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Abstract. We study the action of the symmetric group on an array of variables defined using the
birational R-matrix. We solve the case of 1-shifts completely and propose a conjecture for the action of

transpositions. We also provide a combinatorial interpretation for functions that arise in the formulas

in terms of noncrossing paths on cylindric networks.

1. Introduction and Background

Lam and Pylyavskyy introduced the birational R-matrix in [LP08] to study matrix factorizations and
total positivity in loop groups. It is related to the study of geometric crystals and its tropicalization is
the combinatorial R-matrix of affine crystals. The birational R-matrix also has applications to discrete
Painlevé dynamical systems.

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two sets of formal variables, where n ≥ 1. For 1 ≤ i ≤ n,
let

κi(a,b) =

i+n−1∑
j=i

j∏
k=i+1

bk

i+n−1∏
k=j+1

ak,

where the indices k are taken mod n. Then

η : (a,b) 7→ (b′,a′)

where a′ = (a′1, . . . , a
′
n),b′ = (b′1, . . . , b

′
n), and

a′i =
ai−1κi−1(a,b)

κi(a,b)

b′i =
bi+1κi+1(a,b)

κi(a,b)
.

For example, for n = 4,

a′2 = a1
κ1(a,b)

κ2(a,b)
= a1

a2a3a4 + b2a3a4 + b2b3a4 + b2b3b4
a3a4a1 + b3a4a1 + b3b4a1 + b3b4b1

.

Now for 1 ≤ i < m, let

ηi(x1, . . . ,xm) = (x1, . . . ,xi−1, η(xi,xi+1),xi+2, . . . ,xm).

This is the birational R-matrix.

Theorem 1.1 ([LP08] Lemma 6.1, Theorem 6.3). The birational R-matrix has the following properties:

• η is an involution: η2 = 1;
• η satisfies the braid relations: for 1 ≤ i < m,

ηiηi+1ηi(x1, . . . ,xm) = ηi+1ηiηi+1(x1, . . . ,xm).

Let si denote the transposition that switches i and i + 1. Since the ηi’s are involutions that satisfy
the braid relations, this theorem implies that the birational R-matrix defines an action of the symmetric
group by letting

si(x1, . . . ,xm) = ηi(x1, . . . ,xm).

To refer to specific variables after applying a permutation, we write s(x1, . . . ,xm) = (s(x1), . . . , s(xm))

where s(xi) = (s(x
(1)
i ), . . . , s(x

(n)
i )). When indices are in parentheses, they are taken mod n.

Main Problem. For any s ∈ Sm, 1 ≤ i ≤ m and 1 ≤ r ≤ n, we would like to write s(x
(r)
i ) explicitly

as a rational function of the original variables.

The definition only provides us with explicit formulas when s = si for some i. Given i < j, a lemma
of [LP10] writes down formulas for the action of transpositions of the form sj−1sj−2 . . . si on xj in
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terms of σ functions (to be defined later). We use this lemma to solve the case of sj−1sj−2 . . . si and
sisi+1 . . . sj−1 completely. We then introduce Ω functions and propose a conjectural identity that they
satisfy, which would imply explicit formulas for permutations that are transpositions. We also record
some preliminary observations beyond the permutations mentioned previously. Lastly, based on the
work in [LP08] on the combinatorial interpretation of τ functions in terms of highway path families in
cylindrical networks, we provide a combinatorial interpretation of the σ and σ̄ functions and conjecture
a combinatorial interpretation of the Ω functions.

2. Formulas

We rely heavily on σ and σ̄ functions as the building blocks for our formulas. To define them, we first
define τ functions. We follow Section 2.2 of [LP10].

Let n be a positive integer, k a nonnegative integer, and let 1 ≤ r ≤ n. Then τ
(r)
k is defined as follows:

τ
(r)
k (x1,x2, . . . ,xm) =

∑
1≤ii≤i2≤···≤ik≤n

x
(r)
i1
x
(r−1)
i2

. . . x
(r−k+1)
ik

where no index appears more than n− 1 times in the sum.
The σ and σ̄ functions are defined using τ . We can think of them as the τ functions with the caveat

that x1 or xm variables are now allowed to appear more than n− 1 times.

σ
(r)
k (x1,x2, . . . ,xm) =

k∑
i=0

x
(r)
1 x

(r−1)
1 . . . x

(r−i+1)
1 τ

(r−i)
k−i (x2,x3, . . . ,xm),

σ̄
(r)
k (x1,x2, . . . ,xm) =

k∑
i=0

τ
(r)
k−i(x1,x2, . . . ,xm−1)x(r−k+i)

m x(r−k+i−1)
m . . . x(r−k)m .

Example 2.1. Let n = 4. Write

a = (a1, . . . , a4),b = (b1, . . . , b4), c = (c1, . . . , c4)

in place of x1,x2,x3. Then

τ
(3)
5 (b, c) = b3b2b1c4c3 + b3b2c1c4c3,

σ
(4)
6 (a,b, c) =

6∑
i=0

a4 . . . a4−i+1τ
(4−i)
6−i (b, c)

= τ
(4)
6 (b, c) + a4τ

(3)
5 (b, c) + a4a3τ

(2)
4 (b, c) + a4a3a2τ

(1)
3 (b, c)

+ a4a3a2a1τ
(4)
2 (b, c) + a4a3a2a1a4τ

(3)
1 (b, c) + a4a3a2a1a4a3,

σ̄
(4)
6 (a,b, c) =

6∑
i=0

τ
(4)
6−i(a,b)ci−2ci−3 . . . c3

= τ
(4)
6 (a,b) + τ

(4)
5 (a,b)c3 + τ

(4)
4 (a,b)c4c3 + τ

(4)
3 (a,b)c1c4c3

+ τ
(4)
2 (a,b)c2c1c4c3 + τ

(4)
1 (a,b)c3c2c1c4c3 + c4c3c2c1c4c3,

We state a fundamental identity of the σ and σ̄ functions.

Lemma 2.2.

σ
(r)
(n−1)(j−i)(xi, . . . ,xj) =

n−1∑
k=0

(
k−1∏
t=0

x
(r−t)
i

)
σ
(r−k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

(
n−k−2∏
s=0

x
(r−k+j−i−1−s)
j

)
,

σ̄
(r)
(n−1)(j−i)(xi, . . . ,xj) =

n−1∑
k=0

(
k−1∏
t=0

x
(r−t)
i

)
σ̄
(r−k)
(n−1)(j−i−1)(xi+1, . . . ,xj)

(
n−k−2∏
s=0

x
(r−k+j−i−1−s)
j

)
Proof. We sketch the proof of the first identity. The second identity is exactly dual.
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We can group the terms of σ
(r)
(n−1)(j−i)(xi, . . . ,xj) by the number of times xj variables are used at the

end. By definition of the σ functions, xj can appear at most n− 1 times.

σ
(r)
(n−1)(j−i)(xi, . . . ,xj) =

n−1∑
k=0

σ
(r−k)
(n−1)(j−i)−k(xi, . . . ,xj−1)

(
n−k−2∏
s=0

x
(r−k+j−i−1−s)
j

)

=

n−1∑
k=0

(
k−1∏
t=0

x
(r−t)
i

)
σ
(r−k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

(
n−k−2∏
s=0

x
(r−k+j−i−1−s)
j

)
,

Since all terms of σ
(r−k)
(n−1)(j−i)−k(xi, . . . ,xj−1) must use xi at least n − 1 − k times, the second equality

holds by a change of summation index from k to n− 1− k. �

2.1. How 1-Shifts Act. In this section, we state explicit formulas for the action of a permutation of
the form sisi+1 . . . sj−1 and sj−1sj−2 . . . si, where 1 ≤ i < j ≤ m. Such permutations are shifts by ±1,
and we call them 1-shifts.

Theorem 2.3 ([LP10] Lemma 3.1). Let 1 ≤ i < j ≤ m. Then

κr(sj−2sj−3 · · · si(xj−1),xj) =
σ
(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−j+i)
(n−1)(j−i−1)(xi, . . . ,xj−1)

and

sj−1 . . . si(x
(r)
j ) =

x
(r−j+i)
i σ

(r−j+i−1)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)

.

The following lemma is the dual of Theorem 2.3 and the proof exactly emulates the one in [LP10].

Theorem 2.4 (Dual of Theorem 2.3). Let 1 ≤ i < j ≤ m. Then

κr(xi, si+1 . . . sj−1(xi+1)) =
σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

and

si . . . sj−1(x
(r)
i ) =

x
(r+j−i)
j σ̄

(r)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj)

Proof. We prove the two statements in parallel by induction on j − i. For j − i = 1 they coincide with
the formulae for the κr and the R-action of si. By the induction assumption,

si+1 . . . sj−1(x
(r)
i+1) =

x
(r+j−i−1)
j σ̄

(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r−1)
(n−1)(j−i−1)(xi+1, . . . ,xj)

.

Therefore

κr(xi, si+1 . . . sj−1(xi+1)) =

n−1∑
s=0

[
s∏

t=1

si+1 . . . sj−1(x
(r+t)
i+1 )

]
x
(r+s+1)
i · · ·x(r+n−1)

i

=

n−1∑
s=0

 s∏
t=1

x
(r+t+j−i−1)
j σ̄

(r+t)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r+t−1)
(n−1)(j−i−1)(xi+1, . . . ,xj)

x(r+s+1)
i · · ·x(r+n−1)

i

=

n−1∑
s=0

[
n−s−2∏
t=0

x
(r+n−1−t)
i

]
σ̄
(r+s)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

[
s−1∏
t=0

x
(r+s+j−i−1−t)
j

]

=
σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

.
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The last equality holds by Lemma 2.2. Now we can also prove the second claim, since

si . . . sj−1(x
(r)
i )

=
si+1 . . . sj−1(x

(r+1)
i+1 )κr+1(xi, si+1 . . . sj−1(xi+1))

κr(xi, si+1 . . . sj−1(xi+1))

=
x
(r+j−i)
j σ̄

(r+1)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r+1)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj)

= x
(r+j−i)
j

σ̄
(r)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj)

.

�

In this theorem, we write down what happens to all variables in columns i, . . . , j−1 after the application
of a permutation of the form sj−1 . . . si, as well as what happens to all variables in columns i+ 1, . . . , j
after the application of a permutation of the form si . . . sj−1.

Theorem 2.5. Let 1 ≤ i < j ≤ m. Then for i ≤ k < j,

sj−1 . . . si(x
(r)
k ) =

x
(r+1)
k+1 σ

(r−k+i)
(n−1)(k+1−i)(xi, . . . ,xk+1)σ

(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk)

σ
(r−k+i−1)
(n−1)(k+1−i)(xi, . . . ,xk+1)σ

(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)

.

Similarly, for i < k ≤ j,

si . . . sj−1(x
(r)
k ) =

x
(r−1)
k−1 σ̄

(r−2)
(n−1)(j−k+1)(xk−1, . . . ,xj)σ̄

(r)
(n−1)(j−k)(xk, . . . ,xj)

σ̄
(r−1)
(n−1)(j−k+1)(xk−1, . . . ,xj)σ̄

(r−1)
(n−1)(j−k)(xk, . . . ,xj)

.

Proof. We prove the first part of the lemma. The second part is exactly dual.
Let s = sk−1sk−2 · · · si. By Theorem 2.3,

κr(s(xk),xk+1) =
σ
(r−k+i−1)
(n−1)(k+1−i)(xi,xi+1, . . . ,xk+1)

σ
(r−k+i−1)
(n−1)(k−i)(xi,xi+1, . . . ,xk)

.

So

sj−1sj−2 . . . si(x
(r)
k ) = sksk−1 · · · si(x(r)k )

= sk(s(x
(r)
k ))

= x
(r+1)
k+1

κr+1(s(xk),xk+1)

κr(s(xk),xk+1)

= x
(r+1)
k+1

σ
(r−k+i)
(n−1)(k+1−i)(xi,xi+1, . . . ,xk+1)σ

(r−k+i−1)
(n−1)(k−i)(xi,xi+1, . . . ,xk)

σ
(r−k+i−1)
(n−1)(k+1−i)(xi,xi+1, . . . ,xk+1)σ

(r−k+i)
(n−1)(k−i)(xi,xi+1, . . . ,xk)

.

as desired. �

2.2. How Transpositions Act. Let 1 ≤ i < j ≤ m. In this section, we state a conjecture for how
permutations of the form sisi+1 . . . sj−2sj−1sj−2 . . . si+1si act. Note that this is exactly the transposition
that switches i and j. Since

sisi+1 . . . sj−2sj−1sj−2 . . . si+1si(x
(r)
j ) = sj−1 . . . si(x

(r)
j ),

and
sisi+1 . . . sj−2sj−1sj−2 . . . si+1si(x

(r)
i ) = si . . . sj−1(x

(r)
i ),

we know how a transposition that switches i and j acts on xi and xj by the discussion from the previous
section. To investigate the action on intermediate variables, we introduce the Ω functions and state a
conjectural identity of the Ω functions that would imply our proposed formula for how a transposition
acts on intermediate variables. We prove this identity when n = 2.

Definition 2.6. For i ≤ k ≤ j − 1, define

(k)Ω
(r)
(n−1)(j−i)(xi, . . . ,xj) =

n−1∑
`=0

σ
(r)
(n−1)(k−i)+`(xi, . . . ,xk)σ̄

(r+k−i−`)
(n−1)(j−k)−`(xk+1, . . . ,xj).
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By the same argument as Lemma 2.2, when k = i and when k = j − 1, Ω specializes to σ̄ and σ
respectively.

Example 2.7. When n = 2,

(k)Ωj−i = xiσk−i(xi, . . . ,xk)xk+1σj−k−2(xk+2, . . . ,xj)+

xiσk−i(xi, . . . ,xk)σj−k−2(xk+2, . . . ,xj)xj+

σk−i(xi, . . . ,xk)xk+1σj−k−2(xk+2, . . . ,xj)xj+

σk−i(xi, . . . ,xk)σj−k−2(xk+2, . . . ,xj)xjxj

= σk−i+1(x1, . . . ,xk)σ̄j−k−1(xk+1, . . . ,xj)+

σk−i(x1, . . . ,xk)σ̄j−k(xk+1, . . . ,xj),

where the superscripts are all falling appropriately.

Conjecture 2.8. For i < k ≤ j − 1, the following identity of (k−1)Ω and (k)Ω holds:[
n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

]
(k−1)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . , xj)

=

n−1∑
s=0

r+s∏
t=r+1

x
(t+j−k)
j

r+n−1∏
t=r+s+1

x
(t+1)
k

 ∏
0≤t≤n−1
t6=s,s+1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)


(k)Ω

(r−k+i+s)
(n−1)(j−i)(xi, . . . , xj)σ

(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1).

For example, consider the case where j = 4, i = 1, r = n = 4, and k = 3. Denote x
(k)
1 , . . . , x

(k)
4 by

ak, . . . , dk respectively. Then the identity above is

σ
(3)
6 (a, b, c)σ

(4)
6 (a, b, c)σ

(1)
6 (a, b, c)(2)Ω

(2)
9 (a, b, c, d) = c2c3c4σ

(2)
9 (a, b, c, d)σ

(3)
3 (a, b)σ

(4)
6 (a, b, c)σ

(1)
6 (a, b, c)

+ d2c3c4σ
(2)
6 (a, b, c)σ

(3)
9 (a, b, c, d)σ

(4)
3 (a, b)σ

(1)
6 (a, b, c)

+ d2d3c4σ
(2)
6 (a, b, c)σ

(3)
6 (a, b, c)σ

(4)
9 (a, b, c, d)σ

(1)
3 (a, b)

+ d2d3d4σ
(2)
3 (a, b)σ

(3)
6 (a, b, c)σ

(4)
6 (a, b, c)σ

(1)
9 (a, b, c, d).

This identity is true in the case of n = 2.

Theorem 2.9. When n = 2, for i < k ≤ j−1, Conjecture 2.8 holds. Equivalently, we have the following
identity of (k−1)Ω and (k)Ω:

σ
(r−k+i+1)
k−i (xi, . . . ,xk) (k−1)Ω

(r−k+i)
j−i (xi, . . . ,xj) = x

(r)
k

(k)Ω
(r−k+i)
j−i (xi, . . . ,xj)σ

(r−k+i+1)
k−i−1 (xi, . . . ,xk−1)

+ x
(r+1+j−k)
j

(k)Ω
(r−k+i+1)
j−i (xi, . . . ,xj)σ

(r−k+i)
k−i−1 (xi, . . . ,xk−1).

Proof. It suffices to match up the terms on the left and right hand sides that contain the same number
of x′js. When n = 2,

(k)Ω
(r)
j−i(xi, . . . ,xj)

= σ
(r)
k−i(xi, . . . ,xk)σ̄

(r−k+i)
j−k (xk+1, . . . ,xj) + σ

(r)
k−i+1(xi, . . . ,xk)σ̄

(r−k+i−1)
j−k−1 (xk+1, . . . ,xj),

So

(k)Ω
(r−k+i)
j−i (xi, . . . ,xj)

= σ
(r−k+i)
k−i (xi, . . . ,xk)σ̄

(r)
j−k(xk+1, . . . ,xj) + σ

(r−k+i)
k−i+1 (xi, . . . ,xk)σ̄

(r−1)
j−k−1(xk+1, . . . ,xj),

and

(k)Ω
(r−k+i+1)
j−i (xi, . . . ,xj)

= σ
(r−k+i+1)
k−i (xi, . . . ,xk)σ̄

(r+1)
j−k (xk+1, . . . ,xj) + σ

(r−k+i+1)
k−i+1 (xi, . . . ,xk)σ̄

(r)
j−k−1(xk+1, . . . ,xj).

One can check that the product of q x′js in all terms that contain exactly q xj ’s have the same indices.
Therefore, we can focus the part of the left and right hand side that contains q xj ’s in each term after
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dividing by the xj ’s their terms contain. For the left hand side, the result is

σ
(r−k+i+1)
k−i (xi, . . . ,xk)σ

(r−k+i)
k−i−1 (xi, . . . ,xk−1)τ

(r−1)
j−k−q+1(xk, . . . ,xj−1)

+ σ
(r−k+i+1)
k−i (xi, . . . ,xk)σ

(r−k+i)
k−i (xi, . . . ,xk−1)τ

(r)
j−k−q(xk, . . . ,xj−1).

For the right hand side, the result is

x
(r)
k σ

(r−k+i+1)
k−i−1 (xi, . . . ,xk−1)(σ

(r−k+i)
k−i (xi, . . . ,xk)τ

(r)
j−k−q(xk+1, . . . ,xj−1)

+ σ
(r−k+i)
k−i+1 (xi, . . . ,xk)τ

(r−1)
j−k−1−q(xk+1, . . . ,xj−1))(1)

+ σ
(r−k+i)
k−i−1 (xi, . . . ,xk−1)(σ

(r−k+i+1)
k−i (xi, . . . ,xk)τ

(r+1)
j−k−q+1(xk+1, . . . ,xj−1)

+ σ
(r−k+i+1)
k−i+1 (xi, . . . ,xk)τ

(r)
j−k−q(xk+1, . . . ,xj−1)).

We can combine the two terms that contain τ
(r)
j−k−q(xk+1, . . . ,xj) as follows:

x
(r)
k σ

(r−k+i+1)
k−i−1 (xi, . . . ,xk−1)σ

(r−k+i)
k−i (xi, . . . ,xk) + σ

(r−k+i)
k−i−1 (xi, . . . ,xk−1)σ

(r−k+i+1)
k−i+1 (xi, . . . ,xk)

= x
(r)
k σ

(r−k+i+1)
k−i−1 (xi, . . . ,xk−1)σ

(r−k+i)
k−i (xi, . . . ,xk) + σ

(r−k+i)
k−i−1 (xi, . . . ,xk−1)x

(r−k+i+1)
i σ

(r−k+i)
k−i (xi, . . . ,xk)

= σ
(r−k+i+1)
k−i (xi, . . . ,xk)σ

(r−k+i)
k−i (xi, . . . ,xk).

So (1) can be simplified as follows:

σ
(r−k+i+1)
k−i (xi, . . . ,xk)σ

(r−k+i)
k−i (xi, . . . ,xk)τ

(r)
j−k−q(xk+1, . . . ,xj−1)

+ σ
(r−k+i)
k−i−1 (xi, . . . ,xk−1)σ

(r−k+i+1)
k−i (xi, . . . ,xk)τ

(r+1)
j−k−q+1(xk+1, . . . ,xj−1)

+ x
(r)
k σ

(r−k+i+1)
k−i−1 (xi, . . . ,xk−1)σ

(r−k+i)
k−i+1 (xi, . . . ,xk)τ

(r−1)
j−k−1−q(xk+1, . . . ,xj−1)

= σ
(r−k+i+1)
k−i (xi, . . . ,xk)(σ

(r−k+i)
k−i (xi, . . . ,xk)τ

(r)
j−k−q(xk+1, . . . ,xj−1)

+ σ
(r−k+i)
k−i−1 (xi, . . . ,xk−1)τ

(r+1)
j−k−q+1(xk+1, . . . ,xj−1)

+ x
(r)
k σ

(r−k+i+1)
k−i−1 (xi, . . . ,xk−1)x

(r−k+i)
i τ

(r−1)
j−k−1−q(xk+1, . . . ,xj−1))

= σ
(r−k+i+1)
k−i (xi, . . . ,xk)(σ

(r−k+i)
k−i (xi, . . . ,xk−1)τ

(r)
j−k−q(xk+1, . . . ,xj−1)

+ σ
(r−k+i)
k−i−1 (xi, . . . ,xk−1)x

(r−1)
k τ

(r)
j−k−q(xk+1, . . . ,xj−1)

+ σ
(r−k+i)
k−i−1 (xi, . . . ,xk−1)τ

(r+1)
j−k−q+1(xk+1, . . . ,xj−1)

+ σ
(r−k+i)
k−i (xi, . . . ,xk−1)x

(r)
k τ

(r−1)
j−k−1−q(xk+1, . . . ,xj−1))

= σ
(r−k+i+1)
k−i (xi, . . . ,xk)(σ

(r−k+i)
k−i−1 (xi, . . . ,xk−1)(x

(r−1)
k τ

(r)
j−k−q(xk+1, . . . ,xj−1) + τ

(r+1)
j−k−q+1(xk+1, . . . ,xj−1))

+ σ
(r−k+i)
k−i (xi, . . . ,xk−1)(τ

(r)
j−k−q(xk+1, . . . ,xj−1) + x

(r)
k τ

(r−1)
j−k−1−q(xk+1, . . . ,xj−1)))

= σ
(r−k+i+1)
k−i (xi, . . . ,xk)σ

(r−k+i)
k−i−1 (xi, . . . ,xk−1)τ

(r−1)
j−k−q+1(xk, . . . ,xj−1)

+ σ
(r−k+i+1)
k−i (xi, . . . ,xk)σ

(r−k+i)
k−i (xi, . . . ,xk−1)τ

(r)
j−k−q(xk, . . . ,xj−1).

This is precisely the terms of the left hand side that contains q xj ’s after we divide by all the xj ’s. �

If we can prove Conjecture 2.8, then we have the following explicit formulas for the action of trans-
positions.

Theorem 2.10. Given i < k < j, let s = sk . . . sj−2sj−1sj−2 . . . si. If Conjecture 2.8 holds, then

s(x
(r)
k ) = x

(r+j−k)
j

σ
(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i−1)
(n−1)(j−i)(xi, . . . ,xj)

and

κr(s(xk−1), s(xk)) =
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) (k−1)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1) (k)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

.

Proof. We proceed by induction on k. When k = j − 1, by Theorem 2.5, indeed

s(x
(r)
j−1) = sj−1sj−2 . . . si(x

(r)
j−1) = x

(r+1)
j

σ
(r−j+i)
(n−1)(j−i−1)(xi, . . . , xj−1) σ

(r−j+i+1)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−j+i+1)
(n−1)(j−i−1)(xi, . . . , xj−1) σ

(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)

.
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Now let s = sk . . . sj−2sj−1sj−2 . . . si and suppose that

s(x
(r)
k ) = x

(r+j−k)
j

σ
(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i−1)
(n−1)(j−i)(xi, . . . ,xj)

.

By Theorem 2.5,

s(x
(r)
k−1) = sj−1sj−2 . . . si(x

(r)
k−1) =

x
(r+1)
k+1 σ

(r−k+i)
(n−1)(k+1−i)(xi, . . . ,xk+1)σ

(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk)

σ
(r−k+i−1)
(n−1)(k+1−i)(xi, . . . ,xk+1)σ

(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)

.

By definition,

κr(s(xk−1), sk)

=

n−1∑
s=0

r+s∏
t=r+1

s(x
(t)
k )

r+n−1∏
t=r+s+1

s(x
(t)
k−1)

=

n−1∑
s=0

r+n−1∏
t=r+s+1

x
(r+j−k)
j

σ
(t−k+i−1)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(t−k+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(t−k+i)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(t−k+i−1)
(n−1)(j−i)(xi, . . . ,xj)

r+s∏
t=r+1

x
(t+1)
k+1 σ

(t−k+i)
(n−1)(k+1−i)(xi, . . . ,xk+1)σ

(t−k+i−1)
(n−1)(k−i)(xi, . . . ,xk)

σ
(t−k+i−1)
(n−1)(k+1−i)(xi, . . . ,xk+1)σ

(t−k+i)
(n−1)(k−i)(xi, . . . ,xk)

=

(
r+n−1∏
t=r+1

x
(t+1)
k

)
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)σ

(r−k+i+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(r−k+i+1)
(n−1)(k−i)(xi, . . . ,xk)σ

(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)

+

n−2∑
s=1

(
r+s∏

t=r+1

x
(t+j−k)
j

)(
r+n−1∏

t=r+s+1

x
(t+1)
k

)
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i+s)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i+s)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)σ

(r−k+i+s)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(r−k+i+s+1)
(n−1)(k−i) (xi, . . . ,xk)σ

(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)

+

(
r+n−1∏
t=r+1

x
(t+j−k)
j

)
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i−1)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

=
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)

(k)Ω
(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)[(

r+n−1∏
t=r+1

x
(t+1)
k

)
σ
(r−k+i+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)(k)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i+1)
(n−1)(k−i)(xi, . . . ,xk)

+

n−2∑
s=1

(
r+s∏

t=r+1

x
(t+j−k)
j

)(
r+n−1∏

t=r+s+1

x
(t+1)
k

)
(k)Ω

(r−k+i+s)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i+s)
(n−1)(k−i)(xi, . . . ,xk)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)σ

(r−k+i+s)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(r−k+i+s+1)
(n−1)(k−i) (xi, . . . ,xk)

+

(
r+n−1∏
t=r+1

x
(t+j−k)
j

)
(k)Ω

(r−k+i−1)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk)

]
,

but Conjecture 2.8 is precisely the statement that the bracketed part on the last line is equal to
(k−1)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj). This proves the second claim in the theorem. We can now also prove
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the first claim to finish the inductive step:

sk−1sk . . . sj−2sj−1sj−2 . . . si(x
(r)
k−1)

= sk−1(s(x
(r)
k−1))

= s(x
(r+1)
k )

κr+1(s(xk−1), s(xk))

κr(s(xk−1), s(xk))

= x
(r+j−k+1)
j

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i+1)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i+1)
(n−1)(k−i)(xi, . . . ,xk) (k)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i+1)
(n−1)(k−i)(xi, . . . ,xk) (k−1)Ω

(r−k+i+1)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i+1)
(n−1)(k−i−1)(xi, . . . ,xk−1) (k)Ω

(r−k+i+1)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1) (k)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) (k−1)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

= x
(r+j−k+1)
j

(k−1)Ω
(r−k+i+1)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(r−k+i+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)(k−1)Ω

(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

as desired. �

And now we are able to describe how a transposition acts on the intermediate variables.

Corollary 2.11. Given 1 ≤ i < j ≤ m, and i < k < j, if Conjecture 2.8 holds,

si . . . sj−2sj−1sj−2 . . . si(x
(r)
k ) = x

(r)
k

(k)Ω
(r−k+i)
(n−1)(j−i)(xi, . . . ,xj)

(k−1)Ω
(r−k+i−1)
(n−1)(j−i)(xi, . . . ,xj)

(k−1)Ω
(r−k+i)
(n−1)(j−i)(xi, . . . ,xj) (k)Ω

(r−k+i−1)
(n−1)(j−i)(xi, . . . ,xj)

.

Proof. Let s = sk . . . sj−2sj−1sj−2 . . . si.

si . . . sj−2sj−1sj−2 . . . si(x
(r)
k ) = sk−1s(x

(r)
k )

=
s(x

(r−1)
k−1 )κr−1(s(xk−1), s(xk))

κr(s(xk−1), s(xk))

=
sj−1sj−2 . . . si(x

(r−1)
k−1 )κr−1(s(xk−1), s(xk))

κr(s(xk−1), s(xk))
.

Plugging in the formulas from Theorem 2.5 and Theorem 2.10 yields the desired result. �

As a special case of the previous corollary,

sisi+1si(x
(r)
i+1) =

x
(r)
i+1σ

(r−1)
2(n−1)(xi,xi+1,xi+2)σ̄

(r−2)
2(n−1)(xi,xi+1,xi+2)

σ̄
(r−1)
2(n−1)(xi,xi+1,xi+2)σ

(r−2)
2(n−1)(xi,xi+1,xi+2)

.

2.3. Identity of the Ω functions. In our attempt to prove Conjecture 2.8, we discovered an identity
of σ functions that would follow from the conjecture, which we prove below.

Theorem 2.12.

n−1∏
t=1

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . ,xj−1) =

n−1∑
s=0

r+n−1∏
t=r+s+1

x
(t+1)
j−1

 ∏
0≤t≤n−1
t6=s,s+1

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . ,xj−1)


σ
(r−j+i+s+2)
(n−1)(j−i−2)(xi, . . . ,xj−2)x

(r−j+i+s+1)
i . . . x

(r−j+i+3)
i x

(r−j+i+2)
i .

Preliminarily, we may factor out(
r+n∏

t=r+2

x
(t)
j

)
σ
(r−j+i+1)
(n−1)(j−i−1)(xi, . . . ,xj−1)

from both sides, which makes the identity equivalent to

n−1∏
t=1

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . ,xj−1) =

n−1∑
s=0

r+n−1∏
t=r+s+1

x
(t+1)
j−1

 ∏
0≤t≤n−1
t 6=s,s+1

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . ,xj−1)


σ
(r−j+i+s+2)
(n−1)(j−i−2)(xi, . . . ,xj−2)x

(r−j+i+s+1)
i . . . x

(r−j+i+3)
i x

(r−j+i+2)
i .
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For example, when r = n = 4, j = 4, i = 1, this identity says that

σ
(3)
6 (a,b, c)σ

(4)
6 (a,b, c)σ

(1)
6 (a,b, c) = c2c3c4σ

(3)
3 (a,b)σ

(4)
6 (a,b, c)σ

(1)
6 (a,b, c)

+ a4c3c4σ
(2)
6 (a,b, c)σ

(4)
3 (a,b)σ

(1)
6 (a,b, c)

+ a4a3c4σ
(2)
6 (a,b, c)σ

(3)
6 (a,b, c)σ

(1)
3 (a,b)

+ a1a4a3σ
(2)
3 (a,b)σ

(3)
6 (a,b, c)σ

(4)
6 (a,b, c).

But in fact the sum on the right hand side is also nice if we are summing from s = 0 up to 0 ≤ k ≤ n−1.
To show the theorem, we proceed by showing the following claim about what the sum evaluates to when
we sum up to a certain k.

Lemma 2.13. For 0 ≤ k ≤ n− 1,

k∑
s=0

r+n−1∏
t=r+s+1

x
(t+1)
j−1

∏
0≤t≤n−1
t6=s,s+1

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . ,xj−1)

σ
(r−j+i+s+2)
(n−1)(j−i−2)(xi, . . . ,xj−2)x

(r−j+i+s+1)
i . . . x

(r−j+i+3)
i x

(r−j+i+2)
i

=

r+n−1∏
t=r+k+1

x
(t+1)
j−1

k∏
t=1

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . ,xj)P

(r−j+i+k+2)
k (xi, . . . ,xj−1)

n−1∏
t=k+2

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . ,xj−1)

where

P
(r−j+i+k+2)
k (xi, . . . ,xj−1) :=

k∑
t=0

t−1∏
s=0

x
(r−j+i+2+k−s)
i σ

(r−j+i+2+k−t)
(n−1)(j−i−2) (xi, . . . ,xj−2)

k−t−1∏
s=0

x
(r+k−t−s)
j−1 .

Since

P
(r−j+i+1)
n−1 (xi, . . . ,xj−1) = σ

(r−j+i+2)
(n−1)(j−i−1)(xi, . . . ,xj−1),

this claim reduces to the desired identity when k = n− 1.

Proof. When k = 0, the equality is by definition. For 0 ≤ k < n− 1, suppose that the claim is true for
k. Then it suffices to prove that

r+n−1∏
t=r+k+1

x
(t+1)
j−1

k∏
t=1

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . , xj)P

(r−j+i+k+2)
k (xi, . . . , xj−1)

n−1∏
t=k+2

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . , xj−1)

+

r+n−1∏
t=r+k+2

x
(t+1)
j−1

∏
0≤t≤n−1
t 6=k+1,k+2

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . , xj−1)σ

(r−j+i+k+3)
(n−1)(j−i−2)(xi, . . . , xj−2)

k+2∏
t=2

x
(r−j+i+t)
i

=

r+n−1∏
t=r+k+2

x
(t+1)
j−1

k+1∏
t=1

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . , xj)P

(r−j+i+k+3)
k+1 (xi, . . . , xj−1)

n−1∏
t=k+3

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . , xj−1).

We may factor out

r+n−1∏
t=r+k+2

x
(t+1)
j−1

∏
1≤t≤n−1
t 6=k+1,k+2

σ
(r−j+i+t+1)
(n−1)(j−i−1)(xi, . . . , xj−1)

so that it suffices to prove

x
(r+k+2)
j−1 P

(r−j+i+k+2)
k (xi, . . . , xj−1)σ

(r−j+i+k+3)
(n−1)(j−i−1)(xi, . . . , xj−1)

+ σ
(r−j+i+1)
(n−1)(j−i−1)(xi, . . . , xj−1)σ

(r−j+i+k+3)
(n−1)(j−i−2)(xi, . . . , xj−2)

k+2∏
t=2

x
(r−j+i+t)
i

= σ
(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . , xj)P

(r−j+i+k+3)
k+1 (xi, . . . , xj−1).

�
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For example, when r = n = 4, j = 4, i = 1, this identity says that

σ
(3)
6 (a, b, c)σ

(4)
6 (a, b, c)σ

(1)
6 (a, b, c) = c2c3c4σ

(3)
3 (a, b)σ

(4)
6 (a, b, c)σ

(1)
6 (a, b, c)

+ a4c3c4σ
(2)
6 (a, b, c)σ

(4)
3 (a, b)σ

(1)
6 (a, b, c)

+ a4a3c4σ
(2)
6 (a, b, c)σ

(3)
6 (a, b, c)σ

(1)
3 (a, b)

+ a1a4a3σ
(2)
3 (a, b)σ

(3)
6 (a, b, c)σ

(4)
6 (a, b, c).

We briefly discuss how Conjecture 2.8 implies Theorem 2.12. ((FEIYANG: fill in))

2.4. Other Permutations. We did not venture far into permutations other than cyclic shifts by 1 and
transpositions, but we record our preliminary observations here.

Consider s = s3s1s2 and denote x1, . . . ,x4 with a,b, c,d. Since s1s3s2 = s3s1s2,

s(ar) = s1s2(ar),

s(br) = s1s2(br),

s(cr) = s3s2(cr),

s(dr) = s3s2(dr).

We know what the right hand side should be because we know how permutations such as s1s2 and s3s2
act. In cycle notation, s1s3s2 = (1243) = (12)(432). Also, when we act with s = (13)(35), s(cr) also has
a nice expression in terms of known functions.

In contrast, when we act with the permutation s2s3s1s2 = (13)(24), factors that we are very unfamiliar
with arise. For instance, the following factor arises in the numerator of s2s3s1s2(b1):

a1a2a
2
3b

2
1b2b3 + a1a2a

2
3b1b2b3c1 + a1a2a3b1b2b

2
3c1 + a1a2a

2
3b1b3c1c2 + a1a2a3b1b

2
3c1c2 + a2a3b

2
1b

2
3c1c2+

a1a2a3b1b3c1c2c3 + a2a3b
2
1b3c1c2c3 + a2a3b1b3c

2
1c2c3 + a1a2a

2
3b1b2b3d1 + a1a2a3b1b2b

2
3d1 + a1a2a

2
3b1b3c2d1+

a1a2a3b1b
2
3c2d1 + a2a3b

2
1b

2
3c2d1 + a1a2a3b1b2b3c3d1 + a1a2a

2
3b1c2c3d1 + 2a1a2a3b1b3c2c3d1 + 2a2a3b

2
1b3c2c3d1+

a3b
2
1b2b3c2c3d1 + a2a3b1b3c1c2c3d1 + a1a2a3b1c2c

2
3d1 + a2a3b

2
1c2c

2
3d1 + a3b

2
1b2c2c

2
3d1 + a2a3b1c1c2c

2
3d1+

a3b1b2c1c2c
2
3d1 + a1a2a

2
3b1b3d1d2 + a1a2a3b1b

2
3d1d2 + a2a3b

2
1b

2
3d1d2 + a1a2a

2
3b1c3d1d2 + 2a1a2a3b1b3c3d1d2+

2a2a3b
2
1b3c3d1d2 + a3b

2
1b2b3c3d1d2 + a1a2a

2
3c1c3d1d2 + a1a2a3b3c1c3d1d2 + 2a2a3b1b3c1c3d1d2 + a3b1b2b3c1c3d1d2+

b1b2b
2
3c1c3d1d2 + a1a2a3b1c

2
3d1d2 + a2a3b

2
1c

2
3d1d2 + a3b

2
1b2c

2
3d1d2 + a1a2a3c1c

2
3d1d2 + 2a2a3b1c1c

2
3d1d2+

2a3b1b2c1c
2
3d1d2 + b1b2b3c1c

2
3d1d2 + a2a3c

2
1c

2
3d1d2 + a3b2c

2
1c

2
3d1d2 + b2b3c

2
1c

2
3d1d2 + a1a2a3b1b3d1d2d3+

a2a3b
2
1b3d1d2d3 + a2a3b1b3c1d1d2d3 + a1a2a3b1c3d1d2d3 + a2a3b

2
1c3d1d2d3 + a3b

2
1b2c3d1d2d3 + a1a2a3c1c3d1d2d3+

2a2a3b1c1c3d1d2d3 + 2a3b1b2c1c3d1d2d3 + b1b2b3c1c3d1d2d3 + a2a3c
2
1c3d1d2d3 + a3b2c

2
1c3d1d2d3 + b2b3c

2
1c3d1d2d3+

a3b1c1c2c3d1d2d3 + a3c
2
1c2c3d1d2d3 + b3c

2
1c2c3d1d2d3 + a2a3b1b3d

2
1d2d3 + a2a3b1c3d

2
1d2d3 + a3b1b2c3d

2
1d2d3+

a2a3c1c3d
2
1d2d3 + a3b2c1c3d

2
1d2d3 + b2b3c1c3d

2
1d2d3 + a3c1c2c3d

2
1d2d3 + b3c1c2c3d

2
1d2d3 + c1c2c

2
3d

2
1d2d3

Such factors are unfamiliar because there are terms with a coefficient of 2 in front and because
sometimes variables in b and c are squared. We were hopeful that all functions that arise have a
combinatorial interpretion in terms of weights of highway paths (see the next section). Our current way
of using highway paths to provide combinatorial interpretaions implies that there should be at most one
of every term, which is why the coefficient of 2 came as a surprise. Expecting Ω functions to appear
again, we did not expect variables that are not a or d to be squared. However, this is also not so
surprising since we are performing the permutation (13)(24), and we would get squared b variables from
first performing (24). This suggests that there are families of functions out there to be understood that
will better explain what is happening beyond the case of transpositions.

We call permutations such as (13)(24) overlapping, and permutations such as (13)(35) non-overlapping.
We suspect that the key distinction is whether a permutation can be written as a product of 1-shifts
and transpositions that don’t “overlap”. When this happens, we can write down nice expressions for the
resultant variables in terms of Ω functions. When the permutation cannot be written as a non-overlapping
product, however, there are factors that we need to explore and understand further.

3. Combinatorial Interpretation of τ and σ functions

Following Section 4.3 of [LP08], let N(n,m) denote the following grid cylindrical network:
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Figure 1. Illustration of the network N(n,m)

Notice that the dashed top and bottom boundaries are identified and that the r-th crossing of the k-th

vertical loop, counting from the dashed boundary at the top, is given the weight x
(r)
k . The horizontal

lines are extended indefinitely to the left and right, leading to the sources and sinks of N(n,m). A
highway path from a source to a sink is a path that only goes to the right and up, and never goes up
twice in a row. See below for an example and a non-example.

Figure 2. Illustration of a highway path and a non-highway path in N(3, 4)

We can prescribe weights to highway paths by letting its weight be the product of the weights of the
crosses that it passes whenever it goes to the right twice in a row. For example, the highway path on
the right in Figure 2 has weight c2. Given a family of non-crossing highway paths, we let its weight be
the product of the weights of the paths in the family. Note that non-crossing highway paths are allowed
to touch at corners.

The following theorem is proven partly in [LP08] through a lemma that shows that certain τ functions
are cylindric loop Schur functions (Lemma 6.5) and a proposition that establishes a weight-preserving
bijection between cylindric semistandard Young tableaux and noncrossing families of highway paths in
N(n,m) between specific sets of sources and sinks (Proposition 4.7). We prove this in the generality of
all τ functions below, directly appealing to the properties of noncrossing paths.

Theorem 3.1. Let k = `(n− 1) + t where 0 ≤ t < n− 1. Define si = r − i+ 1 and

ri =

{
si + ` i ≤ t,
si + `− 1 i > t,

where i ranges from 1 to n− 1. Then

τ
(r)
k (x1, . . . ,xm) =

∑
families of noncrossing

highway paths P
from si→ri in N(n,m)

wt(P ).

Proof. Consider the term in τ
(r)
k where each index in the sum is as low as possible. Then we get the

following term:

x
(r)
1 x

(r−1)
1 . . . x

(r−n+2)
1 x

(r−n+1)
2 . . . x

(r−k+t+1)
` x

(r−k+t)
`+1 . . . x

(r−k+1)
`+1 .

We get this term as a family of paths in N(n,m) by starting at every source except r + 1. Every path
goes straight through the first ` crossings. Then the path that started at r down through the path that
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x
(r−(`−1)(n−1))
`

x
(r−1−(`−1)(n−1))
`

x
(r−t+1−(`−1)(n−1))
`

x
(r−t−(`−1)(n−1))
`

x
(r−t−1−(`−1)(n−1))
`

x
(r−t−2−(`−1)(n−1))
`

x
(r+2−(`−1)(n−1))
`

x
(r+1−(`−1)(n−1))
`

x
(r−`(n−1))
`

x
(r−1−`(n−1))
`

x
(r−t+1−`(n−1))
`

x
(r−t−`(n−1))
`

x
(r−t−1−`(n−1))
`

x
(r−t−2−`(n−1))
`

x
(r+2−`(n−1))
`

x
(r+1−`(n−1))
`

x
(r−(`+1)(n−1))
`

x
(r−1−(`+1)(n−1))
`

x
(r−t+1−(`+1)(n−1))
`

x
(r−t−(`+1)(n−1))
`

x
(r−t−1−(`+1)(n−1))
`

x
(r−t−2−(`+1)(n−1))
`

x
(r+2−(`+1)(n−1))
`

x
(r+1−(`+1)(n−1))
`

. . .. . .

...

...

Figure 3. An illustration of the proof of Theorem 3.1.

started r − t + 1 go straight once more while the other paths make a zigzag, which does not result in
crossing (see Figure 3). After this all the paths zigzag until they reach a sink. We can compute which
sink each path will end at by starting with the source it started at and then increasing by 1 for each
crossing it went straight through (zigzagging doesn’t change the index). We have to subtract one at
the end because the indices for the sinks are not shifted from the indices of the vertices in the previous
column. Thus, we know this gives us a family of paths between the correct sources and sinks.

We can get other terms in τ
(r)
k by increasing in index. Let’s suppose that ij = a in some term of τ

(r)
k

and shifting to ij = a + 1 gives another term. Note that if changing this index is allowed, this means
ij+1 > a. We will first show that if changing the index is allowed then in family of paths corresponding to

the first term, the path that goes through the vertex with weight x
(r−j+1)
a does not go straight through

the next crossing. If it did, it would pick up the weight x
(r−j+2)
a+1 . So, the first term must have been

. . . x
(r−j+1)
a x

(r−j)
a+1 x

(r−j−1)
a+1 . . . x

(r−j−n+2)
a+1 . . . . Here a + 1 appears as an index n − 1 times, so we would

not be allowed to change ij from a to a + 1. Thus the path in family of paths corresponding to the

first term goes straight through x
(r−j+1)
a and then zigzags at the next crossing. If we switch the order

of these steps so that the path zigzags at x
(r−j+1)
a and then goes straight through x

(r−j+1)
a+1 , we get a

family of paths that corresponds to the second term. All we need to do now is check that this family
is noncrossing. Since ij+1 > a and a appears as an index at most n − 1 times, there is no path that

goes through x
(r−j)
a . This means that moving the path’s zigzag to x

(r−j+1)
a does not result in adding a

crossing. �

Lemma 3.2. If k ≤ m(n− 1), let k = an+ b where 0 ≤ b < n. Define si = r − i+ 1,

r
(a)
i =

{
si i ≤ b,
si − 1 i > b,

where i ranges from 1 to n− 1. We can recursively define r
(j)
i := r

(j+1)
i−1 . Then

σ
(r)
k =

a∑
j=0

(
n−1∏
i=0

x
(i)
1

)j ∑
families of noncrossing

highway paths P

from si→r
(j)
i in N(n,m)

wt(P ).
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Proof. When k ≤ m(n− 1), we can rewrite σ
(r)
k as

σ
(r)
k (x1,x2, . . . ,xm) =

a∑
j=0

(
n−1∏
i=0

x
(i)
1

)j

τ
(r)
k−jn(x1,x2, . . . ,xm).

We can check that the definitions for si and r
(j)
i match those in Lemma 3. �

Theorem 3.3. If k > m(n− 1), define si = r − k +mn−m− i+ 1, r
(m)
i = si − 1, where i ranges from

1 to n− 1. We can recursively define r
(j)
i := r

(j+1)
i−1 .

σ
(r)
k (x1, . . . ,xm) =

(
r∏

i=r−k+mn−m+1

x
(i)
1

)
m∑
j=0

(
n−1∏
i=0

x
(i)
1

)j ∑
families of noncrossing

highway paths P

from si→r
(j)
i in N(n,m)

wt(P ).

Proof. When k > m(n− 1),

σ
(r)
k (x1,x2, . . . ,xm) = x

(r)
1 x

(r−1)
1 . . . x

(r−k+mn−m+1)
1 σ

(r−k+mn−m)
m(n−1) (x1,x2, . . . ,xm).

Then the theorem follows from Lemma 3.2. �

We believe there should be similar interpretations of the Ω functions.

4. Acknowledgements

This research was conducted at the 2020 University of Minnesota Twin Cities REU, which was sup-
ported by NSF RTG grant DMS-1745638. We thank Pasha Pylyavskyy for proposing the problem and
our TA Emily Tibor for her support, and her thoughtful and constructive feedback on this report and
various presentations.



14 SUNITA CHEPURI, FEIYANG LIN

References

[LP08] Thomas Lam and Pavlo Pylyavskyy. Total positivity in loop groups I: whirls and curls. 2008.
arXiv: 0812.0840 [math.CO].

[LP10] Thomas Lam and Pavlo Pylyavskyy. Intrinsic energy is a loop Schur function. 2010. arXiv:
1003.3948 [math.QA].

https://arxiv.org/abs/0812.0840
https://arxiv.org/abs/1003.3948

	1. Introduction and Background
	2. Formulas
	2.1. How 1-Shifts Act
	2.2. How Transpositions Act
	2.3. Identity of the  functions
	2.4. Other Permutations

	3. Combinatorial Interpretation of  and  functions
	4. Acknowledgements
	References

