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Abstract. We investigate a certain sequence arising from the dimer covers of an arbitrary
edge-weighted planar bipartite graph G embedded on a cylinder. We first show that this
sequence is always log-concave. Then, we show that the sequence is a Pólya frequency
sequence if G is an unweighted grid graph.

1. Introduction and Preliminaries

A sequence a0, a1, . . . of real numbers is said to be log-concave if a2
i ≥ ai−1ai+1 for all i.

A sequence of nonnegative numbers a0, a1, . . . with finitely many nonzero terms is called a
Pólya frequency sequence (PFS) if its generating function

∑
aix

i has only real roots. It is
classical that a PFS is always log-concave. The following result is useful in detecting the
PFS property:

Theorem 1.1 ([Sta98]). A finite sequence a0, . . . , an is a PFS if and only if the associated
Aissen–Schoenberg–Whitney matrix

ASW(a0, . . . , an) :=


a0 a1 · · · an

a0 a1 · · · an
a0 a1 · · · an

. . . . . . . . .


is totally nonnegative.

This replaces the analytic condition of real-rootedness with infinitely many algebraic
conditions given by the nonnegativity of the minors of an infinite matrix.

We can now define analogues of the log-concavity and PFS properties in a more general
setting.

Definition 1.2. Let R := Z[y1, . . . , yr] be a polynomial ring and put a partial ordering on
R by saying that f � 0 if the coefficient of every monomial term of f is nonnegative. In this
case, we say that f is monomial-nonnegative.

Definition 1.3. We say that a sequence a0, a1, . . . , an ∈ R is log-concave if a2
i � ai−1ai+1

for all i. We say it is a Pólya frequency sequence (PFS) if all minors of ASW(a0, . . . , an) are
monomial-nonnegative.

In this paper we investigate certain sequences associated to planar bipartite graphs
embedded on a cylinder. All graphs will be finite. Throughout, we write O for a cylinder.
We fix an isomorphism H1(O,Z) ∼= Z and use the words “counterclockwise” and “clockwise”
to describe cycles with positive and negative images in Z, respectively.
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Recall that a dimer cover (or perfect matching) on a graph G is a subgraph which uses
every vertex of G and every vertex is incident to exactly one edge.

Definition 1.4. Let G ⊂ O be a planar bipartite graph on vertex sets V and W , where
|V | = |W |. Let π1, π2 be two dimer covers of G. Define π1 ∪ π∨2 to be the directed graph on
O with vertices V ∪W , a directed edge from v ∈ V to w ∈ W whenever {v, w} is an edge
of π1, and a directed edge from w ∈ W to v ∈ V whenever {v, w} is an edge of π2.

Henceforth, all bipartite graphs on vertex sets V and W will have |V | = |W |, so that they
admit dimer covers.

Definition 1.5. Let π1, π2 be two dimer covers of G. Then it is easy to show that π1 ∪ π∨2
is a union of vertex-disjoint directed simple cycles, which can then be viewed as singular
1-cycles on O. We define the relative height ht(π1, π2) to be the image in H1(O,Z) ∼= Z of
the sum of these cycles.

π1 π2

+1

+1

0

π1 ∪ π∨2

Figure 1. The graph G is an n×2 grid embedded on a cylinder; dashed edges
signify “looping around the back” of the cylinder. The set V consists of the blue
vertices and the set W consists of the red vertices. Here we have dimer covers
π1, π2 with relative height ht(π1, π2) = 2, since there are 2 counterclockwise
cycles and no clockwise cycles in π1 ∪ π∨2 .

This definition of relative height makes the following properties clear:

Lemma 1.6. Given three dimer covers π1, π2, π3 on G, we have

• ht(π1, π2) = − ht(π2, π1)
• ht(π1, π3) = ht(π1, π2) + ht(π2, π3).

Thus, dimer covers on G are totally preordered by height and it makes sense to speak of
a (not necessarily unique) minimal dimer cover on G with respect to this preordering.

Definition 1.7. Fix a minimal-height dimer cover π0. Let π be any dimer cover of G. We
define the absolute height

ht(π) := ht(π, π0).

Finally, we would like to be able to work with edge-weighted graphs.

Definition 1.8. Suppose G is edge-weighted (by positive reals, or by variables). The weight
wt(π) of a dimer cover π is the product of the weights of its edges. The weight of a pair of
dimer covers (π1, π2) is given by wt(π1, π2) := wt(π1) wt(π2).
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We now introduce the main object of study in this note. Let G ⊂ O be edge-weighted (by
positive reals or by variables), and construct the height sequence a0, a1, . . . via

ai =
∑

ht(π)=i

wt(π) (1)

where the sum is over all dimer covers of G with absolute height i. This is a weighted count
of dimer covers of a fixed height (if the graph G is unweighted, i.e. all edges have weight 1,
then ai is the actual number of dimer covers of height i).

Question 1.9. Is the sequence (ai) log-concave? Is it a PFS?

In §2, we prove that when G has variable edge weights, the 2 × 2 minors of the Aissen–
Schoenberg–Whitney matrix are monomial-nonnegative. This is enough to imply log-
concavity. We also show that certain initial 3× 3 minors are monomial-nonnegative. Then
in §3, we provide additional evidence that the (ai) form a PFS by showing real-rootedness
for all unweighted grid graphs described in Lemma 3.1.

2. General planar bipartite graphs

Throughout this section, we assume that G ⊂ O is planar, bipartite, and with algebraically
independent edge weights y1, . . . , yN , where N denotes the number of edges of G. Thus all
edges, dimer covers, pairs of dimer covers, etc. have weights in the ring R := Z[y1, . . . , yN ].
Let (ai) be the sequence defined in (1).

Proposition 2.1. The 2 × 2 minors of the Aissen–Schoenberg–Whitney matrix associated
to (ai) are nonnegative. In particular, (ai) is log-concave.

The concept of “twisting along a cycle” will be useful in proving this.

Definition 2.2. Let π be a dimer cover of G and let C be a cycle in G consisting of 2k edges
for some k. Suppose that the edges are indexed so that exactly k edges e1, e3, . . . , e2k−1 of
C appear in π, and the edges e2, e4, . . . , e2k do not appear in π. Then the twist of π along
C is the dimer cover π̃ which is obtained from π by removing e1, e3, . . . , e2k−1 and adding
e2, e4, . . . , e2k.

Observe that twisting along C is an involution. If C is contractible, then twisting along
C leaves height invariant. If C is a simple non-contractible cycle, then twisting along C
changes height by ±1 according to which edges of C are contained in π.

Proof of Proposition 2.1. Let Ti be the set of dimer covers of height i. We will show that for
all i, j with i > j there is a weight-preserving injection

Φ : Ti × Tj ↪→ Ti−1 × Tj+1,

i.e. if Φ(π1, π2) = (π′1, π
′
2), then wt(π1) wt(π2) = wt(π′1) wt(π′2).

Given (π1, π2) ∈ Ti× Tj, let (C1, . . . , Cm) denote the non-contractible cycles of π1 ∪ π∨2 , of
which there are a nonzero number since i > j. We suppose they are ordered in the following
way: C1 is the boundary of the unbounded face of G in the +∞ direction on O, C2 is the
boundary of the unbounded face of G− C1 in the +∞ direction, and so on. Let εi ∈ {±1}
denote the winding number of Ci (that is, its image in Z ∼= H1(O,Z)) and let si be the
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running sum ε1 + · · ·+ εi. Let i0 be the minimal value for which si0 = +1. Such an i0 always
exists since

sm = ε1 + · · ·+ εm = ht(π1, π2) ≥ 1.

Now define (π′1, π
′
2) to be (π1, π2) each twisted along C1, . . . , Ci0 , and set Φ(π1, π2) = (π′1, π

′
2).

This decreases the height of π1 by 1, while increasing the height of π2 by 1, so Φ(π1, π2) ∈
Ti−1×Tj+1. Twisting along a cycle is a weight-preserving operation for a double dimer cover,
so Φ is weight-preserving.

Given (π′1, π
′
2) = Φ(π1, π2), we can recover (π1, π2) as follows. Let (C ′1, . . . , C

′
m) be the

cycles of π′1 ∪ π′∨2 , with ε′i and s′i defined analogously to before. Let j0 be the minimal index
for which s′j0 = −1. By construction, j0 = i0 since s′k = −sk for all k ≤ i0. So twisting along
C ′1, . . . , C

′
j0

recovers (π1, π2). �

Proposition 2.3. Let (π1, π2) ∈ Ti×Ti. Suppose that π1∪π∨2 consists of 2m non-contractible
cycles and r contractible cycles, and let

Sk := {(π′1, π′2) ∈ Ti+k × Ti−k : wt(π′1, π
′
2) = wt(π1, π2)}.

Then |Sk| = 2r
(

2m
m+k

)
.

Proof. Let C1, . . . , C2m denote the non-contractible cycles and D1, . . . , Dr the contractible
cycles. Each Di can be partitioned into two sets D1

i , D
2
i each of which is a dimer cover for

Di. There are 2r ways to include the edges of these sets in π′1, π
′
2. So henceforth suppose

that π′j always contains the edges of Dj
i ; we will show that there are

(
2m
m+k

)
dimer covers with

this property and of the prescribed weight.
Each Cj can be partitioned into sets C+

j and C−j such that each is a dimer cover of Cj and

ht(C+
j , C

−
j ) = 1. We see that wt(π′1, π

′
2) = wt(π1, π2) iff for each j, either C+

j is contained in

π′2 and C−j is contained in π′1 or vice versa (this statement depends heavily on the algebraic
independence of the edge weights).

Since ht(π1, π2) = 0, we see that there are exactly m values of j for which C+
j is contained

in π1. Thus if a pair (π′1, π
′
2) has n values of j for which C+

j is contained in π′1, we have

ht(π1, π
′
1) = m−n. There are

(
2m
n

)
to pick these values of j, and therefore exactly that many

choices of π′2 of height i + n − m. Writing n = m + k, we see that there are
(

2m
m+k

)
pairs

(π′1, π
′
2) for which ht(π′1) = i+ k. Of course the sum of the heights is always constant at 2i,

so ht(π′2) = i− k in such a pair. �

Proposition 2.4. We have the inequality

n∑
i=−n

(−1)ian−ian+i � 0.

Proof. From Proposition 2.1 (for example), we see that all monomials in this sum appear
in the central term a2

n. Let f be a given monic monomial appearing in the expansion of
a2
n, corresponding to a double dimer cover (π1, π2) with 2m non-contractible cycles and r

contractible ones. Observe that m ≤ n since otherwise there exists a dimer cover of negative
absolute height.
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Now Proposition 2.3 implies that the coefficient of f in an−ian+i is 2r
(

2m
m+i

)
. We then see

that the coefficient of f in the desired sum is
n∑

i=−n

(−1)i2r
(

2m

m+ i

)
= 2r

2m∑
k=0

(−1)m−k
(

2m

k

)
=

{
0, m > 0

2r, m = 0

In particular, the coefficient of f is nonnegative. �

Remark 2.5. We see from this proof that the monomials that remain after all cancellations
are exactly those that arise from pairs (π′1, π

′
2) for which π′1∪π′∨2 consists only of contractible

cycles.

Remark 2.6. This explicit counting by binomial coefficients can be used to give another proof
of log-concavity, in the style of Proposition 2.4.

Corollary 2.7. We have the following two minors of the Aissen–Schoenberg-Whitney matrix
are nonnegative:

det

a1 a2 a3

a0 a1 a2

0 a0 a1

 � 0, det

a2 a3 a4

a1 a2 a3

a0 a1 a2

 � 0

Proof. For ease, write ai1...im =
∏m

k=1 aik . Expanding out the first determinant, we obtain

a111 − 2a012 + a033 = a1(a11 − 2a02) + a033

Now Proposition 2.4 implies that a11 − 2a02 ≥ 0, so the whole determinant is nonnegative.
Expanding out the second determinant, we obtain

a222 − 2a123 + a033 + a114 − a024 = a2(a22 − 2a13 + 2a04) + a4(a11 − 2a02) + a0(a33 − a24)

By Propositions 2.4 and 2.1, each term in parentheses is nonnegative, so the whole sum is
nonnegative. �

Remark 2.8. Naive expansions only using the relations from Proposition 2.4 do not seem
to immediately show nonnegativity of other solid 3 × 3 minors of the Aissen–Schoenberg–
Whitney matrix.

3. Grid graphs

The following highlights the particular importance of a certain class of grid graphs:

Lemma 3.1. Let G ⊂ O be a planar bipartite graph. Then G has the same height sequence
as a subgraph of a bipartite n× 2m grid graph of the form in Figure 2.

Remark 3.2. Such a grid graph must have an even number of columns since we are assuming
our graphs are bipartite.

Proof sketch. We define a move on a bipartite graph to be a transformation as shown in
Figure 3.
In particular, a move replaces a vertex v with three new vertices v′, v′′, v′′′. The edges Ev

incident to v are partitioned into two sets E1
v and E2

v in any manner, with the edges of E1
v

becoming the edges of v′ and the edges of E2
v becoming the edges of v′′. Each of v′ and v′′ is
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Figure 2. A 4×6 grid graph on a cylinder (with dashed edges looping around
the cylinder).

v v′ v′′′ v′′

e1 e2

Figure 3. A move on a degree 5 vertex. The same diagram with colors
reversed would also be a move. In the notation below, the set E1

v consists
of the two leftmost edges of the original five, and E2

v consists of the three
rightmost edges. The new edges e1 and e2 each have weight 1.

adjacent to v′′′ by exactly one edge of weight 1. We demand that all moves take place within
a small disk around the initial vertex v, so that moves do not affect the global properties of
the graph.

Let G ⊂ O be a planar bipartite graph, and let G̃ be the graph obtained from G after
applying a move at vertex v. We claim that the height sequence (aGi ) is the same as the

height sequence (aG̃i ). Indeed, any dimer cover of G̃ uses exactly one of the edges e1 and e2.

The dimer covers of G̃ using e1 correspond exactly to the dimer covers of G using an edge

of E2
v , and likewise the dimer covers of G̃ using e2 correspond exactly to the dimer covers

of G using an edge of E1
v . The height sequence remains the same, since the relative height

between two dimer covers of G is not affected by the move.
It suffices to show that any bipartite graph G ⊂ O, with vertices colored red and blue,

after a sequence of moves, is isomorphic to a subgraph (with the same coloring) of a grid
graph as in Figure 2. First, we apply as many moves as necessary to ensure that each vertex
of G has degree at most 3, resulting in a graph G′. Note that G′ is still planar and bipartite,
and still colored in such a way that two adjacent vertices have different colors.

Now we show that up to moves, G′ is a subgraph of some grid graph. To do this, we
superimpose a sufficiently fine grid on O, with the distance between parallel lines of the grid
being much smaller than the distances between the vertices of G′. We also require the grid
to have an even number of columns, and we color the vertices of the grid red and blue in a
checkerboard fashion. Then, we perturb the vertices of G so that each vertex of G′ lies on a
vertex of the grid of the same color.

Let v be a vertex of G′. If possible, we replace each edge of G′ incident to v with a lattice
path along the grid in such a way that each pair of paths only intersects at v, and each path
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does not include any vertices of G′ other than its endpoints; note that here, we use the fact
that v has degree at most 3. After we do this, we add the grid vertices along the lattice paths
to G′, which we interpret as performing more moves on G′. If the edge replacement is not
possible, we only need to increase the resolution of the grid by a factor of a sufficiently large
even positive integer. Now we repeat the process with the other vertices that were originally
part of G′, with the caveat that when we increase the resolution of the grid, we must perform
more moves to add the newly-formed grid vertices to the constructed lattice-path edges of
G′. Since there were only finitely many vertices in G′ to start with, we will be done after
finitely many steps, and up to moves, we will have found a subgraph of a bipartite grid graph
isomorphic to G′. �

Since real-rootedness of polynomials (and total nonnegativity of matrices) is closed under
limits, to show that (ai) is a PFS for a general planar bipartite G ⊂ O, it would be sufficient
to show that (ai) has the desired property for any weighted grid graph of the form discussed
above (by sending extraneous edge weights to 0). Motivated by this, we prove some particular
results for grid graphs.

Definition 3.3. Real polynomials f1, . . . , fk are said to be compatible if
∑

i cifi has only
real roots for all c1, . . . , ck ≥ 0.

Lemma 3.4 ([CS07, 2.2]). If f1, . . . , fk are pairwise compatible real polynomials with positive
leading coefficients, then the whole collection is compatible.

Proposition 3.5. Suppose G is the n× 2 grid graph, with edges weighted by positive reals.
Then (ai) is a PFS.

Proof. For each 1 ≤ i ≤ n, the ith row of G consists of a clockwise edge of weight αi and
a counterclockwise edge of weight βi. For 0 ≤ i ≤ n − 1, there is a pair of vertical edges
connecting the ith row to the (i + 1)th row, the product of whose weights will be written
γn. All heights will be in reference to the minimal height dimer cover which uses all the
clockwise edges from blue vertices to red vertices.

Let q−1(x) = 0, q0(x) = 1 and for i ≥ 1, let qi(x) be the height polynomial of the subgraph
of G induced by the first i rows. In adding the (i+ 1)th row, there are three possibilities:

• We use the clockwise edge of the new row, which does not change the height. This
contributes an αi+1qi(x) to qi+1(x).
• We use the counterclockwise edge of the new row, which adds 1 to the height. This

contributes a βi+1xqi(x) to qi+1(x).
• We use the pair of vertical edges connecting to the ith row. This introduces a

counterclockwise cycle and allows for anything in the first i− 1 rows, so contributes
an γixqi−1(x).

So we obtain a recurrence of the form

qi+1(x) = (αi+1 + βi+1x)qi(x) + γixqi−1(x). (2)

Using the terminology of [CS07], we now define the following 3 statements:

• Ai: The polynomial qi(x) is real-rooted.
• Bi: The polynomials qi(x) and qi−1(x) are compatible.
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• Ci: The polynomials qi(x) and xqi−1(x) are compatible.

A1, B1, C1 are verified directly. Assume that Ai, Bi, Ci hold. We see directly from (2) and
Lemma 3.4 that Ai, Bi, Ci =⇒ Ai+1. Now let κ, σ ≥ 0. Then using (2) we have

κqi+1(x) + σqi(x) = (καi+1 + σ)qi(x) + κβi+1xqi(x) + κγixqi−1(x)

so Ai, Bi, Ci =⇒ Bi+1. Similarly one finds that Ai, Bi, Ci =⇒ Ci+1. It follows that

Ai ∧Bi ∧ Ci =⇒ Ai+1 ∧Bi+1 ∧ Ci+1.

In particular, Ai always holds. �

To prove results on larger grid graphs, we introduce some new machinery (see [Ken08] for
more on these concepts).

Definition 3.6. Let E denote the edge set of a planar bipartite graph G. A Kasteleyn
weighting of G is a function Ψ : E → {±1} such that for any face of G bounded by edges
e1, . . . , e2k, we have

2k∏
i=1

Ψ(ei) = (−1)k−1.

Definition 3.7. Let Ψ : E → {±1} be a Kasteleyn weighting of an unweighted graph G.
Fix a vertical line ` on the cylinder O. For an edge {v, w} ∈ E with v ∈ V,w ∈ W , define the
sign εvw to be +1 if the directed edge from v to w cross ` in the counterclockwise direction,
−1 if in the clockwise direction, and 0 otherwise. Then we define the Kasteleyn matrix KΨ,`

to be the matrix defined over Z[x, x−1] with rows indexed by V , columns indexed by W , and
with (v, w)th entry given by the following formula:

KΨ,`
v,w =

{
Ψ({v, w})xεvw , {v, w} is an edge of G

0, otherwise

Lemma 3.8. Up to multiplication by a power of x, the height polynomial
∑
aix

i of G
coincides with ± detKΨ,` for any Kasteleyn weighting Ψ and any choice of line ` on O.

Proof. This is a simple modification of [Ken08, Theorem 3 of §4.2]. �

Proposition 3.9. Suppose G is the unweighted n × 2m grid graph, m ≥ 2. Then (ai) is a
PFS.

Proof. Label the vertices as in Figure 4.
Assign a Kasteleyn weighting to G by dictating that edges in the 1st, 3rd, 5th, . . . columns
of the grid be given weight −1, as well as edges looping around the back of the cylinder.
First we deal with m > 2. The Kasteleyn matrix for G becomes

K :=


A −I
I B I
−I A −I

. . . . . . . . .


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v1 w1 v2 w2 v3 w3

w4 v4 w5 v5 w6 v6

v7 w7 v8 w8 v9 w9

w10 v10 w11 v11 w12 v12

Figure 4. Choice of labeling in the case of the 4× 6 grid graph. Bold edges
are those given Kasteleyn weight −1.

with matrices A and B alternating along the diagonal and I and −I alternating along the
subdiagonal and superdiagonal, where A and B are m×m matrices given by

A =


1 −x−1

1 1
1 1

. . . . . .
1 1

 , B =


1 1

1 1
. . . . . .

1 1
−x 1

 .

Let qk be the determinant of the upper left mk ×mk submatrix of K, so that qn = detK
By induction, it is not hard to compute that qk = detPk where P0 = I, P1 = A, and

Pk =

{
Pk−1A+ Pk−2, k odd

Pk−1B + Pk−2, k even

We now claim there are real polynomials pk(t) for which Pk = pk(AB) if k is even and
Pk = pk(AB)A if k is odd. Indeed, p0(t) = p1(t) = 1 works. Now suppose that P2k = p2k(AB)
and P2k+1 = p2k+1(AB)A. Then the recurrence for {Pk} tells us

P2k+2 = P2k+1B + P2k = p2k+1(AB)AB + P2k

so p2k+2 = tp2k+1 + p2k works. Similarly, we see that p2k+3 = p2k+2 + p2k+1 works. So we get

pk =

{
pk−1 + pk−2, k odd

tpk−1 + pk−2, k even

Now define the statements

• Ai: The polynomials p2i and p2i+1 are real-rooted.
• Bi: The polynomials p2i and tp2i+1 are compatible.
• Ci: The polynomials p2i and tp2i−1 are compatible.

Now an induction nearly the same as that of Proposition 3.5 shows that these statements
always hold; in particular pk is always real rooted. We want to show that det pk(AB) is
real-rooted, so it suffices to show that det(AB − λI) is real-rooted for each root λ of pk.
Observe that since all coefficients of pk are positive, such a λ is necessarily negative. We
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have explicitly that

AB =



2 1 −x−1

1 2 1
1 2 1

. . . . . . . . .
. . . . . . 1

−x 1 2


Since λ < 0, we can write 2− λ = r + r−1 for some r > 0, so we have

det(AB − λI) = det



r + r−1 1 −x−1

1 r + r−1 1
1 r + r−1 1

. . . . . . . . .
. . . . . . 1

−x 1 r + r−1


By induction on m, it is now straightforward to show that

det(AB − λI) = (−1)k(x+ x−1) + rm + r−m

which has real roots since rm + r−m ≥ 2. In the case m = 2, the same proof works using the
matrices

A =

(
1 −x−1

1 1

)
, B =

(
1 1
−x 1

)
.

�
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