_1"52518% by ¢(1,2)

-1 -1
=89 *Sp_1SkSKhSE Sh-1"""S2S51

=ty ety bty tat

Hence t'(1,2) =e.
U

Proof of Proposition 6.2. Lemma 6.3 and Lemma 6.4 show that the elements
t; satisfy the (72') relations for Ars. Lemma 6.5 shows that they satisfy the
(T3") relations. Since these are all of the relations defining Ar, it follows
that ¢ defines a group homomorphism Apr - Ar. O
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7. EXTENSION TO AFFINE TYPE DIAGRAMS

It is natural to ask whether one can obtain similar results for diagrams
that are not of finite type, particularly those of affine type (i.e. mutation
equivalent to an affine Dynkin diagram). In [FT13], the authors associated
the following group to a diagram of affine type.

Let I' be a diagram of affine type with n + 1 vertices. Then we define
Wr to be the diagram with generators sy, ..., s, and satisfying the following
relations:

(R1) s?=eforalli=1,...,n

i =

(R2) (s;s5)™4 = e where

if there is no arrow between i and j in I’

if there is an arrow of weight 1 between i and j in I"

OV \V]

if there is an arrow of weight 2 between i and j in I’
6  if there is an arrow of weight 3 between i and j in "

oo otherwise

(R3) For every chordless oriented cycle:

. Wig |, Wiy Wig o, Wig 1 .
lp —> 11 —> -+ —> ig-1 —> lo,

define for 1 € {0,...,d -1},
l+d-2

t(l) = ( l—Il \/w_ij_ vV wil+d—1)2'
j=

Then take the relation (s;,p(is,i+1) m() = ¢ where

)
)

2 ift(l)=0

s ) =1
mD =1y i) =2
6 ift(l)=3

(R4) For each subdiagram of I' of the form shown in the first column of
Table 1, we add the relation(s) listed in the second column.
Given this definition of Wp, which generalizes the definition of Wr found
in [BM13], one obtains the following result.

Theorem 7.1. [FT13, Theorem 4.6] Let W be an affine Weyl group and let
I' be a diagram mutation equivalent to an orientation of a Dynkin diagram
of the same type as W. Then W is isomorphic to Wr.

In seeking an analogous result for Artin groups, we generalize Ar as fol-
lows:

Definition 7.2. Let I' be a diagram of affine type with n + 1 vertices. Then
we define Ar to be the diagram with generators s1,..., s, and satisfying the
following relations:
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Subdiagram

(R4) Relation

(818283848382)2 =e

7
(51525352518485 - .. SpSp+1Sn ---S5584)° = ¢€

(525354515453)° = € and (825154535451)° =

2
(5415150415253 - - - Sp—15nSn—1 - - - 5352)° =
e

(525152515253)° = e and (s25352535251)° =

mz-j =

S\

TABLE 1. (R4) Relations

= (sj,si)™% where

if there is no arrow between i and j in I’

if there is an arrow of weight 1 between i and j in I’
if there is an arrow of weight 2 between i and j in I’
if there is an arrow of weight 3 between i and j in I"

otherwise
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(T3) For every chordless oriented cycle:

. Wig . Wiy Wig_o . Wig_y .
g —> 11 —> -+ — ig-1 —> lo,
define for 1 € {0,...,d -1},
l+d-2

t(l) = ( l—Il \/w_ij_ V wil+d—1)2'
j=

Then take the relation <Silp(il,il+1))m(l) = <p(il,il+1)5il>m(l) where

2 it t(l)=0

BER IO
mD =1y i) =2
6 ift(l)=3

(T4) For each subdiagram of I' of the form shown in the first column of
Table 2, we add the relation(s) listed in the second column.

Conjecture 7.3. Let I' be a diagram of affine type, and let T be the muta-
tion of I' at a node k. Then Ap = Ars.
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Subdiagram (T4) Relation

52313515115354 = 81133845281351

-1 .-1 =1 -1
3233 54 "'STL SlSn+181 Sn...5453
1

_ o 1l-1 -1 -1
=83784 -8, S15n+151 Sn - --545352

5255154515‘1153 = 55154518118382 and
323132153545I1 = 81811838481182

-1 -1 -1
8182 .o Sn_18n+13n3n+18n_1 ... 82 =
-1 -1 -1
So" .8, 15n+15n8,115n-1 - - - S251
323[1828385131 = 3[132535518182 and

3132838233’,1351 = 32333235135131

TABLE 2. (T4) Relations




