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Abstract

We discussed the realization criterion of a reduced infinite frieze of type Λp1,...,pn
and showed that periodic infinite friezes of type Λp that pass the realizability test are

all realizable. For reduced infinite friezes of type Λp1,...,pn that pass the realizability test

but do not have dissected annului correspondence, we introduce the quotient dissection

of annuli as a geometric interpretation. We prove that for all friezes that pass the

realizability test, their entries are in the form of sum of polygon path weights and that

all realizable skeletal friezes are positive. We introduce a combinatorial interpretation

of growth coefficients in skeletal friezes by a annulus weighting on polygon paths.
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1 Introduction

Finite frieze patterns of positive integers are first defined by Coxeter in [1]. This definition
has been extend to the infinite cases by Baur, Parsons ,and Tschabold in [4], and entries in
the frieze are generalized to algebraic integers by Holm and Jørgensen in [7]. In our report,
we will use the definition of infinite frieze in the paper of BPS with slight modification:

Definition 1.0.1. An infinite frieze F is an array (mi ,j)i ,j∈Z,j≥i−2 of shifted infinite rows such
that

• mi ,i−2 = 0 and mi ,i−1 = 1 for all i ∈ Z;

• Every diamond in F of the form

mi ,j
mi−1,j mi ,j+1

mi+1,j+1

satisfies the unimodular

rule: mi−1,jmi ,j+1 −mi ,jmi+1,j+1 = 1.

. . . 0 0 0 0 0 . . .

. . . 1 1 1 1 . . .

. . . m−1,1 m0,2 m1,3 m2,4 m3,5 . . .

. . . m−1,2 m0,3 m1,4 m2,5 . . .

. . . m−2,2 m−1,3 m0,4 m1,5 m2,6 . . .

. . . m−2,3 m−1,4 m0,5 m1,6 . . .

..
.

m−1,5
. . .

There is a well-know recurrence on frieze patterns that would be essential to proves in
section 3. We will introduce it here.

mi ,j = mi ,i+2mi+1,j −mi+2,j

Definition 1.0.2. The first nontrivial row is called the quiddity row, indexed as row 1.
Each frieze is uniquely defined by its quiddity row. If a quiddity row is periodic, then its
corresponding frieze is periodic.

1.1 Infinite friezes of type Λp1,p2,...,pn

Holm and Jørgensen introduce a generalization of friezes of integers in [7].

Definition 1.1.1. Let p ∈ Z ≥ 3. A (finite) frieze pattern is of type λp if the quiddity row
consists of (necessarily positive) integral multiples of

λp = 2 cos(
π

p
)
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We can generalize this definition to the infinite frieze case.

Definition 1.1.2. Let p1, . . . , pn ∈ Z ≥ 3. An infinite frieze pattern is of type λp1,...,pn if
each entry in its quiddity row is the sum of integral multiples of λp1, . . . , λpn .
If every entry in the quiddity row of an infinite frieze F is the integral multiple of λp for a
fixed p ∈ Z ≥ 3, then F is an infinite frieze of type Λp.

We can write each entry in the quiddity row in the form of

mi−1,i+1 =
∑
p∈Ai

λp

where Ai is an indexing set that contains all integers ps that sum up to mi−1,i+1. Because
multiples of a certain λpi is allowed, we will record the repetition in Ai by indexing the
repetitive integer pi .

Lemma 1.1.1. If a sequence of numbers contains more than p − 2 consecutive λp, then it
cannot be a quiddity sequence of an infinite frieze pattern.

Proof. We can see p − 2 consecutive λp as a period 1 frieze whose quiddity sequence is λp.
By the results of Holm-Jørgensen, we know that entries in row k of this frieze are in the form
of Uk(λp). Moreover, the value Uk(λp) reaches 0 when k ≥ p− 1. Based on the unimodular
rule, p − 1 consecutive λp will uniquely define an entry in row p − 1 that only depends on
these consecutive λp. Hence this frieze contains a term 0 and cannot be infinite.

Corollary 1.1.1. If a sequence of numbers contains only λp for a certain p, then it is a
quiddity sequence of a finite frieze pattern.

In this report, we will shorten the notion of periodic infinite friezes of type Λp1,...,pn as
simply infinite friezes, unless else specified.

1.2 Dissected annulus

Conway and Coxeter have successfully established a bijection between finite friezes of positive
integers with triangulations on polygons in [2][3]. This bijection is later extended to the case
of infinite friezes of positive integers with triangulations on annuli and once punctured discs.
Holm and Jørgensen proved a bijection between finite friezes of type Λp with p-angulations
on polygons and an injection from dissection on polygons to finite friezes of type Λp1,..,pn .
Following this progression of understanding on frieze patterns, this project explored the cor-
respondence between dissection on annuli and once punctured disks and infinite friezes of
type.
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Definition 1.2.1. We will let An,m denote an annulus with n vertices on the outer boundary
and m vertices on the inner boundary, and a once punctured disc with n vertices on the
boundary corresponds to An,0. Because in most cases only the outer boundary vertices are
essential, we will denote an annulus with n outer boundary vertices as An for short, and a
vertex would mean an outer boundary vertex, denoted as vi , unless else specified. On such
an annulus, the outer vertex would be indexed clockwise, modulo n. For instance, vn+i = vi .

Let D be a polygon dissection on the annulus An, for each vertex vi , we will let Poly(vi)
denote the set of polygons P in D that incident to vertex vi . For each subgon P in D, we
will use |P| denote the number of edges of this subgon.

It is conventional to consider an annulus in its universal cover, which is an infinite stripe.
The idea of mapping a triangulation on an annulus to a periodic triangulation on its universal
cover is explored in [5]. Using similar analogy, we can map a dissection on an annulus to a
periodic dissection on an infinite stripe, where the bottom line represents the outer boundary
and the top line represents the inner boundary. While vi and vi+n refer to the same vertex
on an annulus, they are distinct on the infinite strip. Let ρ be the covering map that maps
the infinite stripe dissection down onto the dissected disk, then ρ(vi) = ρ(vi+kn) = vi on the
annulus.

Lemma 1.2.1. Let D be a polygon dissection on an infinite strip, then for each lower
boundary edge (vi , vi+1), there exists exactly one subgon in D that contains (vi , vi+1). This
would be the only subgon incident to both vi and vi+1

Definition 1.2.2. Let D be a dissection on an annulus An,m, we can define

the k th power of D on Akn,km

by dissecting an annulus Akn,km by repeating D exactly k times.
For any k ∈ Z > 1, the k th power of D has the exact same infinite strip representation as D.

Example 1.2.1. Square of a dissection example.
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a

c

b
a1

a2

b1

c1

b2

c2

Definition 1.2.3. Let D be a polygon dissection on the annulus An. An arc connecting an
outer vertex and an inner vertex is called a bridging arc. An arc connecting two outer vertices
is called a peripheral arc. We do not allow arcs to connect two inner vertices in the dissection.

Baur et al. defined a skeletal triangulation which only consists of bridging arcs in [5].
We will extend this definition to dissections.

Definition 1.2.4. A dissection is said to be skeletal if it contains only bridge arcs. In
a skeletal dissection, a subgon that contains at least one outer edge (vi , vi+1) is called an
outer subgon. A subgon that contains no outer edge would be called as an inner subgon.
Note that an inner subgon in skeletal dissections always incident to exactly 1 outer vertex.
In a dissection that is not skeletal, a subgon P is called as an ear or an peripheral subgon if
it consists of |P| − 1 outer boundary edges and exactly one peripheral arc.

Lemma 1.2.2. If D is a skeletal dissection,then it does not contain any ears.

To establish a correspondence, following the previous study, if an outer boundary ver-
tex in a dissected annulus is adjacent to polygons of size p1, . . . , pn, we associate to it the
weighted count

∑n
i=1 λpi in the quiddity row. Baur et al. used both the inner and outer

boundaries of an annulus for this correspondence in [], but this project is only focusing on the
outer boundary. Hence, we exclude all peripheral arcs that connect inner vertices because
they are trivial for our correspondence. In section 2, we will discuss the realization criterion
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of reduced infinite friezes and will introduce a new type of dissection for some friezes that
do not have dissected annuli correspondence.

Broline, Crowe and Isaacs found a correspondence between all entries in finite friezes of
positive integers and triangulations on polygon by using matching numbers. This correspon-
denc is then extended to the infinite friezes of positive integers cases by Baur, Parsons, and
Tschabold in [4]. Bessenrodt introduced polynomially weighted walks around such dissected
polygons and their correspondence with entries in finite frieze of type Λp1,...,pn in [9]. We gen-
eralized this notion of ”matching numbers” to weights on polygon paths in dissected annuli.
A correspondence between all entries in infinite friezes and this weights on path is proved in
section 3.

Definition 1.2.5. Let D be a dissection of a punctured disc or an annulus with n vertices,
then a path from vertex i to vertex j , wi ,j would be a sequence:

wi ,j = (Pi ,Pi+1, . . . ,Pj−1,Pj)

of subgons in the corresponding dissection on the infinite strip, such that Pi incident to
vertex vi on the infinite strip.

• We will use w [a : b] = (Pa, . . . ,Pb) to denote a subpath of w , where i ≤ a ≤ b ≤ j .

• We will use Pi ,j to denote the set of all paths from vi to vj .

Definition 1.2.6. For each path wi ,j = (Pi ,Pi+1, . . . ,Pj−1,Pj), we will define its path weight wt(wi ,j)
as the following:

• Weight of a 0 length path would have weight 1;

• wt(wi ,i) = λ|Pi |;

• If Pi = Pi+1, then wt(wi ,j) = wt((Pi))wt((Pi+1, ...,Pj))− wt((Pi+2, ...,Pj));

• If Pi 6= Pi+1, then wt(wi ,j) = wt((Pi))wt((Pi+1, ...,Pj))

We will use Uk(x) to denote the Chebyshev polynomials of the second kind with the
following properties:

• U0(x) = 1;

• U1(x) = x ;
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• Uk(x) = U1(x)Uk−1(x)− Uk−2(x).

Lemma 1.2.3. A path wi ,j = ((Pi , ...,Pj)) can be partitioned into a sequence of subpath
(Pi , ...,Pa1), (Pa1+1, ...,Pa2), (Pa2+1, ...,Pa3),..., (Pah−1+1, ...,Pah), (Pah+1, ...,Pj) such that:

• Let a0 = i − 1, ah+1 = j . For each subpath (Pas+1, ...,Pas+1), we have Pas+1 = Pas+2 =

... = Pas+1

• For 2 neighboring subpaths (Pas−1+1, ...,Pas ) and (Pas+1, ...,Pas+1), we have Pas 6= Pas+1

And that

wi ,j =

t=h∏
t=0

Uat+1−at(λ|Pat+1|)

where Uk(x) is the Chebyshev polynomial.

Proof. The partition essentially divides the path into subpaths consist of consecutive iden-
tical subgons to the maximum. We will prove by induction on length l of paths.
By definition of Uk(x), we know that U0(x) = 1 and U1(x) = x . Thus the argument holds
true for path of length = 0 and l = 1.
Suppose that the argument holds true for all paths with length less or equal to l and let
w = (Pi , ...,Pi+l) be any path with length l + 1.

• If Pi 6= Pi+1, then a1 = i , the first subpath in the partition is (Pi)

wt((Pi , ...,Pi+l)) = λ|Pi |wt((Pi+1, ...,Pi+l))

= U1(|Pi |)
t=h∏
t=1

Uat+1−at(λ|Pat+1|)

=

t=h∏
t=0

Uat+1−at(λ|Pat+1|)

• If Pi = Pi+1, then a1 ≥ i + 1, denote the length of the first subpath (Pi , ...,Pa1) as l0.
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i.e. there are l0 consecutive Pi at the beginning of w .

wt((Pi , ...,Pi+l)) =λ|Pi |wt((Pi+1, ...,Pi+l))− wt((Pi+2, ...,Pi+l))

=U1(λ|Pi |)

(
Ul0−1(λ|Pi |)

t=h∏
t=1

Uat+1−at(λ|Pat+1|)

)

−

(
Ul0−2(λ|Pi |)

t=h∏
t=1

Uat+1−at(λ|Pat+1|)

)

=(U1(λ|Pi |)Ul0−1(λ|Pi |)− Ul0−2(λ|Pi |))

t=h∏
t=1

Uat+1−at(λ|Pat+1|)

=Ul0(λ|Pi |)

t=h∏
t=1

Uat+1−at(λ|Pat+1|)

=

t=h∏
t=0

Uat+1−at(λ|Pat+1|)

2 Periodic infinite friezes of type Λpi ,pi+1,..,pn and dis-

sected annuli realizations

Definition 2.0.1. An infinite frieze pattern of period n is called realizable if there exists
a dissection D on an annulus An with n vertices if for each entry mi−1,i+1 in the quiddity
sequence,

mi−1,i+1 =
∑
w∈Pi ,i

wt(w) =
∑

p∈Poly(vi )

λ|P|

A frieze pattern that has such a geometric interpretation is called realizable.

Remark 2.0.1. If we read off entries from the periodic dissection on the infinite stripe
developed based on the realization of an infinite frieze pattern by the same formula,

mi−1,i+1 =
∑
w∈Pi ,i

wt(w) =
∑

p∈Poly(vi )

λ|P|

we would obtain exactly the quiddity row of this infinite frieze.

Frieze patterns are uniquely defined by their quiddity rows, and we can tell from cer-
tain quiddity sequences that the friezes developed from these quiddity sequences are not
realizable.
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Proposition 2.0.1 (Realizability test). Entries in the quiddity row can be written in the
form of mi−1,i+1 =

∑
p∈Ai λp. Let mi−1,i+1, mi ,i+2 be a pair of neighboring entries in the

quiddity row. If Ai ∩ Ai+1 = ø, then this frieze pattern is not realizable.

Proof. Let F be a frieze pattern that contains two neighboring quiddity entries

mi−1,i+1 =
∑
p∈Ai

λp, mi ,i+2 =
∑
p∈Ai+1

λp

such that Ai ∩ Ai+1 = ø.
Assume for the purpose of contradiction that F is realizable, then its quiddity entries can
be written in the form of mi−1,i+1 =

∑
P∈Poly(i) λ|P|, and we can consequentially replace Ai

by Poly(i) as the indexing set.
Let the dissection D on an annulus An is one of its corresponding dissection. Then there
must exists a subgon in D that contains the outer boundary edge (vi , vi+1). Denote this
subgon as P̂ .
Therefore we know that P̂ ∈ Poly(vi)∩Poly(vi+1), so Poly(vi)∩Poly(vi+1) 6= ø. We reached
a contradiction.

We would call the process of checking all adjacent pairs in a quiddity sequence whether
the pair would indicate the unrealizability of the frieze pattern based on Proposition as the
realizability test.

Conjecture 2.0.1. A frieze that fails the realizability test would contain negative entries.

Corollary 2.0.1. Let F be a frieze pattern with a quiddity sequence

q = (m0,2, m1,3, ..., mn−1,n+1)

that contains consecutive λp mi−1,i+1 = mi ,i+2 = ... = mj−1,j+1 = λp for some i , j but
mi−2,i 6= λp, mj,j+2 6= λp. Write the neighboring entries as

mi−2,i =
∑
k∈Ai−1

λk , mj,j+2 =
∑
n∈Aj+1

λn

If p /∈ Ai−1 ∩ Aj+1, then F is not realizable.

An arbitrary infinite frieze that passes the realizability test is not guaranteed to be real-
izable. However, in section 2.1 we would show that every reduced frieze would have some
geometric interpretation.
We can perform the following algorithm to obtain a reduced frieze from an arbitrary infinite
frieze.
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Definition 2.0.2. Let F be a frieze pattern that passed the realizability test and let q =

(m0,2, m1,3, ..., mn−1,n+1) be its quiddity sequence.
A cut can be performed on q if there exists some i ∈ [n] and some integer p such that
mi ,i+2 = mi+1,i+3 = . . . = mi+p−3,i+p−1 = λp.
A cut on q would replace the subsequence

(mi−1,i+1, mi ,i+2, ..., mi+p−3,i+p−1, mi+p−2,i+p)

by
(mi−1,i+1 − λp, mi+p−2,i+p − λp)

Remark 2.0.2. Suppose that F is realizable, and that its quiddity row contains q − 2

consecutive λq, mi ,i+2 = mi+1,i+3 = ... = mi+p−3,i+p−1 = λp, then the outer boundary edges
(i , i + 1), (i + 1, i + 2),..., (i + p− 2, i + p− 1) are contained in one p-subgon, meaning that
this p-subgon is an ear identified by the peripheral arc (i , i + p − 1). A cut on the quiddity
row would cut this ear off from the dissection. leaving a new dissection on annulus that
correspond to the frieze pattern generated by the quiddity row after the cut. Recursively
cutting the quiddity row would eventually leave us with a skeletal frieze.

Definition 2.0.3. Let F be an infinite frieze that may or may not contain terms in the form
of λp in its quiddity row. If terms in the form of λp for a fixed p always occur less than p−2

times in the quiddity row of F , we say that F is a skeletal frieze.

Lemma 2.0.1. A skeletal dissection of an annulus would generate a realizable skeletal frieze
pattern and vice versa.

This operation of a cut is first introduced by Holm and Jørgensen in [7] to delete subgons
from dissections on polygons. In [5], Baur et al. defined the cut operation on dissected annu-
lus to delete subgons and peripheral arcs. The cut operation is the only reductive operation
they defined, which is sufficient for friezes of integers to get rid of 1 in the quiddity row.
For infinite friezes of type Λp1,...,pn , however, we would need another operation to completely
reduce an infinite frieze.

Definition 2.0.4. Let F be a frieze pattern that passed the realizability test. Let q =

(m0,2, m1,3, ..., mn−1,n+1) be its quiddity sequence.
A shrink can be performed on q if there exists some i ∈ [n] and some integer p such that
mi ,i+2 = mi+1,i+3 = ... = mi+k−1,i+k+1 = λp, where k < p − 2.
A shrink on q would replace the subsequence

(mi−1,i+1, mi ,i+2, ...mi+k−1,i+k+1, mi+k,i+k+2)

by
(mi−1,i+1 − λp + λp−k , mi+k,i+k+2 − λp + λp−k)
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Remark 2.0.3. Suppose that F is realizable, and that its quiddity row contains k con-
secutive λp, mi ,i+2 = mi+1,i+3 = ... = mi+k−1,i+k+1 = λp, then the outer boundary edges
(i , i + 1), (vi+1, vi+2), . . . , (vi+k , vi+k+1) are contained in one p-subgon that has exactly k + 2

outer vertices and p − k − 2 inner vertices. A shrink on this quiddity row would delete the
vertices vi+1, vi+2, ..., vi+k from the outer boundary and hence from this p-subgon, leaving a
shrunk subgon consisting of outer vertices vi , vi+k+1 and p − k − 2 inner vertices. Because
k < p − 2, the shrunk subgon would still be a polygon.

cut−−→ shr ink−−−→

Lemma 2.0.2. If an infinite frieze F is realizable, then its reduced frieze is realizable.

Remark 2.0.4. The converse of this statement is in fact not true. For example, the quiddity
sequence q = (λ4 + 2λ5, λ5, λ5, λ4 + λ5, 2λ5) is unrealizable, but it can be reduced to a
realizable quiddity sequence (λ3 + λ4 + λ5, λ3 + λ4, λ3 + λ5).

Definition 2.0.5. A reduction (at consecutive λp) of a quiddity sequence

q = (m0,2, m1,3, ..., mn−1,n+1)

of a frieze F = F0 is obtained by recursively performing the following algorithm:

1. If Fn failed the realizability test, then Fn cannot be reduced and thus F0 is not
realizable.

2. If Fn passed the realizability test, we would delete the entries mi−1,i+1 that of the form
λp through cutting and shrinking, obtaining a new frieze Fn+1.

3. Repeat step 1 and 2 until no entries in the quiddity row is of the form λp. We would call
such quiddity sequence as a reduced quiddity sequence and the frieze a reduced frieze,
denoted as F ′.

Definition 2.0.6. Let D be a dissection on annulus An. If for all outer vertices vi , there are
at least 2 subgons in D that incident to vi , then we say D is a reduced dissection.

2.1 Realizations of reduced infinite friezes

Let F be a reduced periodic infinite frieze of type Λpi ,pi+1,..,pn . Again, we can perform the
realizability test on F . If F failes, then we know that it is not realizable.
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Before we discussed the realizability of the reduced frieze, we would first discuss some
properties of the reduced frieze and its corresponding annulus dissection if the reduced frieze
is realizable.

Lemma 2.1.1. If a reduced frieze F is realizable, then its corresponding annulus dissection
D is skeletal.

Proof. Suppose not, then D would contain as least one ear subgon p, bounded by the pe-
ripheral arc (vi , vj), and j ≥ i + 2. Therefore, p is the only subgon in D that incident to vi+1,
so mi ,i+2 = λ|P|. We reached a contradiction.

Remark 2.1.1. Note that although reduced friezes are all skeletal, not all skeletal friezes
are reduced.

Lemma 2.1.2. If a reduced frieze F is realizable and D is its corresponding dissection, then
each outer subgon in D contains exactly one outer edge.

Proof. Suppose not, let P be a subgon in D that contains more than 1 outer edge. Let
(vi , vi+1) be one of the outer edges contained in P . Then there exists the outer edge (vj , vj+1)

that is contained in P and that for all edges (vk , vk+1) where i < k < j , (vk , vk+1) is not in
P .
If i + 1 = j , then because D is skeletal and any bridge arc incident to vi+1 would separate
(vi , vi+1), (vi+1, vi+2) into 2 different subgons, there is no arc incident to vi+1. P is the only
subgon incident to vi+1, so mi+1−1,i+1+1 = λ|P|. We reached a contradiction.
If i + 1 < j , by previous argument we know that edges (vi−1, vi) and (vj+1, vj+2) cannot
be in p. Therefore, there would be 4 bridge arcs ei−1, ei , ej , ej+1, incident to vi−1, vi , vj , vj+1
respectively. However, in this case, (vi , vi+1) and (vj , vj+1) would belong to two different
subgons. Hence we reached a contradiction.

Corollary 2.1.1. If a reduced frieze F is realizable and thatD is its corresponding dissection,
then different outer boundary edges in D are contained in different outer subgons.

Proposition 2.1.1. Let F be a reduced frieze, and q = (m0,2, m1,3, ..., mn−1,n+1) be its
quiddity sequence. F is realizable if and only if there exists a sequence of n numbers
p1,2, p2,3, ..., pn,n+1 such that pi ,i+1 ∈ Ai ∩ Ai+1 for all i ∈ [n], such that if pi−1,i = pi ,i+1
numerically, there are at least two copies of the number pi−1,i in Ai .

Proof. We will first prove the only if direction. Suppose F is realizable and let D denotes
a corresponding dissection on annulus, then by Corollary 2.1.1, each outer edge (vi , vi+1)

is contained in a distinct outer subgon Pi ,i+1. Thus, |P1,2|, |P2,3|, ..., |Pn,n+1| can be the se-
quence we want.
For each tuple (vi−1, vi , vi+1), there are two different subgons Pi−1,i ,Pi ,i+1 ∈ D such that
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Pi−1,i contains the edge (vi−1, vi) and Pi ,i+1 contains the edge (vi , vi+1).
Therefore, |Pi−1,i | ∈ Ai−1 ∩ Ai , |Pi ,i+1| ∈ Ai ∩ Ai+1, and |Pi−1,i |, |Pi ,i+1| ∈ Ai . Recall that
identical integers can have repetitions in Ai , so that even if |Pi−1,i | = |Pi ,i+1| numerically,
they would have 2 different representations in Ai .
For the if direction, we would construct a corresponding dissection for an arbitrary reduced
frieze F of period n that satisfies the condition in the proposition. We will first start from
determining the shape of each of the n outer subgons.
Let p1,2, p2,3, ..., pn,n+1 be a sequence of numbers that satisfies the requirement in the propo-
sition. Then for the outer edge (vi , vi+1), there are a pair of bridge arcs (vi , u) and (vi+1, u

′)

such that:

• There is no other bridge arc between (vi , u) and (vi+1, u
′) counting clockwise ;

• If u 6= u′, there are exactly pi ,i+1 − 4 inner vertices between u and u′; if u = u′,
there are exactly pi ,i+1− 4 inner vertices between u and u′. These vertices, along with
u, u′, vi , vi+1, would construct a pi ,i+1-subgon.

For each quiddity entry mi−1,i+1, we know that pi−1,i , pi ,i+1 ∈ Ai , and that

mi−1,i+1 = λpi−1,i + λpi−1,i +
∑

q∈Ai\
{
pi−1,i ,pi ,i+1

}λq
We have just constructed the only two outer subgons that incident to vi that contribute
to the terms λpi−1,i + λpi−1,i , and now we will use inner subgons that incident to vi for the
terms

∑
q∈Ai\

{
pi−1,i ,pi ,i+1

} λq. There would be exactly |Ai | − 2 inner subgons incident to vi .

All of these inner subgons are contained between the two outer subgons that incident to
vi . The number of edges for these |Ai | − 2 inner subgons would correspond to numbers in
Ai \

{
pi−1,i , pi ,i+1

}
respectively.

If |Ai | − 2 = 0, then the two outer subgons that incident to (vi) would share one bridge arc
that incident to vi .
By this construction, for each quiddity entry mi−1,i+1, we would have:∑

p is a subgon
incident to vi

λp =
∑

p is a subgon
incident to vi

λp +
∑

p is a subgon
incident to vi

λp

= λpi−1,i + λpi ,i+1 +
∑

q∈Ai−
{
pi−1,i ,pi ,i+1

}λq
=
∑
q∈Ai

λq

= mi−1,i+1

13



Remark 2.1.2. Because there might be multiple sequence of n numbers p1,2, p2,3, ..., pn,n+1
that satisfy the conditions, there might be multiple realization of a certain quiddity sequence.

Example 2.1.1. Dissection of annulus corresponding to q = (1 + 2
√

2, 2 + 2
√

2)

√
21

1 + 2
√

2

2 + 2
√

2

√
21

1 + 2
√

2

2 + 2
√

2

√
2

√
2

1 + 2
√

2

2 + 2
√

2

Corollary 2.1.2. A reduced frieze of Type Λp is always realizable.

Proof. Let F be a reduced frieze of Type Λp. We can always choose a default sequence of
(λp, λpm, . . . , λp). Because F is reduced, all of its quiddity entries would be in the form of
kλp where p ≥ 2. Thus, we always have at least 2 copies of p in the indexing sets.

Notice that there are reduced friezes that pass the realizability test but do not satisfy
the requirements in Proposition 2.1.1. For instance, the quiddity sequence (λ3 + λ5, λ3 +

λ4, λ3 + λ4, λ4 + λ5). We do not have a normal dissected annulus interpretation of these
reduced friezes, but we can construct another type of geometric interpretation for them.

Definition 2.1.1. Let D be a skeletal dissection on an annulus An whose corresponding
frieze is a reduced frieze. If for some outer vertex vi , its incident outer edges vi−1, vi and
(vi , vi+1) are contained in two different p-subgons for an integer p, we can identify these
two p-subgons as one. The geometric object obtained by such identification is called a
quotient dissection on annulus.
We allow multiple p-subgons with the same p to be identified as one as long as they are
consecutive outer subgons.
If the two outer subgons incident to the vertex i are identified as one, we say that an
identification happens at vi .

Example 2.1.2. Quotient dissection

14



v1

v2

a1 a2

Identifications happen at v1 and v2−−−−−−−−−−−−−−−−−−−→

v1

v2

a a

Definition 2.1.2. We say that a frieze pattern F has a quotient dissection realization if there
exists some quotient dissection D on an annulus such that for every entry in the quiddity
sequence, we have:

mi−1,i+1 =
∑
w∈Pi ,i

wt(w) =
∑

p∈Poly(vi )

λ|P|

where p are subgons in D, vi are outer vertices on the quotient annulus, and w are polygon
path in D.

We want to construct a periodic quotient dissection D on the infinite strip that persists
the same property described in Remark 2.0.1. We would start from the periodic dissection
D0 developed based on the normal dissection D0 from which our quotient dissection D is
constructed. If p, q are two outer subgons in D0 that incident to vi and are identified as
one in D, we can simply identify the periodic pair pk , qk that incident to vi+kn in D0 as one
subgon in order to obtain D. It is worth noticing, however, that in the case where all n outer
subgons in D0 are all p-gons for some p and are identified as one in D, all copies of this outer
subgon in D0 would be identified as one in D.

Proposition 2.1.2. Let F be a reduced frieze. If F passes the realizability test, then F is
realizable either by a normal dissection on annulus as discussed in Proposition 2.1.1 or by a
quotient dissection on annulus.

Proof. Because F passed the realizability test, there exists a sequence of n numbers p1,2, p2,3, ..., pn,n+1
such that pi ,i+1 ∈ Ai ∩ Ai+1 for all i ∈ [n]. If F is not realizable by a normal dissection,
then there exist some i such that pi−1,i = pi ,i+1 numerically but only one copy of the number
pi−1,i is in Ai .
Fix the sequence p1,2, p2,3, ..., pn,n+1. We would construct a new quiddity sequence q′ by
adding λpi−1,i to mi−1,i+1 for each i that do not satisfy the condition in Proposition 2.1.1.
Therefore, there would exist exactly 2 copies of pi−1,i = pi ,i+1 in A′i . Consequentially, for
the same sequence p1,2, p2,3, ..., pn,n+1, now we would have that if there exist some i such
that pi−1,i = pi ,i+1 numerically, there would be at least 2 copies of pi−1,i ∈ Ai . Thus, q′ is

15



realizable. Let the corresponding normal dissection be D0.
For each i such that pi−1,i = pi ,i+1 numerically but only one copy of the number pi−1,i is in
Ai , we have

mi−1,i+1 = λpi−1,i +
∑

q∈Ai ,q 6=pi−1,i

λq

and
m′i−1,i+1 = 2λpi−1,i +

∑
q∈A′i ,q 6=pi−1,i

λq = 2λpi−1,i +
∑

q∈Ai ,q 6=pi−1,i

λq

In D0, the subgons incident to vi that contribute to λq, where q ∈ A′i , q 6= pi−1,i are all
inner subgons by construction. The only 2 pi−1,i -subgons that incident to vi are the two
outer subgons. We would then identify these two subgons as one. We continue to do the
identification for all i where λpi−1,i has been added to mi−1,i+1, and call the resulting quotient
dissection as D.
We can read off a quiddity sequence q from D by the same rule as the normal dissection
cases, which is:

mi−1,i+1 =
∑

p∈Poly(vi )

λ|P|

For all vj such that an identification does not happen at vj , mj−1,j+1 = m′j−1,j+1 = mj−1,j+1;
for all vj where an identification happened, mj−1,j+1 = m′j−1,j+1 − λqj−1,j = mj−1,j+1.

Example 2.1.3. We will realize a period 2 unrealizable quiddity sequence q = (1 +
√

3, 1 +√
2) by first realizing q′ = ( 2 +

√
3, 2 +

√
2 ).

11

√
2

√
3

2 +
√

2

2 +
√

3 Identifications−−−−−−−−→

11

√
2

√
3

1 +
√

2

1 +
√

3

2.2 Realizations of periodic infinite friezes of type Λp

Proposition 2.2.1. Every periodic infinite frieze of type Λp is realizable by a normal dis-
section on annulus.
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Proof. We can simplify our process of construction in the case of frieze of Λp. In the reduction
algorithm, we only need to cut off all of the peripheral arcs. From a frieze of Λp that no more
than p− 3 consecutive terms λp are contained in its quiddity row, we can directly construct
its corresponding normal p-angulation by the following rule:

• If the quiddity row contains k consecutive terms λp, k < p − 2,

(mi ,i+2...mi+k−1,i+k+1)

then the corresponding outer subgon would contain the vertices vi , vi+1, ..., vi+k and
p-k-2 vertices on the inner circle.

• If two neighboring entries in the quiddity row are in the form of

mk−1,k+1 = aλp, mk,k+2 = bλp

where a > 1 and b > 1, then the outer subgon that contains the edge (vk , vk+1) would
contain p − 2 inner circle vertices.

• After we determined the outer subgons, we can keep adding inner subgons at each
outer vertex so that the numbers match up with the quiddity row.

Conjecture 2.2.1. The realization of periodic infinite frieze of type Λp is essentially unique
up to rotating the inner boundary and the location of the vertices.

3 Combinatorial interpretation of nontrivial entries

In this section, we would discuss the nontrivial entries in a realizable frieze that are not in
the quiddity row. Let F be a realizable infinite frieze and let D be one of its corresponding
dissection on annulus. We know that F is uniquely determined by its quiddity row q, and
because information in the quiddity row is recorded in D, it is reasonable to assume that
from the dissection D, we can read off all entries in F .

Theorem 3.0.1. Every nontrivial entry in a realizable infinite frieze pattern of period n

that correspond to a quotient dissection D satisfies that

mi−1,j+1 =
∑
w∈Pi ,j

wt(w)

17



Proof. We will proof this theorem by induction. By definition, we know that every entry in
the quiddity row satisfies the formula:

mi−1,i+1 =
∑
w∈Pi ,i

wt(w) =
∑

p∈Poly(vi )

λ|P|

For every entry in row 0, which is the trivial row, we also have the formula:

mi−1,i = 1 = wt(length 0 path)

Suppose that all entries in the first k rows satisfy the argument.
For an arbitrary entry mi ,i+k+2 in row k + 1, we have the recurrence

mi ,i+k+2 = mi−1,i+1mi+1,i+k+2 −mi+2,i+k+2

Thus, it is suffice for us to proof that∑
w∈Pi+1,i+k+1

wt(w) =
∑

w∈Pi+1,i+1

wt(w)
∑

w∈Pi+2,i+k+1

wt(w)−
∑

w∈Pi+3,i+k+1

wt(w)

We will prove this by induction.
Now we will construct path from vi+1 to vi+k+1 by composing paths of shorter length.
Any path w = (Pi+1,Pi+2, ...,Pi+k+1) ∈ Pi+1,i+k+1 can be obtained by appending the subgon
Pi+1 in front of a subpath w [i + 2 : i + k + 1] = (Pi+2,Pi+3, ...,Pi+k+1). Because each Pi+s
is incident to vi+s , we know that Pi+1 ∈ Poly(i + 1) and w [2 : k + 1] ∈ Pi+2,i+k+1. Similarly,
by appending any subgon incident to vi+1 in front of a path w ′ ∈ Pi+2,i+k+1, we would obtain
a path in Pvi+1,vi+k+1 . Furthermore, it is clear that if w1, w2 ∈ Pi+1,i+k+1 are different paths,
then either w1[i + 1 : i + 1] 6= w2[i + 1 : i + 1] or w1[i + 2 : i + k + 1] 6= w2[i + 2 : i + k + 1]

and vice versa.
Thus, there exists a bijection between Pvi+1,vi+k+1 and the product Poly(vi+1)× Pi+2,i+k+1.

By lemma 1.2.1, we know that there is exactly one subgon P̂ that incident to both vi+1
and vi+2. Then for each path h ∈ Pi+3,i+k+1, there is exactly one path wh ∈ Pi+1,i+k+1 such
that

• wh[i + 3 : i + k + 1] = h

• wh[i + 1 : i + 1] = wh[i + 2 : i + 2]

P̂ is the repeated subgon wh[i + 1 : i + 1] = wh[i + 2 : i + 2] = P̂ , and wh = (P̂, P̂, h).
Notice that P̂ ∈ Pvi+1,vi+1 and (P̂, h) ∈ Pi+2,i+k+1.
Thus, we can rewrite

Pi × Pi+2,i+k+1

18



as a new set (
Pi × Pi+2,i+k+1 −

{ (
P̂, (P̂, h)

) }
h∈Pi+3,i+k+1

)
∩ Pi+3,i+k+1

by replacing each pair of (P̂, (P̂, h)) by h. Then there exists a bijection f from Pi+1,i+k+1 to
this set. For each path w [i + 1 : i + k + 1] = (Pi+1,Pi+2, ...,Pi+k+1) ∈ Pi+1,i+k+1,

• If Pi+1 6= Pi+2, f (w [i + 1 : i + k + 1]) = (Pi+1, w [i + 2 : i + k + 1])

• If Pi+1 = Pi+2, f (w [i + 1 : i + k + 1]) = w [i + 3 : i + k + 1]

By the definition of weighting on path, we know that

wt(w [i + 1 : i + k + 1]) =

{
λ|Pi+1|wt(w [i + 2 : i + k + 1]) f (w) /∈ Pi+3,i+k+1
λ|Pi+1|wt(w [i + 2 : i + k + 1])− wt(w [i + 3 : i + k + 1]) f (w) ∈ Pi+3,i+k+1

Therefore, we have∑
w∈Pi+1,i+k+1

wt(w) =
∑

f (w)/∈Pi+3,i+k+1

wt(w) +
∑

f (w)∈Pi+3,i+k+1

wt(w)

=

 ∑
p∈Pi+1,i+1

∑
w∈Pi+2,i+k+1

wt(p)wt(w)−
∑

f (w)∈Pi+3,i+k+1

λP̂wt((P̂, f (w)))


+

 ∑
f (w)∈Pi+3,i+k+1

λP̂wt((P̂, f (w)))− wt(f (w))


=

∑
w∈Pi+1,i+1

wt(w)
∑

w∈Pi+2,i+k+1

wt(w)−
∑

h∈Pi+3,i+k+1

λP̂wt((P̂, h))

+
∑

h∈Pi+3,i+k+1

λP̂wt((P̂, h))−
∑

h∈Pi+3,i+k+1

wt(h)

=
∑

w∈Pi+1,i+1

wt(w)
∑

w∈Pi+2,i+k+1

wt(w)−
∑

h∈Pi+3,i+k+1

wt(h)

Thus, we completed the induction mi ,i+k+2 =
∑
w∈Pi+1,i+k+1 wt(w) as desired.

Remark 3.0.1. Lemma 1.2.1 also applies to the case where D is a quotient dissection on
infinite strip. And all arguments in the proof of Theorem 3.0.1 hold true when F is realizable
by a quotient dissection on annulus.

Proposition 3.0.1. Every nontrivial entry in an infinite frieze pattern of period n that
correspond to a quotient dissection D satisfies that

mi−1,j+1 =
∑
w∈Pi ,j

wt(w)
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Recall that we can calculate the weight of a path by an explicit formula described in
lemma 1.2.3, which is

wt(wi ,j) =

t=h∏
t=0

Uat+1−at(λ|Pat+1|)

3.1 Skeletal dissections

Let F be a realizable skeletal frieze, with a corresponding skeletal dissection D.
Any outer subgon in D contains at least 1 inner vertix, which are those incident to the two
bridge arcs that are boundaries of the outer subgon. Thus, any outer subgon contains at
most p − 1 outer vertices, which appear consecutively on the annulus outer boundary. Any
inner subgon is incident to exactly one outer vertices. Therefore, an identical subgon in
a skeletal dissection must be chosen consecutively in any path. We can thus simplify the
explicit formula for path weight by counting the number of times a subgon p is chosen in the
path and use this number as the power of the Chebyshev polynomial being evaluated at |λp|.

We cannot choose any p-subgon in the skeletal dissection D consecutively more than p−1

times. By property of Chebyshev polynomials, we know that Uk(λp) ≥ 0 when k ∈ [p − 1].
Thus, we can determine the positivity of path weights:

Lemma 3.1.1. Any path in a skeletal dissection on annulus has a nonnegative weight.

Corollary 3.1.1. All nontrivial entries in a realizable skeletal frieze are positive.

Remark 3.1.1. There are only a few paths that have weight 0 in skeletal dissections. We
can always construct a positively weighted path from va to vb by always choosing the outer
subgon that contains the edge (vi , vi+1) for all a ≤ i ≤ b.

Corollary 3.1.2. Let D be a skeletal dissection on annulus and read off a quiddity sequence
q from D. The frieze determined by q is a positive frieze.

Corollary 3.1.3. All nontrivial entries in a skeletal frieze of type Λp are positive.

Example 3.1.1. We will show all paths from vertex 1 to vertex 2, whose weights sum up
to m0,3 = 3 + 2

√
2 + 2

√
3 +
√

6.
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da

b

c

2 +
√

2

2 +
√

3

. . . 0 0 . . .

. . . 1 1 . . .

. . . 2 +
√

2 2 +
√

3 . . .

. . . 3 + 2
√

2 + 2
√

3 +
√

6 3 + 2
√

2 + 2
√

3 +
√

6 . . .

..
. . . .

v1 v2 wt(w)

a1

v1

v2

a2

v1

v2
U1(λ3)U1(λ3) = 1

a1 c
√

3

a1 d 1

b a2
√

2

b c
√

6

b d
√

2

d a2 1

d c
√

3

d1

v1

v2

d1

v1

v2
U2(λ3) = 0

3 + 2
√

2 + 2
√

3 +
√

6
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3.2 Non-skeletal dissections

If D is a dissection that contains peripherial arcs, then some p-subgon may be chosen up to
p times in a path. If this p-subgon is an ear, then it can be chosen consecutively up to p
times in a path, giving the path a Up(λp) = −1 factor in its weighting.
If p is not an ear, but a subgon containing two peripheral arcs, then this exact subgon (mean-
ing the infinite strip index is fixed) can be chosen nonconsecutively. The same subgon chosen
nonconsecutively would be considered different in a path when calculating its weighting.

Example 3.2.1. w = (a1, a1, a1) ∈ P2,4, wt(w) = −1.

v1

a

v2

v3

Conjecture 3.2.1. For every negatively weighted path, we can find a corresponding posi-
tively weighted path that cancels the negative term. Hence, every realizable infinite frieze is
positive.

3.2.1 Quotient dissections

If a quotient dissection D is obtained by identifying all outer subgons in some skeletal dis-
section D0 as one p-gon P̂ , then we can consecutively chose this P̂ as many times as we want
in a path.

Example 3.2.2. w = (a, a, a, . . . , a, a, a) ∈ P1,n, wt(w) = Un(1)

aa

b

c

v1

v2
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4 Combinatorial interpretation of the growth coeffi-

cients

Definition 4.0.1. Let D be a skeletal dissection on a punctured disk, or an annulus with n
vertices, then the annulus weighting of a path w = (Pi , ...,Pj) is defined as:

wtA(w) =
∏

Distinct P in w

UN(P)(λ|P|)

where N(p) is the number of times P is used in w .

Remark 4.0.1. Basically, the path weight definition we have used previously is calculating
the weighting of a path on the infinite strip dissection, but the annulus weighting is calcu-
lating based on the annulus dissection.
Recall that when calculating the normal weighting of path in skeletal dissection, we can omit
the consecutivity requirement for a fixed subgon in a skeletal dissection on the infinite strip
can only be chosen consecutively. In annulus weighting, we also don’t require a subgon to
be chosen consecutively in order to be considered as choosing the same subgon.

Baur et al. determined the growth coefficient of infinite frieze pattern in [10].

Theorem 4.0.1 (Growth Coefficient Theorem, BFPT). Given an infinite frieze pattern with
period n, the growth coefficient sk := mi ,i+kn+1 −mi+1,i+kn is constant for each k ≥ 1.

Theorem 4.0.2. Let F be a realizable skeletal infinite frieze pattern of period n and let s1
denote its principal growth coefficient, then

s1 =
∑

w∈Pi+1,i+n

wtA(w)

Proof. First notice that for any i , a path in Pi+1,i+n would traverse all n outer vertices on
the annulus.
By lemma 1.2.1, we know that there is exactly one subgon P̂ that contains the edge
(i + n, i + 1).
We will first prove a claim: wt((Pi+1, ...,Pi+n)) 6= wtA((Pi+1, ...,Pi+n)) if and only if
pi+1 = pi+n = P̂ .
By definition, wt((Pi+1, ...,Pi+n)) 6= wtA((Pi+1, ...,Pi+n)) if and only if there exists some
Pt ,Ps in the path such that Pt and Ps are the same subgon on the annulus, but correspond
to different copies of this subgon on the infinite strip.
If Pt is an inner subgon, then the next copy of it incident only to the outer vertex vn+t ,
where n + t > i + n. Thus, if Pt is an inner subgon, there is no Ps in the path that would
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correspond to a different copy of Pt on the infinite strip.
Suppose that Pt is an outer subgon, and that there is some Ps (without loss of generality,
assume that s > t) in the path such that Pt and Ps are the same subgon on the annulus,
but correspond to different copies of this subgon on the infinite strip.
There is a copy of Ps on the infinite strip that incident to vertex vs−n. Because s − t < n,
we know that this copy of Ps at vs−n is the same copy of the subgon Pt at vertex vt .
Because the dissection is skeletal, we know that this outer subgon contains all edges (vs−n, vs−n+1),
(vs−n+1, vs−n+2),..., (vt−1, vt).
In particular, it contains the edge (vi+n, vi) on the annulus, meaning that this subgon is P̂
and Pt = Ps = P̂ on the annulus.
Either t = i + 1 and s = i + n and we are done, or

• t 6= i + 1, then P̂ is the only subgon that incident to vi+1, so Pi+1 = P̂ .

• s 6= i + n, then P̂ is the only subgon that incident to vi+n, so Pi+n = P̂ . �

Now we will focus on an arbitrary path w ∈ Pi+1,i+n such that its weighting on infinite
strip and weighting on annulus are different. To emphasize that P̂ at vi+1 and P̂ at vi+n are
different copies on the infinite strip, we will denote them as P̂ and P̂ ′ respectively. A path
on skeletal dissections on infinite strip can only choose the same copy consecutively, and we
will use a denote the number of times P̂ has been used at the beginning of the path and use
b denote the number of times P̂ ′ has been used at the ending of the path. We will use Q to
denote the subpath obtained from w by deleting all of the P̂ and P̂ ′, i.e. Q = w [a+1 : n−b].

wt(w)− wtA(w) = Ua(λ|P̂|)wt(Q)Ub(λ|P̂|)− Ua+b(λ|P̂|)wt(Q)

= Ua−1(λ|P̂|)Ub−1(λ|P̂|)wt(Q)(∗)
= wt(w [i + 2 : i + n − 1])

The ∗ step results from the equation Ua(x)U(xb) − Ua−1(x)Ub−1(x). We will prove this
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equation by induction.

Ua(x)Ub(x)− Ua−1(x)Ub−1(x)

=U1(x)Ua−1(x)Ub(x)− Ua−2(x)Ub(x)− Ua−1(x)Ub−1(x)

=Ua−1(x)(U1(x)Ub(x)− Ub−1(x))− Ua−2(x)Ub(x)

=Ua−1(x)Ub+1(x)− Ua−2(x)Ub(x)

=U1(x)Ua−2(x)Ub+1(x)− Ua−3(x)Ub+1(x)− Ua−2(x)Ub(x)

=Ua−2(x)(U1(x)Ub+1(x)− Ub(x))− Ua−3(x)Ub+1(x)

=Ua−2(x)Ub+2(x)− Ua−3(x)Ub+1(x)

...

=U1(x)Ua+b−1(x)− Ua+b−2(x)

=Ua+b(x)

For each path v ∈ Pi+2,i+n−1, there exists exactly a distinct path w = (P̂, v , P̂ ′) such that
wt(w) 6= wtA(w) and that for every path w ∈ Pi+1,i+n such that wt(w) 6= wtA(w) there is
a distinct path v = w [i + 2 : i +n−1] ∈ Pi+2,i+n−1 obtained by deleting one P̂ at both ends.
Thus, we have ∑

w∈Pi+1,i+n

wt(w)−
∑

w∈Pi+1,i+n

wtA(w) =
∑

w∈Pi+2,i+n−1

wt(w)

Because
s1 =

∑
w∈Pi+1,i+n

wt(w)−
∑

w∈Pi+2,i+n−1

wt(w)

, we have shown that

s1 =
∑

w∈Pi+1,i+n−1

wtA(w)

Corollary 4.0.1. Let F be a realizable skeletal infinite frieze pattern of period n with a
corresponding dissection D. Let sk denote its k th growth coefficient, then

sk =
∑

w∈Pi+1,i+kn+1 in Dk
wtA(w)

Corollary 4.0.2. The growth coefficients of a skeletal frieze whose realizations are dissec-
tions on once-punctured disks are always 2.

Proof. A skeletal dissection on an once-puntured disk is always in the form of a wheel, that
is, each vertex incidents with exactly 2 subgons.
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In any polygon path that traverse all outer vertices of the once-punctured disk, the path has
a non-zero annulus weight if and only if each subgon is chosen p−2 times. There are exactly
2 paths that satisfies this requirement: for all vertices that has 2 subgons incident to them,
they either all choose the clockwise one, or all choose the counter clockwise one. Because
Up−2(λp) = 1, the growth coefficients of a skeletal frieze whose realizations are dissection on
once-punctured disks are always 2.

Remark 4.0.2. Tschabold has proven in [6] that all infinite friezes of positive integers that
arise from triangulations on once punctured disk have growth coefficient 2 and vice versa.
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[10] K. Baur, İ. Çanakçi, K. Jacobsen, M. Kulkarni, G. Todorov: Growth behaviour of
periodic tame friezes, Revista Matemática, (2019), doi 10.4171/rmi/1063
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