
(K)NOT DETECTING BOUNDARY SLOPES VIA INTERSECTIONS IN
THE CHARACTER VARIETY ARISING FROM EPIMORPHISMS

ISIDORA BAILLY-HALL, KARINA DOVGODKO, AKASH GANGULY, JIACHEN KANG,
AND JISHI SUN

Abstract. We describe intersection points in the character varieties of a family of hy-
perbolic two-bridge knot groups that have epimorphisms onto the trefoil knot. Using the
technique of Farey recursion, we show that these intersection points correspond to algebraic
non-integral representations. We also determine the boundary slopes detected by these
intersection points.
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1. Introduction

As young children, our first words were “no”, “bird”, “car”, “Farey”, and “recursion”. As
we grew older we started expressing more complex thoughts through phrases like “essential
surfaces” and “holonomy representations”. Eventually we graduated to complete sentences,
such as “this proof is left as an exercise to the reader”. In this paper, we fulfill our childhood
dream of studying detected essential surfaces via intersections in the character variety arising
from epimorphisms. We hope you enjoy the journey.

The SL2(C) character variety has long been an important tool in the study of 3-manifolds.
In [CS83], the authors give a general approach based on Bass-Serre theory ([Ser80]) to
construct essential surfaces in the knot complement of hyperbolic knots using their SL2(C)
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character varieties. These essential surfaces arise from non-trivial actions of the knot group
on SL2-trees, and are said to be detected by SL2-trees. One particular example of this
approach is [CS83], where the authors used ideal points in SL2(C) character varieties to
construct SL2-trees and detect essential surfaces. Another method of constructing SL2-
trees is via algebraic non-integral (ANI) representations of hyperbolic knot groups. [SZ01]
compared these two methods, and proved that any essential surface detected by ideal points
would also be detected by ANI-representations.

The SL2(C) character variety of a hyperbolic knot group contains multiple irreducible
components, including the canonical component that contains the character of a holonomy
representation. The intersection points between these components often correspond to ANI-
representations, and therefore detect essential surfaces. [Chu17] studied a family of hyper-
bolic two-bridge knots whose character varieties are known to contain two distinct irreducible
components corresponding to irreducible characters, and proved that their intersection points
always detect a Seifert surface.

In this paper, we take on the study of essential surfaces detected by ANI-representations
using a slightly different approach. We study a specific family K(n, k) of hyperbolic two-
bridge knots whose knot groups are all known to have epimorphisms onto the knot group of
the trefoil knot by [ORS08]. In particular, we define K(n, k) to denote the two-bridge knot
with normal form q/p = [3, 2, . . . , 3, 2, 3k] with n-many 2’s. The SL2(C) character varieties
of these knots all contain an irreducible component corresponding to the character variety
of the trefoil knot, which intersects the canonical component at finitely many points. Our
first main result states that all such intersection points correspond to ANI-representations
of the knot group:

Theorem 1.1. For every two-bridge knot Kr = K(n, k), there exists an epimorphism Γr →
Γ1/3. Moreover, for every (x0, y0) ∈ C2 that is an intersection point of X0(Γr) and the
irreducible component x2 − y − 1 of X(Γr), and for any SL2(C)-representation ρ of Γr cor-
responding to (x0, y0),
(1) There exists a number field F such that the image of ρ is in SL2(F );
(2) There exists a prime ideal P of OF such that ρ is an ANI-representation of Γr with
respect to the discrete valuation vP .

Although the essential surface detected by these intersection points is not necessarily
unique, [SZ01, Corollary 3] proves that the boundary slope of the essential surface is unique.
This boundary slope is said to be detected by an SL2-tree. Our second main result determines
this detected boundary slope corresponding to the intersection points in Theorem 1.1 for the
knots K(1, k).

Theorem 1.2. Under the setting of Theorem 1.1, if Kr is of the form K(1, k), then the
boundary slope of Kr detected by (x0, y0) is 6k + 6.

Remark 1.3. One question currently unsolved by this paper is whether intersection points
betweenX0(Γr) and x2−y−1 always exist. However, it follows from our proof of Theorem 1.1
and Theorem 1.2 that their conclusions hold not only for the intersection points between
X0(Γr) and x2 − y − 1, but also for the intersection points between x2 − y − 1 and any
other irreducible component of X(Γr) that correspond to irreducible characters. Therefore,
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Figure 2.2.1. The longitude and meridian of M(K)

there always exists some intersection point in the character variety of Kr that detects the
boundary slope in Theorem 1.2.

This paper is outlined as follows: in Section 2 we provide the necessary background and the
setup of our problem. In Section 3, we characterize the vanishing polynomials for intersection
points in the character variety of a given knot via Farey recursion. In Section 4 we calculate
the boundary slopes for K(n, k) and in Section 5 we calculate explicitly the boundary slope
detected by the nontrivial action on a tree.

2. Background

2.1. Two-bridge knots and their character varieties.

Definition 2.1. A knot K is an embedding of S1 into S3. Its knot complement is the 3-
manifoldM(K) = S3\N(K), where N(K) is an open tubular neighborhood ofK in S3. Note
that ∂M(K) is homeomorphic to T 2. The knot group of K is defined as ΓK = π1(M(K)).

Definition 2.2. For every knot K, we define two canonical generators of π1(∂M(K)) ∼= Z2,
called the longitude and meridian of M(K), as follows: the longitude λ is the homotopy class
of a loop that goes around the torus longitudinally, and the meridian µ is the homotopy class
of a loop that goes through the hole of the torus. See Figure 2.2.1.

Definition 2.3. A slope ofK is a rational number a/b ∈ Q∪{∞}, where µaλb ∈ π1(∂M(K)).
A boundary slope of K is a slope a/b ∈ Q ∪ {∞} such that there exists an essential surface
S in M(K) whose boundary ∂S is a non-empty set of parallel simple essential loops in
∂M(K) of the form µaλb. For a definition of essential surface, see [Sha01] pg 10. Through
a slight abuse of notation, we use boundary slope to denote the rational number as well as
the corresponding loop.

In this paper, we are particularly interested in a family of knots known as two-bridge knots.

Definition 2.4. A two-bridge knot is a non-trivial knot with a diagram having two local
maxima.
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It is known from [Sch56] that every two-bridge knot can be associated to a reduced fraction

q/p with q < p and p odd. Conversely, every rational number r ∈ Q̂ = Q ∪ {∞} uniquely
determines either a two-bridge knot or a two-bridge link. For a given 2-bridge knot, we
find q/p by computing the continued fraction q/p = [a1, . . . , ak] where each ai denotes the
number of half-twists in a box of the plat presentation (see Figure 2.4.2). For example, see
Figure 2.4.3 which has q/p = 1/3 with continued fraction notation [3].

Figure 2.4.2. Plat Presentations for 2-Bridge Knots

See [Kaw96, Section 2.1] for further details of this correspondence.

Figure 2.4.3. Plat Presentation for the Trefoil Knot Γ1/3
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Remark 2.5. In this paper we use the continued fraction notation defined

[a1, a2, a3, . . . , am] =
1

a1 +
1

a2 +
1

. . . +
1

am
where all ai’s are allowed to be arbitrary integers.

Remark 2.6. Different sources have different conventions with regard to whether they denote
a two-bridge knot K = (p, q) by q

p
or p

q
. For instance, [Kaw96] uses p

q
while [ORS08] and

[Che20] use q
p
. In this paper, we will always use q

p
in line with [ORS08] and [Che20].

Lemma 2.7. [Kaw96, Theorem 2.1.3] Two reduced fractions q
p
and q′

p′
(where p, p′ > 0 are

odd) represent the same two-bridge knot if and only if p = p′ and qq′ ≡ ±1 (mod p) or
q ≡ −q′ (mod p).

As a consequence of the previous lemma, every two-bridge knot K can be represented by
a reduced fraction r = q

p
such that 0 < r < 1 and q, p are both odd (though this reduced

fraction is not unique). This fraction is called the two-bridge normal form of K, which we
denote by either r = q

p
or (p, q). The knot group of K is denoted by either ΓK or Γq/p.

For every two-bridge knot, [May74, Proposition 1] gives a canonical presentation of its
knot group, as well as canonical representatives for its meridian and longitude:

Theorem 2.8. [May74, Proposition 1] Given a two-bridge knot K = (p, q), Γq/p has the
following presentation:

Γq/p = ⟨a, b | wa = bw⟩

where w = aϵ1bϵ2aϵ3 . . . bϵp−1 with ϵi = (−1)⌊
iq
p
⌋, and a, b are conjugate elements in Γq/p.

Moreover, in this presentation, µ = a is a representative of the meridian of M(K), and λ =
w∗waϵ is a representative of its longitude, where w∗ denotes the word w written backwards,
and ϵ is chosen so that the sum of the exponents in λ is zero.

Definition 2.9. For any finitely generated group Γ, we denote the set of its representations
in SL2(C) by R(Γ), and the set of all characters of elements in R(Γ) by X(Γ). Once we fix a
set of generators for Γ, both R(Γ) and X(Γ) can be given the structure of an affine algebraic
variety; for the general construction, see [Sha01, Sections 4.1 and 4.4]. We call R(Γ) and
X(Γ) the representation variety and character variety of Γ, respectively.

In this paper, since we are only concerned with two-bridge knot groups, we will use a
particular parametrization of X(Γq/p) that comes from the presentation of Γq/p in Theo-
rem 2.8. We first record a lemma about the SL2(C)-representations of Γq/p, which comes
from [Chu17, Pg. 3] and [Sha01, Proposition 1.1.1]:

Lemma 2.10. Let Γq/p be a two-bridge knot group. Then
(1) ρ ∈ R(Γq/p) is reducible if and only if there exists A ∈ SL2(C) such that Aρ(γ)A−1 is
upper triangular for all γ ∈ Γq/p;
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(2) If ρ1, ρ2 ∈ R(Γq/p) are both irreducible, then they are equivalent if and only if their
characters are the same.

Lemma 2.11. [MPvL11, Proposition 2.1] If we write Γq/p = ⟨a, b | wa = bw⟩ as in
Theorem 2.8, then every ρ ∈ R(Γq/p) is equivalent (by conjugation) to a representation
ρ′ ∈ R(Γq/p) such that:

ρ′(a) =

[
α 1
0 1/α

]
and ρ′(b) =

[
α 0
t 1/α

]
for some α ∈ C∗ and t ∈ C. Conversely, every pair (α, t) ∈ C2 with α ̸= 0 determines a
representation ρ ∈ R(Γq/p) by the above two equations.

Remark 2.12. Following from Lemma 2.11 we may always assume ρ ∈ R(Γq/p) has the given
form.

For every pair (α, t) ∈ C2 with α ̸= 0, let ρ = ρα,t denote the representation of Γq/p given
in the above lemma, and define A = ρ(a), B = ρ(b), W = ρ(w).

Theorem 2.13. [Ril84, Theorem 1] For every two-bridge knot q/p with knot group Γq/p =
⟨a, b | wa = bw⟩, and ρ ∈ R(Γq/p), the matrix WA−BW always has the form[

0 f(α, t)
−f(α, t)t 0

]
where f is a rational function in α and t. If we denote the numerator of f(α, t) by p(α, t),
then p defines an algebraic curve in C2 whose points are in one-to-one correspondence with
elements of R(Γq/p).

The following lemma is a special case of [Sha01, Proposition 4.4.2] adapted to our setting.
It will imply that, up to a change of variables, the polynomial p also determines the character
variety X(Γq/p):

Lemma 2.14. Every character χ of Γq/p is uniquely determined by χ(a) and χ(ab−1).

For each ρ = ρα,t ∈ R(Γq/p), we have

χρ(a) = tr(A) = α + 1/α and χρ(ab
−1) = tr(AB−1) = 2− t,

so if we define x = α+1/α, y = 2− t, and substitute these two variables into p(α, t), then by
Lemma 2.10 and Lemma 2.14, the roots of the resulting polynomial p(x, y) are in one-to-one
correspondence with the elements of X(Γq/p).

Definition 2.15. We define p(x, y) to be the algebraic variety in C2 identified with X(Γq/p).
Furthermore, we identify a pair (x, y) ∈ C2 satisfying p(x, y) = 0 with the character χρ ∈
X(Γq/p) determined by χρ(a) = x and χρ(ab

−1) = y.

Remark 2.16. By Lemma 2.10 (1), a character χ ∈ X(Γq/p) is reducible if and only if ρ(a)
and ρ(b) are upper-triangular, where ρ = ρα,t ∈ R(Γq/p) is any representation with character
χ. This happens if and only if t = 0, which is equivalent to y = 2. This implies that
X(Γq/p) always has an irreducible component given by y − 2 = 0, which corresponds to all
the reducible characters of Γq/p. The other irreducible components of X(Γq/p) correspond to
irreducible characters.
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Example 2.17. We calculate the character variety of Γ1/3, the knot group of the trefoil
knot. The canonical presentation of Γ1/3 is ⟨a, b | wa = bw⟩, where w = ab. We calculate

WA−BW =

[
0 (α4 + α2t− α2 + 1)/α2

(−α4t− α2t2 + α2t− t)/α2 0

]
so we have p(α, t) = α4 + α2t − α2 + 1, and substituting x = α + 1/α, y = 2 − t gives
p(x, y) = (y−2)(x2−y−1), the defining polynomial of X(Γ1/3). The irreducible component
corresponding to irreducible characters is then given by x2 − y − 1 = 0. ⋄

In the case that K = (p, q) is a hyperbolic knot, there exists a unique discrete faithful
PSL2(C)-representation ρ0 of ΓK that corresponds to the holonomy representation of the
hyperbolic structure of M(K). Moreover, all lifts of ρ0 into SL2(C)-representations are
contained in one particular irreducible component of X(ΓK) (see [Sha01, Sections 1.6 and
4.5] for details).

Definition 2.18. Let K = (p, q) be a two-bridge hyperbolic knot. The unique irreducible
component of X(ΓK) that contains all lifts of ρ0 into SL2(C)-representations is called the
canonical component of X(ΓK) and is denoted by X0(ΓK).

2.2. Knot group epimorphisms. As mentioned in the introduction, we would like to
study those two-bridge knots whose character variety have multiple irreducible components.
The following theorem ([HS10, Theorem 2.3(3)]) says that every two-bridge knot whose knot
group has an epimorphism (i.e. a surjective homomorphism) onto another two-bridge knot
group will always satisfy this property.

Theorem 2.19. Let (p, q) and (p′, q′) be two two-bridge knots. Every epimorphism Γq/p ↠
Γq′/p′ induces an injective, algebraic, and Zariski-closed map X(Γq′/p′) → X(Γq/p); in par-
ticular, every irreducible component of X(Γq′/p′) will appear as an irreducible component of
X(Γq/p).

For every fixed two-bridge knot r = q/p, [ORS08, Proposition 5.1] gives a way to systemati-
cally generate an infinite family of two-bridge knots whose knot groups all have epimorphisms
onto Γr:

Theorem 2.20. Let r = q/p ∈ Q be a two-bridge knot, and let r = [a1, . . . , am] be the
continued fraction expansion of r. We define

a = [a1, a2, . . . , am], −a = [−a1,−a2, . . . ,−am],

a−1 = [am, am−1, . . . , a1], −a−1 = [−am,−am−1, . . . ,−a1].

Then for any r′ ∈ Q that has odd denominator and can be written as a continued fraction of
the form

r′ = 2c+ [ϵ1a, 2c1, ϵ2a
−1, 2c2, ϵ3a, . . . , 2cn−1, ϵna

(−1)n−1

]

where n ≥ 2, c ∈ Z, (c1, . . . , cn−1) ∈ Zn−1, and (ϵ1, . . . , ϵn) ∈ {1,−1}n, there exists an
epimorphism Γ′

r → Γr.

Example 2.21. Consider the rational number 5
27
. This number can be written as

5

27
= [3, 0, 3,−2, 3]
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in continued fraction notation. Since the continued fraction for the trefoil knot is [3], there
exists a surjection Γ5/27 → Γ1/3. ⋄

The main object of study of this paper is hyperbolic two-bridge knot groups Γr that have
epimorphisms onto Γ1/3, the knot group of the trefoil knot. By Theorem 2.19, for every such
knot group Γr, the character variety X(Γr) will have an irreducible component defined by
x2−y−1 = 0. Consequently, for every intersection point (x0, y0) of X0(Γr) and x2−y−1 = 0,
x0 will be a root of the polynomial p̃(x) := p(x, x2 − 1)/((x2 − 1) − 2) ∈ Z[x], obtained by
taking the defining polynomial p(x, y) of X(Γr), dividing by y− 2 (the factor corresponding
to the reducible characters), and then plugging in y = x2 − 1.

Example 2.22. We compute the polynomial p̃(x) for the two-bridge knot 5/27 = [3, 0, 3,−2, 3].
By Theorem 2.20, there exists an epimorphism Γ5/27 → Γ1/3. The word w in the presentation
of Γ5/27 is

w = ababab−1a−1b−1a−1b−1abababa−1b−1a−1b−1a−1babab.

From this, one can compute the matrix WA−BW , and obtain the polynomial p(x, y):

p(x, y)/(x2 − y − 1) = x20y2 − 4x20y − 10x18y3 + 4x20 + 36x18y2 + 45x16y4 − 24x18y

− 144x16y3 − 120x14y5 − 16x18 + 36x16y2 + 336x14y4 + 210x12y6

+ 144x16y + 96x14y3 − 504x12y5 − 252x10y7 − 561x14y2 − 504x12y4

+ 504x10y6 + 210x8y8 − 60x14y + 1239x12y3 + 1008x10y5 − 336x8y7

− 120x6y9 + 60x14 + 414x12y2 − 1701x10y4 − 1176x8y6 + 144x6y8

+ 45x4y10 − 393x12y − 1224x10y3 + 1491x8y5 + 864x6y7 − 36x4y9

− 10x2y11 − 30x12 + 1074x10y2 + 2010x8y4 − 819x6y6 − 396x4y8

+ 4x2y10 + y12 + 268x10y − 1575x8y3 − 1980x6y5 + 261x4y7

+ 104x2y9 − 80x10 − 883x8y2 + 1320x6y4 + 1170x4y6 − 39x2y8

− 12y10 + 367x8y + 1452x6y3 − 615x4y5 − 384x2y7 + y9 + 38x8 − 648x6y2

− 1288x4y4 + 138x2y6 + 54y8 − 213x6y + 542x4y3 + 592x2y5 − 9y7

+ 42x6 + 411x4y2 − 208x2y4 − 111y6 − 120x4y − 335x2y3 + 27y5 − 10x4

+ 107x2y2 + 99y4 + 35x2y − 29y3 − 4x2 − 27y2 + 6y + 1

and substituting y = x2 − 1 yields p̃(x) = −4x2 + 9. Consequently, the x-coordinates of the
two intersection points of X0(Γ5/27) and x2 − y− 1 = 0 are ±3/2. The y-coordinates can be
computed using y = x2 − 1, so the intersections points themselves are (±3/2, 5/4). ⋄

In the above example, the leading term coefficient of p̃(x) is not equal to ±1, which implies
that the roots are non-integral algebraic numbers. As we will prove in Section 3, this is a
general fact that holds for a large family of two-bridge knots having epimorphisms onto the
trefoil knot. To define this family, we introduce some new notation and an important lemma.
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Definition 2.23. We use the notation in [CEK+21] to give a matrix form of continued

fractions: for any r = q/p = [a1, a2, · · · , an] ∈ Q̂ where a1, ..., an ∈ Z, we have[
q
p

]
= ±1 ·

[
0 1
1 a1

] [
0 1
1 a2

]
· · ·

[
0 1
1 an

] [
0
1

]
Lemma 2.24. For every continued fraction expansion q/p = [±3, 2c1,±3, 2c2, · · · ,±3, 2cn,±3]
with ci ∈ {−1, 0, 1} for all i, the denominator p is odd if and only if n is even.

Proof. We use the matrix notation for continued fractions, which will be defined in Defini-
tion 2.23. We first compute[

0 1
1 2c

] [
0 1
1 ±3

]
=

[
1 ±3
2c 1± 6c

]
=

[
odd odd
even odd

]
.

We claim that the matrix form of q/p is

[
even odd
odd even

]
if n is odd, and is

[
even odd
odd odd

]
if n

is even. This follows from the fact that

[
0 1
1 3

]
has the desired form and by induction with

the relation [
even odd
odd odd

] [
odd odd
even odd

]
=

[
even odd
odd even

]
,[

even odd
odd even

] [
odd odd
even odd

]
=

[
even odd
odd odd

]
.

□

Remark 2.25. This lemma implies that q/p corresponds to a two-bridge knot if and only if
n in the above notation is even. When p is even, we have a two-bridge link.

We now define the family of knots that is the main object of study of this paper.

Definition 2.26. Let r = [3, 2, 3, 2, ..., 3, 2, 3, 0, 3, 0, ..., 3, 0, 3], with 2 appearing n times and
0 appearing k−1 times. Whenever n+k is odd, we define K(n, k) to be the two-bridge knot
represented by r, and define p̃(K(n, k)) ∈ Z[x] by

p̃(K(n, k))(x) := p(x, x2 − 1)/(x2 − 3)

where p(x, y) is the defining polynomial for X(Γr) as in Definition 2.15.

Remark 2.27. It follows from Lemma 2.24 that r = K(n, k) is always a knot when n + k is
odd, and it follows from Theorem 2.20 that every K(n, k) has a knot group epimorphism
onto Γ1/3. Moreover, for every intersection point (x0, y0) of X0(Γr) and x2 − y − 1 = 0, we
always have p̃(K(n, k))(x0) = 0, i.e. p̃ is a vanishing polynomial for x0.

2.3. SL2-trees and detected essential surfaces. Given a field K and a discrete valuation
v on K, Bass-Serre Theory ([Ser80]) gives a canonical way to construct a tree Tv on which
SL2(K) acts simplicially and without inversions, known as the Bruhat-Tits tree for SL2(K).
In this subsection, we first give a brief summary of the construction of this tree, and then
relate it to the study of two-bridge knots.
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Definition 2.28. For a field K, let V = K2. Denote the valuation ring of v in K by Rv.
(1) A lattice in V is a finitely generated Rv-submodule Λ of V that spans V (viewed as a
K-vector space);
(2) Two lattices Λ1,Λ2 in V are homothety equivalent if there is some α ∈ K such that
Λ1 = αΛ2;
(3) Given two lattices Λ1,Λ2 in V , we say that Λ1 is snugly embedded in Λ2 if Λ1 ⊂ Λ2 and
Λ2/Λ1

∼= Z/βZ for β ∈ Rv.

Lemma 2.29 ([Sha01, Lemma 3.6.8]). For any two lattices Λ1 and Λ2 in V , there is a unique
lattice Λ′

1 homothety equivalent to Λ1 such that Λ′
1 is snugly embedded in Λ2.

Theorem 2.30 ([Sha01, Theorem 3.6.14]). Let T (0) be the set of homothety equivalence
classes of lattices in V . Define a graph TK,v as follows:
(1) The vertex set of TK,v is T (0);
(2) For any two homothety classes s1, s2 ∈ T (0), there is an edge between them if there exist
representatives Λ1 and Λ2 of s1 and s2, respectively, such that Λ1 is snugly embedded in Λ2,
and that for any A ∈ GL2(K) with A(Λ1) = Λ2, we have v(det(A)) = 1.

Then TK,v is a tree, called the Bruhat-Tits tree for SL2(K) (with respect to the discrete
valuation v).

Any A ∈ GL2(K) will map a homothety class of lattices to another homothety class, and
therefore GL2(K) acts on the vertex set T (0). The following theorem, which comes from
[Sha01, Section 3.7], extends this to a simplicial action of GL2(K) on TK,v:

Theorem 2.31. The natural action of GL2(K) on T (0) extends to a simplicial action (takes
vertices to vertices, action on edges is linear) on TK,v, whose restriction to SL2(K) is an
action on TK,v without inversions. Furthermore, for this SL2(K)-action, the stabilizers of the
vertices of TK,v are conjugates of the subgroup SL2(Rv).

A group action on a tree T is called non-trivial if no vertex of T is fixed by the entire
group. As a consequence of the previous theorem, we have:

Corollary 2.32. For any group representation ρ : Γ → SL2(K), if there exists γ ∈ Γ such
that v(tr(ρ(γ))) < 0, then the induced action of ρ(Γ) on TK,v is non-trivial.

In general, for any 3-manifold M equipped with a π1(M)-action on a tree T that is
simplicial, without inversions, and non-trivial, [Sha01] gives a way to associate an essential
surface in M to this π1(M)-action on T . If the tree T is the SL2-tree of a field K, then such
an associated essential surface S in M is said to be detected by an SL2-tree, and ∂S is called
a boundary slope of K detected by an SL2-tree.
One of the main purposes of introducing Bruhat-Tits trees into the study of knots is that,

for any knot K and any representation ρ : ΓK → SL2(F ) where F is a number field with a
discrete valuation v, one gets an induced action of ΓK on TF,v, and if ρ satisfies the condition
in Corollary 2.32, then it detects an essential surface in M(K). The following definition
gives a large family of discrete valuations on F :

Definition 2.33. Let F be a number field, and let OF denote the ring of integers of F . Let
P be a prime ideal of OF . Define a discrete valuation vP on F as follows:
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(1) For any x ∈ OF , let vP(x) = max{n ∈ Z≥0 : x ∈ Pn};
(2) For x ∈ F −OF , write x = a/b where a, b ∈ OF , and define vP(x) = vP(a)− vP(b).

The discrete valuation vP is called the P-adic valuation on F .

For any knot K and representation ρ : ΓK → SL2(F ) where F is a number field, suppose
that there exists some γ ∈ ΓK such that tr(ρ(γ)) is not an algebraic integer; then there must
exist some prime ideal P of OF such that vP(tr(ρ(γ))) < 0. (See Lemma 3.30 for a proof.)
It then follows from Corollary 2.32 that there always exists an essential surface in M(K)
detected by an SL2(F )-tree. This motivates the following definition:

Definition 2.34. Let ρ : ΓK → SL2(F ) be a representation of ΓK , where F is a number
field with a P-adic valuation vP . We call ρ an ANI (algebraic non-integral) representation
of ΓK (with respect to vP) if there exists some γ ∈ ΓK such that vP(tr(ρ(γ))) < 0.

In general, the essential surfaces detected by an SL2-tree associated to an ANI-representation
of ΓK are not unique. However, it turns out that the boundary slope detected by an ANI-
representation is unique. In fact, since we know that two-bridge knot complements are small
(i.e. they do not contain closed essential surfaces; see [HT85, Theorem 1(a)] for a proof),
[SZ01, Corollary 3] implies the following theorem:

Theorem 2.35. Let ρ : ΓK → SL2(F ) be an ANI-representation of ΓK with respect to a P-
adic valuation vP . Then there exists a unique boundary slope γ of K such that vP(tr(ρ(γ))) ≥
0, and γ is the unique boundary slope of K detected by an SL2-tree.

The rest of this paper is divided into three main sections. In Section 3, we use the
technique of Farey recursion to show that for every K(n, k), all coefficients of p̃(K(n, k)) but
the constant term are even; this will lead to a proof of Theorem 1.1. In Section 4, we use the
techniques in [HT85] to determine all the boundary slopes of K(n, k). Finally, in Section 5,
we prove Theorem 1.2.

3. Vanishing polynomials for intersection points

In [Che20], the author uses the close connection between continued fractions and the
modular tessellation of the hyperbolic plane (also called the Farey graph; see Figure 3.3.4)
to describe a recursive method for finding the character varieties of two-bridge knot groups.
In Section 3.1, we introduce the technique of Farey recursion; then, in Section 3.2, we use
this technique to systematically study p̃(K(n, k)) for all n and k. This allows us to obtain an
explicit formula for p̃(K(n, k)) (Theorem 3.27), which then leads to the proof of Theorem 1.1.

3.1. Farey recursion.

Definition 3.1. We call a pair of reduced fractions (q/p, s/r) ∈ Q̂2 a Farey pair if qr−ps =
±1. For the Farey pair (q/p, s/r), we define the Farey sum to be

q

p
⊕ s

r
=

q + s

p+ r
.

Remark 3.2. By convention we write 1 = 1/1, 0 = 0/1, and ∞ = ±1/0. We also make the
convention that for any negative r ∈ Q, whenever r appears in a Farey sum, we always write
it as r = q/p with p > 0 for all r ̸= ∞.
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Figure 3.3.4. Farey Graph

Remark 3.3. If (α, γ) = (q/p, s/r) is a Farey pair, then it is straightforward to show that
q + s and p+ r are coprime, and that (α, α⊕ γ) and (γ, α⊕ γ) are also Farey pairs.

Lemma 3.4. Suppose that (a/b, c/d) is a Farey pair which is not (1/0, 0/1). If a > c, then
b ≥ d.

Proof. Suppose for contradiction a > c and b < d. Thus c+ 1 ≤ a and b+ 1 ≤ d. Therefore
ad− bc ≥ (c+ 1)(b+ 1)− bc = b+ c+ 1 > 1. So if a > c, then b ≥ d. □

Definition 3.5. Let (q/p, s/r) be a Farey pair; for any k ∈ Z, define
q

p
⊕k s

r
=

q + ks

p+ kr

Lemma 3.6. For any reduced fraction q/p there is a pair of reduced fractions α, γ such that
q/p = γ ⊕2 α.

Proof. First, we claim there exist a/b, c/d ∈ Q̂ satisfying ad− bc = 1 such that

q

p
=

a+ c

b+ d
.

Since q = a+ c and p = b+ d, by substitution it is sufficient to find a, b such that a(p− b)−
b(q − a) = ap− qb = 1. Since p, q are coprime, choose 0 ≤ a < q such that ap ≡ 1 (mod q).
Therefore, b = ap−1

q
, and using q = a+ c and p = b+ d we can find c and d.

By Lemma 3.4 if a > c, then b ≥ d. Choose

α =
c

d
, γ =

a− c

b− d

Then α⊕ γ = a/b, so α⊕ α⊕ γ = q/p □
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Example 3.7. Consider the two-bridge knot 5/27. Note that

5

27
=

3 + 2

16 + 11
=

3

16
⊕ 2

11

with 3/16, 2/11 a Farey pair since 3(11)− 2(16) = −1. As in Lemma 3.6, we then have

5

27
=

1 + 2(2)

5 + 2(11)
=

1

5
⊕2 2

11
.

⋄

Definition 3.8. Let R be a commutative ring. A function F : Q̂ → R is called a Farey
recursive function if for any Farey pair (α, γ) ∈ Q̂2, we have

F(γ ⊕2 α) = −F(γ) + F(α)F(γ ⊕ α)

Remark 3.9. Note that if F is a Farey recursive function, then for a Farey pair (α, γ), we
also have

F(γ ⊕−2 α) = −F(γ) + F(α)F(γ ⊕−1 α)

We demonstrate this matrix decomposition in Example 3.11. The following lemma es-
tablishes the relationship between Farey sums and continued fractions with integer terms.

Lemma 3.10. Suppose that r ∈ Q̂ can be written as a continued fraction r = [a1, ..., am],
where ai ∈ Z for all 1 ≤ i ≤ m. If we set rj = [a1, ..., aj] for 1 ≤ j ≤ m, and define
r−1 = 1/0, r0 = 0/1, then
(1) (rj−1, rj) is a Farey pair for all 0 ≤ j ≤ m;
(2) We have rj = rj−2 ⊕(ηj−2ηj−1)aj rj−1 for all 1 ≤ j ≤ m, where ηj ∈ {1,−1} is the unique
constant such that if we write rj = qj/pj under the convention of Remark 3.2, then[

qj
pj

]
= ηj ·

[
0 1
1 a1

]
...

[
0 1
1 aj

] [
0
1

]
Proof. We prove this by induction on j. When j = 0, (r−1, r0) = (1/0, 0/1) is clearly a Farey
pair. Suppose that (rj−2, rj−1) is already a Farey pair; by Remark 3.3, to show that (rj−1, rj)
is a Farey pair, it suffices to show that the recursive formula for rj in (2) holds. To see this,
note that [

0 1
1 a1

]
...

[
0 1
1 aj−2

] [
0
1

]
+ aj ·

[
0 1
1 a1

]
...

[
0 1
1 aj−1

] [
0
1

]
=

[
0 1
1 a1

]
...

[
0 1
1 aj−2

]
·
([

0
1

]
+

[
0 1
1 aj−1

] [
0
aj

])
=

[
0 1
1 a1

]
...

[
0 1
1 aj−2

]
·
([

0 1
1 aj−1

] [
0 1
1 aj

] [
0
1

])
When ηj−2 = ηj−1 = ±1, the left hand side is equal to ±

[
qj−2 + ajqj−1

pj−2 + ajpj−1

]
, which by our

convention in Remark 3.2 corresponds to the fraction rj−2⊕ajrj−1. When ηj−2 = 1, ηj−1 = −1
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or when ηj−2 = −1, ηj−1 = 1, the left hand side is equal to ±
[
qj−2 − ajqj−1

pj−2 − ajpj−1

]
, which

corresponds to the fraction rj−2 ⊕−aj rj−1. Since the right hand side in the above equation

is equal to ηj ·
[
qj
pj

]
= ±

[
qj
pj

]
, we have

rj =
±qj
±pj

=
±(qj−2 + (ηj−2ηj−1)ajqj−1)

±(pj−2 + (ηj−2ηj−1)ajpj−1)
= rj−2 ⊕(ηj−2ηj−1)aj rj−1.

Here by ±a
±b

we mean a
b
or −a

−b
. □

Example 3.11. Consider the continued fraction

[3, 0, 3,−2, 3] = 5/27.

Additionally, consider the partial sums

r4 = [3, 0, 3,−2] = 2/11 and r3 = [3, 0, 3] = 1/6.

We can check that 5(11)− 27(2) = 55− 54 = 1, and 2(6)− 1(11) = 1, so [3, 0, 3,−2, 3] and
[3, 0, 3,−2] are a Farey pair, as are [3, 0, 3,−2] and [3, 0, 3]. Now we compute[

0 1
1 3

] [
0 1
1 0

] [
0 1
1 3

] [
0 1
1 −2

] [
0
1

]
=

[
−2
−11

]
.

So η4 = −1. Furthermore, [
0 1
1 3

] [
0 1
1 0

] [
0 1
1 3

] [
0
1

]
=

[
1
6

]
.

So η3 = 1. Therefore [3, 0, 3]⊕(−1)(1)(3) [3, 0, 3,−2]. So

[3, 0, 3]⊕(−1)(1)(3) [3, 0, 3,−2] =
1− 3(2)

6− 3(33)
=

5

27
.

Note that this matches the results of Lemma 3.10. ⋄

3.2. Vanishing polynomials. In this section we use the general setup in Section 3.1 to
give an explicit description (Theorem 3.27) of the vanishing polynomial p̃(K(n, k)) defined
in Definition 2.26, which would then allow us to prove Theorem 1.1.

We begin by introducing the particular Farey recursive function that will be used through-
out this section. The following lemma is a restatement of [CEK+21, Theorem 4.2] adapted
for our purposes (akash: i reworded this from ”adapted from our specific context” lmk if its bad
just change it back):

Lemma 3.12. There exists a unique Farey recursive function T : Q̂ → Z[w, z] such that

T (0) = w, T (1/0) = 0, T (1) = z

Definition 3.13. Define f1, f2 : Q̂ → {0, 1} by

f1(q/p) = pq + 1 (mod 2), f2(q/p) = q (mod 2)

and define T0 : Q̂ → Z[w, z] by T0(α) = T (α)/f(α), where f(α) := wf1(α)zf2(α).

The following lemma is a restatement of [Che20, Lemma 5.5] and [Che20, Theorem 7.3].
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Lemma 3.14. The function T0 satisfies the following:

(1) For all α ∈ Q̂, we have T0(α) ∈ Z[w2, z2], so we can write T0(α) ∈ Z[W,Z] using the
change of variables W = w2, Z = z2;

(2) A point χ = (W,Z) ∈ C2 is an irreducible character of Γα if and only if WZ ̸= 0
and χ satisfies the polynomial T0(α).

The following lemma is a restatement of a result from [Che20, Section 7.2], which allows
us to recover our defining polynomial p(x, y) of X(Γr) (see Definition 2.15) from T0(r)(W,Z).

Lemma 3.15. For any two-bridge normal form r ∈ Q, we have p(x, y) = ±T0(r)(2 + y −
x2, 2 − y), where T0(r) is written in the variables W and Z, and p(x, y) is defined as in
Definition 2.15.

Proof. In the paper [MPvL11, Proposition 2.2], the authors define character varieties of two
bridge knots using the parameters r, v where v = α2+ 1

α2 , and r = 2−t. Therefore v = x2−2,
and y = r in the notation of Lemma 2.14. In [Che20, Section 7.2], the author notes that
v = 2 − W − Z and r = 2 − Z. So by substitution, it follows that W = 2 + y − x2 and
Z = 2− y. □

Corollary 3.16. Let r be the two-bridge normal form for K(n, k). Then

T (r)

z(w2 − 1)
(1, z)

is an element of Z[z2], and substituting z2 = 3− x2 yields the polynomial p̃(K(n, k)) defined
in Definition 2.26.

Proof. We have T0(r) = T (r)/z by the definition of T0 and the fact that the numerator
and denominator in a two-bridge normal form are both odd. Let p(x, y) be the defining
polynomial for X(Γr). Since Γr surjects onto Γ1/3 we know p always has the factor x2−y−1
and w2 = W = 2+ y− x2, we know by Lemma 3.15 that T0(r) must have the factor w2 − 1.

The fact that T (r)
z(w2−1)

(1, z) ∈ Z[z2] follows from Lemma 3.14.

By Definition 2.26, to obtain p̃(x) from p(x, y)/y − 2, the relation we need to plug in is
y = x2 − 1; in terms of the variables W = 2 + y − x2 and Z = 2 − y, this then becomes
W − 1 = 0 and Z = 3−x2. Since W = w2, Z = z2, in terms of w and z, these relations then

become w2 = 1 and z2 = 3− x2. Since T (r)
z(w2−1)

∈ Z[w2, z2] by Lemma 3.14, the substitution

w2 = 1 can be replaced by w = 1; it then follows from Lemma 3.15 that these substitutions
yield p̃(K(n, k)). □

Example 3.17. We have

1

3
=

1

0
⊕3 0

1
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Therefore

T
(
1

3

)
= −T

(
1

0
⊕ 0

1

)
+ T

(
0

1

)
T
(
1

0
⊕2 0

1

)
= −z + w

(
−T

(
1

0

)
+ T

(
0

1

)
T
(
1

1

))
= −z + w(0 + wz)

= (w2 − 1)z

and f(1/3) = z, so T0(1/3) = w2 − 1 = W − 1. It then follows from Lemma 3.15 that the
defining polynomial for X(Γ1/3) is T0(1/3)(2+ y− x2, 2− y) = (2+ y− x2)− 1 = y− x2 +1,
which corresponds to the calculation in Example 2.17. ⋄
Example 3.18. Using Lemma 3.6, we implemented a function in SageMath that calculates
T (r) recursively. For example, we obtain

T (5/27) = w22z5 − 17w20z5 + 124w18z5 − 507w16z5 + 1275w14z5 − 3w14z3

− 2040w12z5 + 31w12z3 + 2083w10z5 − 123w10z3 − 1331w8z5 + 234w8z3

+ 508w6z5 − 219w6z3 − 105w4z5 + 2w6z + 95w4z3 + 9w2z5 − 8w4z

− 15w2z3 + 7w2z − z

and therefore T (5/27)
z(w2−1)

(1, z) = 4z2−3. By Corollary 3.16, we then have p̃(x) = 4(3−x2)−3 =

9 − 4x2 is a vanishing polynomial for any x0 ∈ C such that (x0, x
2
0 − 1) is an intersection

point of X0(Γ5/27) and x2 − y − 1 = 0. This matches the explicit calculation done in
Example 2.22. (Note that although (27, 5) is not a knot in the family K(n, k), the conclusion
of Corollary 3.16 still applies, since its proof only relies on Lemma 3.15, which holds for
every two-bridge normal form r ∈ Q.) ⋄
Definition 3.19. For the rest of this section, we fix the following notations. Let r ∈ Q be
a continued fraction of the form r = [±3,±2, ...,±3,±2], (e.g. [3,−2, 3, 2,−3]) and let m be
the length of this continued fraction, which is always even. For 1 ≤ j ≤ m, let aj be the j-th
entry in r, and let rj denote the continued fraction consisting of the first j terms of r. For
every k ∈ N and 2 ≤ j ≤ m, using the notation in Lemma 3.10, we define

Pk,j = T (rj−1 ⊕(ηj−1ηj)k rj) ∈ Z[w, z]

Fk,j =
P3k,j

z(w2 − 1)
(1, z) ∈ Z[z]

And we make the convention that Pk := Pk,m, Fk := Fk,m.

Remark 3.20. It follows immediately from Corollary 3.16 and Lemma 3.10 that when all
terms in the continued fraction expansion of r are positive, we have Fk,2n = p̃(K(n, k)) up
to the change of variables z2 = 3− x2.

The goal of the rest of this section is to obtain an explicit formula for Fk when r is
of the form [3, 2, 3, 2, ..., 3, 2], which would then allow us to describe p̃(K(n, k)) and prove
Theorem 1.1.

We first have the following recursive formula for Pk and Fk:
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Lemma 3.21. For all k ≥ 1, we have

Fk =
T (rm)

2 − 1

w2 − 1
(1, z) · P3k−2(1, z)

z
− T (rm)(1, z)Fk−1 (3.1)

Proof. Since T is a Farey recursive function, we have

T (rm−1 ⊕±k rm) = T (rm)T (rm−1 ⊕±(k−1) rm)− T (rm−1 ⊕±(k−2) rm).

Therefore Pk = T (rm)Pk−1 − Pk−2 for all k ≥ 2. This implies that

P3k = T (rm)P3k−1 − P3k−2 = T (rm)(T (rm)P3k−2 − P3k−3)− P3k−2

= (T (rm)
2 − 1)P3k−2 − T (rm)P3k−3. (3.2)

The result follows from dividing both sides of the above equation by z(w2 − 1) and letting
w = 1. □

Lemmas 3.22, 3.23, 3.25 obtain general formulae for each term in Equation (3.1) (other
than Fk and Fk−1); Corollary 3.24 and Corollary 3.26 then obtain explicit formulae in the
special case that r = [3, 2, 3, 2, ..., 3, 2].

Lemma 3.22. The polynomial T (rj)(1, z) has the following properties:

(1) If j is odd, then T (rj)(1, z) = T0(rj)(1, z) = 0;
(2) If j is even, then the numerator of rj is always even, and T (rj)(1, z) = T0(rj)(1, z) =

(−1)j/2.

Proof. (1) When j is odd, by Theorem 2.20, there always exists an epimorphism Γrj → Γ1/3.
Then by [Che20, Corollary 7.6], every factor of T (1/3) divides T (rj). By Example 3.17,
T (1/3)(1, w) = 0.
(2) We prove this by induction on j. When j = 2, we have rj = ±2/7 or ±2/5, and
these cases can be verified directly by consulting the list of T0’s in [Che20, Section 9]. For
the general case, first note that by Lemma 3.10, we have rj+2 = rj ⊕±2 rj+1; therefore,
if the numerator of rj is even, then the numerator of rj+2 is also even. This implies that
T0(rj+2) = T (rj+2)/w, so T0(rj+2)(1, z) = T (rj+2)(1, z). Now we have

T (rj+2) = −T (rj) + T (rj+1)T (rj ⊕±1 rj+1)

and since T (rj+1)(1, z) = 0 by (1), we have T0(rj+2)(1, z) = T (rj+2)(1, z) = −T (rj)(1, z) =

(−1)
j+2
2 by the induction hypothesis. □

Lemma 3.23. We have P0(1, z) = 0, P1(1, z) = ±z, P2(1, z) = (−1)m/2P1(1, z), and for all
k ≥ 3 we have

Pk(1, z) = (−1)
m
2
+1Pk−3(1, z).

Proof. By Lemma 3.22, since m is even, we know that T (rm)(1, z) = (−1)m/2, and that
P0(1, z) = T (rm−1)(1, z) = 0. To compute P1(1, z) = P1,m(1, z), we induct on m. First note
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that by Lemma 3.10, we have rm = rm−2 ⊕±2 rm−1; therefore

P1,m = T (rm−1 ⊕±1 rm)

=

{
T (rm−1 ⊕ (rm−2 ⊕±2 rm−1)), ηm−1ηm = 1;

T (rm−1 ⊕−1 (rm−2 ⊕±2 rm−1)), ηm−1ηm = −1,

= T (rm−2 ⊕±3 rm−1) or T (rm−2 ⊕±1 rm−1)

and since

T (rm−2 ⊕±3 rm−1) = −T (rm−2 ⊕±1 rm−1) + T (rm−1)T (rm−2 ⊕±2 rm−1)

= −T (rm−2 ⊕±1 rm−1)

we always have P1 = ±T (rm−2⊕±1 rm−1). Again, by Lemma 3.10, we have rm−1 = rm−3⊕±3

rm−2, so

T (rm−2 ⊕±1 rm−1) =

{
T (rm−2 ⊕ (rm−3 ⊕±3 rm−2)), ηm−2ηm−1 = 1;

T (rm−2 ⊕−1 (rm−3 ⊕±3 rm−2)), ηm−2ηm−1 = −1,

= T (rm−3 ⊕±4 rm−2) or T (rm−3 ⊕±2 rm−2)

and again, by using Farey recursion and the fact that T (rm−2) = (−1)
m−2

2 , we have

T (rm−3 ⊕±4 rm−2) = −T (rm−3 ⊕±2 rm−2) + (−1)
m−2

2 T (rm−3 ⊕±3 rm−2)

= −T (rm−3 ⊕±2 rm−2)+

(−1)
m−2

2 [−T (rm−3 ⊕±1 rm−2) + (−1)
m−2

2 T (rm−3 ⊕±2 rm−2)]

= (−1)
m
2 T (rm−3 ⊕±1 rm−2)

and

T (rm−3 ⊕±2 rm−2) = −T (rm−3) + T (rm−2)T (rm−3 ⊕±1 rm−2)

= (−1)
m−2

2 T (rm−3 ⊕±1 rm−2)

so we conclude that T (rm−1⊕±1 rm) = ±T (rm−3⊕±1 rm−2). Note that all the possible values
for r1 ⊕±1 r2 are [±3,±2,±1] = {±3/10,±1/4,±3/8,±1/2}, and it can be verified from
[Che20, Section 9] that we have T (r1 ⊕±1 r2)(1, z) = ±z in all these cases. It now follows
from induction on m that P1,m(1, z) = ±z for all values of m.

Finally, by Farey recursion, for k ≥ 2 we have

Pk(1, z) = T (rm)(1, z)Pk−1(1, z)− Pk−2(1, z)

If m/2 is even, then T (rm)(1, z) = 1, so we get

P0(1, z) = 0, P1(1, z) = ±z, P2(1, z) = P1(1, z),

and Pk(1, z) = −Pk−3(1, z) for all k ≥ 3. If m/2 is odd, then T (rm)(1, z) = −1, so we get
Pk(1, z) = Pk−3(1, z). This proves the lemma.

□

Corollary 3.24. In the case that r = [3, 2, 3, 2, ..., 3, 2] with length m, we have P1,m(1, z) =
(−1)⌊m/4⌋z.
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Proof. In this case, it follows from the calculation in the previous lemma that

P1,m = T (rm−1 ⊕ rm) = −T (rm−2 ⊕ rm−1)

= (−1)(−1)
m
2 T (rm−3 ⊕ rm−2) = (−1)

m+2
2 P1,m−2

and when m = 2, we have P1,2(1, z) = T ([3, 2, 1])(1, z) = T (3/10)(1, z) = z. The general
formula then follows by induction on m. □

Lemma 3.25. In the case that r = [3, 2, 3, 2, ..., 3, 2] with length m+ 2, we have

F0,m+2 = (−1)m/2+1F0,m + (−1)⌊m/4⌋T (rm)
2 − 1

w2 − 1
(1, z),

T (rm+2)
2 − 1

w2 − 1
(1, z) =

T (rm)
2 − 1

w2 − 1
(1, z) + (−1)⌊m/4⌋2z2F0,m+2.

Proof. Since rm+1 = rm−1 ⊕3 rm, we have

F0,m+2 =
T (rm+1)

z(w2 − 1)
(1, z)

=
T (rm−1 ⊕3 rm)

z(w2 − 1)
(1, z)

=
P3,m

z(w2 − 1)
(1, z) = F1,m.

(3.3)

By Lemma 3.22, Lemma 3.21, and Corollary 3.24, we know

F1,m = (−1)m/2+1F0,m + (−1)⌊m/4⌋T (rm)
2 − 1

w2 − 1
(1, z)

which proves the first equation. To prove the second equation, first note that since rm+2 =
rm ⊕2 rm+1, we have

T (rm+2) = T (rm+1)T (rm ⊕ rm+1)− T (rm).

Since rm+1 = rm−1 ⊕3 rm and rm ⊕ rm+1 = rm−1 ⊕4 rm, we have

T (rm+2) = T (rm−1 ⊕3 rm)T (rm−1 ⊕4 rm)− T (rm) = P3P4 − T (rm).

Therefore

T (rm+2)
2 − 1

w2 − 1
(1, z) =

(P3P4 − T (rm))
2 − 1

w2 − 1
(1, z)

=
P 2
3P

2
4

w2 − 1
(1, z)− 2T (rm)P3P4

w2 − 1
(1, z) +

T (rm)
2 − 1

w2 − 1
(1, z)

We can rewrite
P 2
3 P

2
4

w2−1
(1, z) = P3

w2−1
(1, z) · P3(1, z) · P 2

4 (1, z). By Lemma 3.23 P3(1, z) = 0, so

P 2
3P

2
4

w2 − 1
(1, z)− 2T (rm)P3P4

w2 − 1
(1, z) +

T (rm)
2 − 1

w2 − 1
(1, z)

is equal to
T (rm)

2 − 1

w2 − 1
(1, z)− 2

P3

w2 − 1
(1, z)T (rm)(1, z)P4(1, z).
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Now by Lemma 3.22 and Lemma 3.23, we have T (rm)(1, z) = (−1)m/2 and P4(1, z) =
(−1)(m+2)/2P1(1, z). Substituting these two and Equation (3.3) into the above, we get

T (rm+2)
2 − 1

w2 − 1
(1, z) =

T (rm)
2 − 1

w2 − 1
(1, z)− 2zF0,m+2(−1)m/2(−1)m/2+1P1(1, z)

=
T (rm)

2 − 1

w2 − 1
(1, z) + (−1)⌊m/4⌋2z2F0,m+2.

□

Corollary 3.26. Let r = [3, 2, 3, 2, ..., 3, 2] with length m. If we define

an =
T (r2n)

2 − 1

w2 − 1
(1, z)

bn = (−1)⌈
n
2
⌉+1F0,2n

then for all 1 ≤ n ≤ m/2 we have the following formulae for an and bn:

an = c1(A1 − 1)An−1
1 + c2(A2 − 1)An−1

2

bn = c1A
n−1
1 + c2A

n−1
2

where

c1 =

√
z4 + 2z2 + z2 + 1

2
√
z4 + 2z2

, c2 =

√
z4 + 2z2 − z2 − 1

2
√
z4 + 2z2

,

A1 =
√
z4 + 2z2 + z2 + 1, A2 = z2 + 1−

√
z4 + 2z2.

Alternatively, an and bn can also be expressed as:

an =
n−1∑
i=0

(2z2)n−i−1

((
2n− i− 2

i

)
(2z2 + 1) +

(
2n− i− 3

i

))

bn =
n−1∑
i=1

(2z2)n−i−1

((
2n− i− 2

i− 1

)
(2z2 + 1) +

(
2n− i− 3

i− 1

))
Proof. First of all, it follows from Lemma 3.25 that

an+1 = an + (−1)⌊
n
2
⌋2z2 · (−1)⌈

n+1
2

⌉+1bn+1

(−1)⌈
n+1
2

⌉+1bn+1 = (−1)n+1 · (−1)⌈
n
2
⌉+1bn + (−1)⌊

n
2
⌋an

Since ⌈n+1
2
⌉ + 1 ≡ ⌈n

2
⌉ + n (mod 2) and ⌊n

2
⌋ + ⌈n

2
⌉ ≡ n (mod 2), the above two equations

simplify to

an+1 = an + 2z2bn+1

bn+1 = bn + an

and substituting the first equation into the second yields bn+2 = (2z2 + 2)bn+1 − bn. The
solution to this linear recurrence relation is then bn = c1A

n−1
1 + c2A

n−1
2 , where A1, A2 are
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the roots of the quadratic equation x2 − (2z2 + 2)x + 1 = 0, and c1, c2 are constants such
that c1 + c2 = b1, c1A1 + c2A2 = b2. By explicit calculation

b1 = F0,2 =
T (1/3)

z(w2 − 1)
(1, z) = 1

b2 = F0,4 =
T (7/24)

z(w2 − 1)
(1, z) = 2z2 + 2.

Then solving for c1, c2 gives the first formula for bn. Substituting into an = bn+1 − bn gives
us the first formula for an.

The second version of the formulae follows from induction. Since a1 = T (2/7)2−1
w2−1

(1, z) =

2z2 + 1 and b1 = 1, the base case holds. Suppose that the second formulae holds for an and
bn; then we have

bn+1 = an + bn

=
n−1∑
i=0

(2z2)n−i−1

((
2n− i− 1

i

)
(2z2 + 1) +

(
2n− i− 2

i

))

=
n∑

i=1

(2z2)n−i

((
2n− i

i− 1

)
(2z2 + 1) +

(
2n− i− 1

i− 1

))
an+1 = an + 2z2bn+1

=
n∑

i=1

(2z2)n−i

((
2n− i− 1

i− 1

)
(2z2 + 1) +

(
2n− i− 2

i− 1

))

+
n−1∑
i=0

(2z2)n−i

((
2n− i− 1

i

)
(2z2 + 1) +

(
2n− i− 2

i

))

=
n∑

i=0

(2z2)n−i

((
2n− i

i

)
(2z2 + 1) +

(
2n− i− 1

i

))
which shows that the formulae also hold for an+1 and bn+1.

□

Having calculated all of the terms in Equation (3.1) explicitly, we can now give a general
formula for Fk.

Theorem 3.27. Fix r = [3, 2, 3, 2, · · · , 3, 2] with length m, and let n = m/2. Then for any
k ≥ 0, we have

Fk = (−1)(k−1)(n+1)(kC + (−1)n+1F0)

where C, F0 ∈ Z[z] are given by

C = (−1)⌊
n
2
⌋ (c1(A1 − 1)An−1

1 + c2(A2 − 1)An−1
2

)
F0 = (−1)⌈

n
2
⌉+1

(
c1A

n−1
1 + c2A

n−1
2

)
with c1, c2, A1, A2 defined as in Corollary 3.26.
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Proof. By Lemma 3.21, we have

Fk =
T (r2n)

2 − 1

w2 − 1
(1, z) · P3k−2(1, z)

z
− T (r2n)(1, z)Fk−1.

By Lemma 3.22 we know that T (r2n)(1, z) = (−1)n. Additionally, by Lemma 3.23 we know

that P3k−2(1, z)/z = (−1)⌊n/2⌋(−1)(k−1)(n+1). So, by substituting an = T (r2n)2−1
w2−1

(1, z) as in
Corollary 3.26, we have:

Fk = (−1)(k−1)(n+1)(−1)⌊n/2⌋an + (−1)n+1Fk−1.

By Corollary 3.26 setting C = (−1)⌊n/2⌋an is equivalent to the definition of C in the the-
orem statement. Then Fk = (−1)(k−1)(n+1)C + (−1)n+1Fk−1, which implies that Fk =
(−1)(k−1)(n+1)(kC + (−1)n+1F0). The formulae for C and F0 come from Corollary 3.26. □

Remark 3.28. Fix q/p = [3, 2, 3, 2, · · · , 3, 2, 3k] with n-many 2’s and k ≥ 0. For p to be
odd (and yield a two-bridge knot), then n + k must be odd. So by Theorem 3.27 Fk =
kC + (−1)n+1F0.

Example 3.29. In the following table we compute C, F0 and Fk for [3, 2], [3, 2, 3, 2], and
[3, 2, 3, 2, 3, 2]. The calculations have been computed using SageMath.

rm C F0

[3, 2] 2z2 + 1 1
[3, 2, 3, 2] −4z4 − 6z2 − 1 2z2 + 2

[3, 2, 3, 2, 3, 2] −8z6 − 20z4 − 12z2 − 1 −4z4 − 8z2 − 3
Table 3.1. Data

It then follows from Theorem 3.27 that

p̃(K(1, k)) = 2kz2 + k + 1

p̃(K(2, k)) = −4kz4 − 2z2(3k + 1)− (k + 2)

p̃(K(3, k)) = −8kz6 − 4z4(5k + 1)− 4z2(3k + 2)− (k + 3)

⋄

We now prove a final lemma about discrete valuations before proving Theorem 1.1.

Lemma 3.30. Let α be an algebraic number but not an algebraic integer, and let f(x) ∈ Z[x]
be its minimal polynomial over Q. If F is a number field containing α, then there exists a
discrete valuation v on F such that v(α) < 0.

Proof. We write f(x) =
∑n

i=0 aix
i where an ∈ Z\{0, 1}, and let β = anα. We first show that

β is an algebraic integer. Compute

0 = f(α) =
n∑

i=0

aiα
i =

n∑
i=0

ai

(
β

an

)i

=
n∑

i=0

ai
ain

βi,
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and multiplying both sides of the above equation by an−1
n we get

0 = an−1
n

n∑
i=0

ai
ain

βi =
n∑

i=0

aia
n−i−1
n βi,

where aia
n−i−1
n = 1 when i = n, and an−i−1

n ∈ Z when 0 ≤ i < n. Therefore g(x) =∑n
i=0 aia

n−i−1
n xi ∈ Z[x] is a monic polynomial with root β, so β is an algebraic integer.

For the field F ⊃ Q[α], because OF is a Dedekind domain, we can factor βOF and anOF

into unique products of prime ideals. We write βOF =
∏m

i=1 P
ei
i and anOF =

∏m′

i=1 P
′e′i
i ,

where the Pi’s are distinct prime ideals, as are the P ′
i ’s. Note that we also assume ei, e

′
i > 0.

If there exists 1 ≤ j ≤ m′ such that either P := P ′
j ̸= Pi for all 1 ≤ i ≤ m, or P = Ph

and e′j > eh, then as defined in Definition 2.33, we have either vP(an) = e′j > 0 = vP(β), or
vP(an) = e′j > eh = vP(β). In both cases we have vP(α) = vP(β)− vP(an) < 0.

Suppose otherwise, there exists no such j, which means for all 1 ≤ i ≤ m′, there exists
1 ≤ j ≤ m such that Pj = P ′

i and ej ≥ e′i. In other words, we can write βOF as a
product of anOF and another ideal I, which means βOF ⊂ anOF , β ∈ anOF . This implies
α = β/an ∈ OF , contradicting the fact that α ̸∈ OF . □

Theorem 1.1. For every two-bridge knot Kr = K(n, k), there exists an epimorphism Γr →
Γ1/3. Moreover, for every (x0, y0) ∈ C2 that is an intersection point of X0(Γr) and the
irreducible component x2 − y − 1 of X(Γr), and for any SL2(C)-representation ρ of Γr cor-
responding to (x0, y0),
(1) There exists a number field F such that the image of ρ is in SL2(F );
(2) There exists a prime ideal P of OF such that ρ is an ANI-representation of Γr with
respect to the discrete valuation vP .

Proof. Recall from Remark 3.20 that we can obtain p̃(K(n, k)) from Fk,2n by substituting
z2 = 3 − x2. We first claim that all the coefficients of p̃(K(n, k)) ∈ Z[x] but the constant
term are even, and the constant term is odd. By Theorem 3.27, we have

Fk,2n = ±kC ± F0

Using the formula for C and F0 in Corollary 3.26 and substituting z2 = 3− x2, we have

C ≡
n−1∑
i=0

(2z2)n−i−1

((
2n− i− 2

i

)
(2z2 + 1) +

(
2n− i− 3

i

))

≡
n−1∑
i=0

(6− 2x2)n−i−1

((
2n− i− 2

i

)
(7− 2x2) +

(
2n− i− 3

i

))
(mod 2Z[x]).

If i ̸= n − 1 then (6 − 2x2)n−i−1 ∈ 2Z[x]. Therefore, it suffices to consider only i = n − 1.
Therefore,

C ≡
((

2n− i− 2

i

)
(7− 2x2) +

(
2n− i− 3

i

))
≡ 7 ≡ 1 (mod 2Z[x]).
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Similarly, we can calculate (again substituting z2 = 3− x2 in the second step):

F0,2n ≡
n−1∑
i=1

(2z2)n−i−1

((
2n− i− 2

i− 1

)
(2z2 + 1) +

(
2n− i− 3

i− 1

))

≡
n−1∑
i=1

(6− 2x2)n−i−1

((
2n− i− 2

i− 1

)
(7− 2x2) +

(
2n− i− 3

i− 1

))
≡ 7(n− 1) + 1 ≡ n (mod 2Z[x]),

Therefore we have p̃(K(n, k)) ≡ F0,2n + kC ≡ n+ k (mod 2Z[x]). Since the knot K(n, k) is
only defined when n+ k is odd, we conclude that p̃(K(n, k)) ≡ 1 (mod 2Z[x]), which proves
the first claim.

Given a polynomial F such that all its coefficients but the constant term are even, we
claim that F cannot be written as F = fg where either f or g has degree ≥ 1 and has odd
leading term coefficient. Suppose by contradiction that this is the case; then we can write
F =

∑l
i=0 cix

i, f =
∑m

i=0 aix
i where am is odd, and g =

∑n
i=0 bix

i. Let j = max{0 ≤ i ≤ n :
bi is odd} (note that there must exist some bi that is odd, otherwise the constant term of F
would be even). Consider the coefficient of F = fg in degree j +m ≥ 1:

cj+m =
∑

(i,k): i+k=j+m

aibk =
∑
k≥j

aj+m−kbk

Since cj+m is even, and bk is even for k > j, we know that bj is also even, contradicting the
definition of bj.

For any intersection point (x0, y0) between X0(ΓK(n,k)) and x2− y− 1 = 0, we always have
p̃(K(n, k))(x0) = 0. Thus p̃(K(n, k)) = q · q′ for some q′ ∈ Q[x] where q(x) is the minimal
polynomial of x0 over Q. If x0 is an algebraic integer, then q(x) is a monic polynomial of
Z[x], and because p̃(K(n, k)) ∈ Z[x], this means q′ ∈ Z[x] (see [Fra67, Theorem 23.11]). But
then q has odd leading term coefficient, contradicting the last claim we proved. Hence x0 is
an algebraic number non-integer.

It then follows from the remark after Lemma 2.14 that for any number field F containing
all roots α of the equation α + 1/α = x0 (where x0 runs through all intersection points
between X0(ΓK(n,k)) and x2 − y − 1 = 0), SL2(F ) contains the image of any representation
ρ : ΓK(n,k) → SL2(C) corresponding to (x0, y0). Finally, it follows from Lemma 3.30 that
there exists a prime ideal P of OF such that vP(x0) < 0. □

4. Boundary slopes of K(n, k)

This section addresses a method for computing all of the boundary slopes corresponding
to a continued fraction r = K(n, k) and the corresponding boundary slopes.

Definition 4.1. An edge path from 1/0 to p/q is a sequence of rightward moves across
vertices of triangles in a Farey graph (see Figure 4.2.5) given by a unique tuple (b1, . . . , bk)
for bi ∈ Z. Each bi < 0 corresponds to a move across i triangles on the top edge of the
diagram and bi > 0 corresponds to a move across i triangles on the bottom edge of the
diagram.
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As in [HT85] pg. 229 a path is minimal if no edge is immediately retraced and no two
edges of a triangle are traversed in succession. This requires each |bi| ≥ 2.

Lemma 4.2 (Pg. 229 in [HT85]). Every fraction q/p ∈ Q has a unique continued fraction
decomposition

q/p = [a1, a2, a3, a4, . . . , ak] =
1

a1 +
1

a2 +
1

. . . +
1

ak

,

where ai > 0, ak > 1. These numbers ai determine the number of smaller triangles in each
larger triangle in Figure 4.2.5. All minimal edge paths for q/p are contained in the bolded
lines of the finite subcomplex of the Farey graph as in Figure 4.2.5.

1/0

0/1

r1a1

· · ·

r2a2

· · ·

· · ·

· · ·
rk−1

rk−2ak−1

· · ·

rak

· · ·

or

ak−1 rk−1

rk−2

· · ·

ak r

· · ·

Figure 4.2.5. Subcomplexes of the Farey graph for r = [a1, a2, . . . , ak].

Remark 4.3. Intuitively, the minimal edge paths for q/p correspond to moving to the right,
along horizontal and diagonal bolded edges in the subcomplex of the Farey graph in Fig-
ure 3.3.4.

Theorem 4.4 (Restatement of Proposition 2 in [HT85]). Each boundary slope of an essen-
tial surface corresponds to a minimal edge path (b1, . . . , bk), which wraps around Kq/p once
longitudinally and m(b1, . . . , bk) times meridionally, with m being the function

m(b1, . . . , bk) = 2[(n+ − n−)− (n+
0 − n−

0 )],

where n+ and n− are the number of positive and negative bi’s and n+
0 and n−

0 are the cor-
responding numbers for the unique edge path (b′1, . . . , b

′
n) with each b′i even. In other words,

the boundary slope of this surface corresponds to µm(b1,...,bk)λ ∈ π1(∂M(K)).

Remark 4.5. In particular, 0, which corresponds to the longitude, is always a boundary slope.

Remark 4.6. See [HT85] for the topological properties of Sn(n1, . . . , nk−1).

Notation 4.7. For a continued fraction r = [a1, . . . , ak], let Mr denote the set of minimal
edge paths from 1/0 to r. Furthermore, let rj = [a1, . . . , aj]. Let N(j, r) be the set of all
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values n+ − n− for the minimal edge paths in Mrj . Let T (j, r) = n−
0 − n+

0 for the partial
sum, with n+, n−, n+

0 , n
−
0 as in Theorem 4.4. Let B(j, r) = {2(n+ T (j, r)) | n ∈ N(j, r)} be

the set of all boundary slopes m(b1, . . . , bℓ) as in Theorem 4.4.

Lemma 4.8 (Pg. 230 in [HT85]). For a fraction q/p ∈ Q, with continued fraction decom-
position q/p = [r1, . . . , rk], the number of minimal edge paths from 1/0 to partial sum pi/qi
can be counted recursively as:

|Mri | =

{
|Mri−1

|+ |Mri−2
|, ri > 1

|Mri−3
|+ |Mri−2

|, ri = 1

with |Mr0| = |Mr−1 | = |Mr−2| = 0.

Lemma 4.9. For a continued fraction r = [a1, . . . , ak], such that k is even, we have p ∈ Mr

if and only if one of the following holds:

• p = (q,−ak) for some q ∈ Mrk−1
and the last entry of q is positive,

• p = (q,−ak − 1) for some q ∈ Mrk−1
and the last entry of q is negative,

• p = (q, 2 + ak−1, 2, 2, . . . , 2︸ ︷︷ ︸
ak−1

) for some q ∈ Mrk−2
and the last entry of q is positive,

• p = (q, 1 + ak−1, 2, 2, . . . , 2︸ ︷︷ ︸
ak−1

) for some q ∈ Mrk−2
and the last entry of q is negative.

Proof. We begin by showing that the given edge paths are contained in Mr. Let q ∈ Mrk−1
.

If the final entry of q is positive, by inspection of the finite subcomplex of the Farey graph
corresponding to r, we see that (q,−ak) ∈ Mr. Furthermore, if the final entry of q is negative,
then (q,−ak − 1) ∈ Mr. This corresponds to the first two bullet points.

Suppose q ∈ Mrk−2
. By a similar argument to above, if the last entry of q is positive, then

(q, 2 + ak−1, 2, 2, . . . , 2︸ ︷︷ ︸
ak−1

) ∈ Mr.

Additionally, if the last entry of q is negative, then

(q, 1 + ak−1, 2, 2, . . . , 2︸ ︷︷ ︸
ak−1

) ∈ Mr.

Therefore we have shown containment of |Mrk−1
| + |Mrk−2

| elements in Mr. Therefore, by
Lemma 4.8 the result follows. □

Lemma 4.10. For a continued fraction r = [a1, . . . , ak], such that k is odd, we have p ∈ Mr

if and only if:

• p = (q, ak + 1) for some q ∈ Mrk−1
and the last entry of q is positive,

• p = (q, ak) for some q ∈ Mrk−1
and the last entry of q is negative,

• p = (q,−1 − ak−1,−2,−2, . . . ,−2︸ ︷︷ ︸
ak−1

) for some q ∈ Mrk−2
and the last entry of q is

positive,
• p = (q,−2 − ak−1,−2,−2, . . . ,−2︸ ︷︷ ︸

ak−1

) for some q ∈ Mrk−2
and the last entry of q is

negative.



27

Proof. Follows similarly to Lemma 4.9 by inspection of the subcomplex of the Farey graph
corresponding to r. □

Corollary 4.11. For a continued fraction r = [a1, . . . , aj]:

• if j is odd:

N(j, r) = {n+ 1 | n ∈ N(j − 1, r)} ∪ {n− aj | n ∈ N(j − 2, r)},
• if j is even:

N(j, r) = {n− 1 | n ∈ N(j − 1, r)} ∪ {n+ aj | n ∈ N(j − 2, r)}.

Proof. Follows from Lemma 4.9 when k is even and from Lemma 4.10 when k is odd. □

Corollary 4.12. For a knot q/p = K(n, k), the unique minimal edge path with only even
entries in the continued fraction decomposition will be of the form:

(−2,−2,−4,−2,−2,−4, . . . ,−2,−2,−4,︸ ︷︷ ︸
m−many 4’s

−2, . . . ,−2︸ ︷︷ ︸
3k−1

)

This gives T (2n+ 1, q/p) = 3(n+ k)− 1.

Proof. Existence follows from Lemma 4.10 and uniqueness follows from [HT85]. Note that
every entry in the edge path is negative so n−

0 − n+
0 = 3(n + k) − 1, the length of the edge

path. □

Proposition 4.13. For q/p = K(n, k), then

B(2n+ 1, q/p) = {6k + 6a+ 10b | a+ b ≤ n} ∪ {6a+ 10b | a+ b ≤ n, 0 < a} ∪ {0}.

Proof. We prove this result by induction on n, with the additional assumption that

N(2n, q/p) =
n⋃

j=0

{m+ 2j − 1 | m ∈ N(2(n− j − 1) + 1, q/p)}

where we take N(−1, q/p) to be {1}.
For the base case, consider n = 0. That is, q/p = [3k]. Note that the minimal edge

paths for [3k] are (3k) and (−2,−2, . . . ,−2) with 3k − 1 repetitions of −2. So N(1, [3k]) =
{1,−3k + 1}, and T (1, [3k]) = 3k − 1. Therefore B(1, [3k]) = {0, 6k}. Note
{6k + 6a+ 10b | a+ b ≤ 0} ∪ {6a+ 10b | a+ b ≤ 0, 0 < a} ∪ {0} = {0, 6k} = B(1, [3k]).

Additionally,
N(0, [3k]) = {0} = {m− 1 | m ∈ N(−1, [3k])}.

Suppose that the theorem holds for all n′ < n. Fix a knot q/p = [3, 2, . . . , 3, 2, 3k] with
n-many 2’s and k ∈ Z>0. Since 2n is even, by Corollary 4.11,

N(2n, q/p) = {m− 1 | m ∈ N(2n− 1, q/p)} ∪ {m+ 2 | m ∈ N(2(n− 1), q/p)}.
By the inductive hypothesis,

N(2(n− 1), q/p) =
n−1⋃
j=0

{m+ 2j − 1 | m ∈ N(2(n− j − 1) + 1, q/p)}.
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Therefore, we have

{m+ 2 | m ∈ N(2(n− 1))} =

{
m′ + 2

∣∣∣∣ m′ ∈
n−1⋃
j=0

{m+ 2j − 1 | m ∈ N(2(n− j − 1) + 1, q/p)}

}

=
n⋃

j=1

{m+ 2j − 1 | m ∈ N(2(n− j − 1) + 1, q/p)}.

Additionally,

{m− 1 | m ∈ N(2n− 1, q/p)} = {m− 1 | m ∈ N(2(n− 1) + 1, q/p)}.

So taken together,

N(2n, q/p) =
n⋃

j=0

{m+ 2j − 1 | m ∈ N(2(n− j − 1) + 1, q/p)}.

Next we show that all c ∈ B(2n+ 1, q/p) have the desired for.
We know T (2n + 1, q/p) = 3(n + k) − 1 by Corollary 4.12. Since 2n + 1 is odd, by

Corollary 4.11,

N(2n+ 1, q/p) = {m+ 1 | m ∈ N(2n, q/p)} ∪ {m− 3k | m ∈ N(2(n− 1) + 1, q/p)}.

Since B(2n + 1, q/p) = {2(c + T (2n + 1, q/p)) | c ∈ N(2n + 1, q/p)}, it suffices to show for
each c ∈ N(2n + 1, q/p) that 2(c + T (2n + 1, q/p)) has the desired form. We will consider
each set in the union separately.

Case 1. Suppose

c ∈ {m− 3k | m ∈ N(2(n− 1) + 1, q/p)}.
So 2(c+ T (2n+1, q/p)) ∈ B(2n+1, q/p). Furthermore, since for 2(n− 1) + 1 we know that
the corresponding partial sum is [3, 2, 3, 2, . . . , 3, 2, 3], so

T (2(n− 1) + 1, q/p) = 3 + 3(n− 1)− 1 = 3n− 1,

so T (2(n−1)+1, q/p)+3k = T (2n+1, q/p). Additionally, since c+3k ∈ N(2(n−1)+1, q/p)
we have

2(c+ 3k + T (2(n− 1) + 1, q/p)) ∈ B(2(n− 1) + 1, q/p).

This then simplifies to

2(c+ T (2n+ 1, q/p)) ∈ B(2(n− 1) + 1, q/p).

By the inductive hypothesis

B(2(n−1)+1, q/p) = {6+6a+10b | a+ b ≤ n−1}∪{6a+10b | a+ b ≤ n−1, 0 < a}∪{0}.

Since n− 1 < n it follows that

2(c+ T (2n+ 1, q/p)) ∈ {6 + 6a+ 10b | a+ b ≤ n} ∪ {6a+ 10b | a+ b ≤ n, 0 < a} ∪ {0}.

Case 2. Suppose

c ∈ {m+ 1 | m ∈ N(2n, q/p)}.
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In particular, by the inductive hypothesis

c− 1 ∈
n⋃

j=0

{m+ 2j − 1 | m ∈ N(2(n− j − 1) + 1, q/p)}.

Choose 0 ≤ c1 ≤ n, and c2 ∈ N(2(n−c1−1)+1, q/p) such that c = c2+2c1. By Corollary 4.12
it follows that T (2(n− c1 − 1) + 1, q/p) = 3(n− c1)− 1. So

T (2n+ 1, q/p) = 3c1 + 3k + T (2(n− c1 − 1) + 1, q/p).

Thus

2(c+ T (2n+ 1, q/p)) = 2(c2 + 2c1 + 3c1 + 3k + T (2(m− c1 − 1) + 1, q/p))

= 2(c2 + 5c1 + 3k + T (2(n− c1 − 1) + 1, q/p))

= 10c1 + 6k + 2(c2 + T (2(n− c1 − 1) + 1, q/p)).

Since c2 ∈ N(2(n− c1 − 1) + 1, q/p), we have

2(c2 + T (2(n− c1 − 1) + 1, q/p)) ∈ B(2(n− c1 − 1) + 1, q/p).

Then by the inductive hypothesis

B(2(n−c1−1)+1, q/p) = {6+6a+10b | a+b ≤ n−c1−1}∪{6a+10b | a+b ≤ n−c1−1, 0 < a}∪{0}.
So we can choose a′, b′ ∈ Z≥0, such that 2(c2 + T (2(n− c1 − 1) + 1, q/p)) = 6a′ + 10b′ with
a′ + b′ = n − c1 − 1 and 0 < a′, or 6 + 6a′ + 10b′ with a′ + b′ ≤ n − c1 − 1 (or of course 0),
according to the inductive hypothesis. Therefore

2(c+ T (2n+ 1, q/p)) = 10c1 + 6k + 6a′ + 10b′ = 6a′ + 10(b′ + c1) + 6k.

Thus
2(c+ T (2n+ 1, q/p)) ∈ {6k + 6a+ 10b | a+ b ≤ n}.

Therefore

B(2n+ 1, q/p) ⊆ {6k + 6a+ 10b | a+ b ≤ n} ∪ {6a+ 10b | a+ b ≤ n, 0 < a} ∪ {0}.
To show the other containment, we have three cases:

Case 1. Suppose c = 0. Since T (2n + 1, q/p) ∈ N(2n + 1, q/p), it follows that 0 ∈
B(2n+ 1, q/p).

Case 2. Suppose 2c ∈ {6k + 6a + 10b | a + b ≤ n}. Choose a, b ∈ Z≥0 with a + b ≤ n
such that c = 3a + 5b + 3k. Since T (2n + 1, q/p) = 3(n + k) − 1, it suffices to show that
3a + 5b + 3k − 3(n + k) + 1 ∈ N(2n + 1, q/p). Thus, by Corollary 4.11 it suffices to show
that 3(a− n) + 5b ∈ N(2n, q/p). Note that 3(a− n) + 5b = 3a+ 5(b− n) + 2b. Since

N(2n, q/p) =
n⋃

j=0

{m+ 2j − 1 | m ∈ N(2(n− j − 1) + 1, q/p)},

it suffices to show that 3a+ 3(b− n) + 1 = m for some m in N(2(n− b− 1) + 1, q/p). Since
T (2(n− b− 1) + 1, q/p) = 3(n− b)− 1, by the inductive hypothesis

N(2(n− b− 1) + 1, q/p) = {3a′ + 5b′ + 3(b− n) + 4 | a′ + b′ ≤ n− b− 1}
∪ {3a′ + 5b′ + 3(b− n) + 1 | a′ + b′ ≤ n− b− 1, 0 < a′} ∪ {3(b− n) + 1},
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so 3a+ 3(b− n) + 1 ∈ N(2(n− b− 1) + 1, q/p).
Case 3. Suppose 2c ∈ {6a + 10b | a + b ≤ n, 0 < a}. Choose a, b ∈ Z≥0 with a + b ≤ n

and a > 0 such that c = 3a + 5b. Since T (2n + 1, q/p) = 3(n + k) − 1, it suffices to show
that 3a + 5b− 3(n + k) + 1 ∈ N(2n + 1, q/p). So by Corollary 4.11 it suffices to show that
3(a− n) + 5b+ 1 ∈ N(2(n− 1) + 1, q/p). By the inductive hypothesis

N(2(n− 1) + 1, q/p) = {3(a′ − n) + 5b′ + 4 | a′ + b′ ≤ n− 1}
∪ {3(a′ − n) + 5b′ + 1 | a′ + b′ ≤ n− 1, 0 < a′} ∪ {−3n+ 1},

so 3(a− n) + 5b+ 1 ∈ N(2(n− b− 1) + 1, q/p), completing the second containment. □

Example 4.14. The knot q/p = [3, 2, 3k] = 6k+1
21k+3

(where k is even) has exactly 5 boundary
slopes:

Boundary slope Minimal edge-path
0 (−2,−2,−4,−2, ...,−2) (with 3k − 1 copies of −2 at the end)
6 (3,−3,−2, ...,−2) (with 3k − 1 copies of −2 at the end)
6k (−2,−2,−3, 3k)

6k + 6 (3,−2, 3k)
6k + 10 (4, 2, 3k + 1)

⋄

5. Determining the detected boundary slope

The following lemma determines an explicit description of the presentation for the family
of two-bridge knots [3, 2, 3k′].

Lemma 5.1. For the knot q/p = [3, 2, 3k′] = 6k′+1
21k′+3

, where k′ = 2k ∈ 2Z≥0, with knot group
Γq/p = ⟨a, b | wa = bw⟩ as in Theorem 2.8, define

S1 = babab−1a−1b−1ababa−1b−1a−1, S2 = bab.

Then w = b−1S3k
1 S2.

Proof. In order for q/p = [3, 2, 3k′] = [3, 2, 3, 0, · · · , 3, 0, 3] with k′ − 1 zeros to be a knot p
must be odd. By Lemma 2.24, this means k′ − 1 must be even. Therefore k′ is in 2Z.
We first show that for a fixed 0 ≤ c < 3k′, we have{

(−1)⌊nq/p⌋ = 1, 7c ≤ n ≤ 7c+ 3;

(−1)⌊nq/p⌋ = −1, 7c+ 4 ≤ n ≤ 7c+ 6,
(5.1)
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Recall that q = 6k′ + 1 and p = 21k′ + 3. For 7c ≤ n ≤ 7c + 3 the following calculation
yields:

2cp = 2c(21k′ + 3) ≤ 2c(21k′ + 3) + c = 7c(6k′ + 1)

≤ n(6k′ + 1) = nq

≤ (7c+ 3)(6k′ + 1) = 2c(21k′ + 3) + (18k′ + c+ 3)

< 2c(21k′ + 3) + (21k′ + 3) = (2c+ 1)p,

i.e. 2cp ≤ nq < (2c+ 1)p, which means

2c =

⌊
2cp

p

⌋
≤

⌊
nq

p

⌋
<

⌊
(2c+ 1)p

p

⌋
= 2c+ 1,

so ⌊nq/p⌋ = 2c.
When 7c+ 4 ≤ n ≤ 7c+ 6 we compute

(2c+ 1)p = (2c+ 1)(21k′ + 3) ≤ (2c+ 1)(21k′ + 3) + (3k′ + c+ 1) = (7c+ 4)(6k′ + 1)

≤ n(6k′ + 1) = nq

≤ (7c+ 6)(6k′ + 1) = (2c+ 1)(21k′ + 3) + (15k′ + c+ 3)

< (2c+ 1)(21k′ + 3) + (21k′ + 3) = (2c+ 2)p,

so

2c+ 1 =

⌊
(2c+ 1)p

p

⌋
≤

⌊
nq

p

⌋
<

⌊
(2c+ 2)p

p

⌋
= 2c+ 2.

For the convenience of this proof, we define

w′ := bw = bϵ0aϵ1bϵ2 · · · bϵp−1

where ϵ0 = 1 = (−1)⌊0/p⌋. By Equation (5.1), for 0 ≤ i < 7, we have bϵ0aϵ1bϵ2 · · · bϵ6 =
babab−1a−1b−1, and for 7 ≤ i < 14, we have bϵ7aϵ8bϵ9 · · · bϵ13 = ababa−1b−1a−1. Because a and
b alternate in w′, thus for i ∈ Z≥0 such that 14i+ 13 < p, we have

bϵ14iaϵ14i+1 · · · aϵ14i+13 = bϵ0aϵ1 · · · aϵ13 = babab−1a−1b−1ababa−1b−1a−1 = S1.

Moreover, the length of w′ is the length of w plus one, that is w′ has length p, and the
length of S1 is 14. Therefore, there are p = 21k′ + 3 = 42k + 3 ≡ 3 (mod 14) terms at the
end of w′ that are not included in bϵ14iaϵ14i+1 · · · aϵ14i+13 for any i with 14i + 13 < p. Again
by Equation (5.1) and the fact that a, b alternate in w′, they are

bϵ42kaϵ42k+1bϵ42k+2 = bϵ0aϵ1bϵ2 = bab = S2.

We also know the first 42k terms are powers of S1, and by the length of S1 they must be
S3k
1 . Therefore, w = b−1w′ = b−1S3k

1 S2. □

Lemma 5.2. For matrices A,B,C ∈ SL2(C) and k ∈ Z, we have

tr(ABkC) = tr(B) tr(ABk−1C)− tr(ABk−2C).
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Proof. This follows from the following two equations:

tr(AB) = tr(A) tr(B)− tr(AB−1),

tr(ABC) = tr(CAB).

Then we calculate

tr(ABkC) = tr(CABk) = tr((CABk−1)B)

= tr(CABk−1) tr(B)− tr(CABk−1B−1)

= tr(ABk−1C) tr(B)− tr(CABk−2)

= tr(B) tr(ABk−1C)− tr(ABk−2C).

□

Theorem 5.3. Under the setting of Theorem 1.1, if r is of the form [3, 2, 3k′], then the
boundary slope of Kr detected by (x0, y0) is 6k′ + 6.

Proof. First note that for q/p to be a knot, by the same argument as in Lemma 5.1, we must
have k′ = 2k ∈ 2Z.
We show that tr(ρ(µ6k′+6λ)) = tr(ρ(µ12k+6λ)) = −2 ∈ OK. Then by Theorem 2.35, this

implies µ6k′+6λ is the boundary slope of the essential surface detected by this action.
According to Theorem 2.8, the meridian is µ = a, and the longitude is λ = w∗wa−2e(w),

where e(w) is the sum of exponents in w.
We denote ρk and wk for q/p = [3, 2, 6k]. From Lemma 5.1 we have wk = b−1S3k

1 S2, and
the sum of exponents in S1 = babab−1a−1b−1ababa1b−1a−1 is 2, and in S2 = bab is 3. This
means the sum of exponents in wk = b−1S3k

1 S2 is e(wk) = −1+2 ·3k+3 = 6k+2. Therefore,
we have

µ12k+6λ = a12k+6w∗
kwka

−2e(wk) = a12k+6[S∗
2(S

∗
1)

3kb−1][b−1(S1)
3kS2]a

−12k−4.

Hence

tr(ρk(µ
12k+6λ)) = tr(ρk(a

12k+6S∗
2(S

∗
1)

3kb−2(S1)
3kS2a

−12k−4))

= tr(ρk(a
12k+6)ρk(S

∗
2(S

∗
1)

3kb−2(S1)
3kS2a

−12k−4))

= tr(ρk(S
∗
2(S

∗
1)

3kb−2(S1)
3kS2a

−12k−4)ρk(a
12k+6))

= tr(ρk(S
∗
2(S

∗
1)

3kb−2(S1)
3kS2a

−12k−4a12k+6))

= tr(ρk(S
∗
2(S

∗
1)

3kb−2(S1)
3kS2a

2)).

Let (xk, yk) be an intersection point of the irreducible component of the trefoil knot and
the canonical component of the knot [3, 2, 6k]. Since the irreducible component of the trefoil
knot is (y − x2 + 1), we must have yk − x2

k + 1 = 0, yk = x2
k − 1. Because the corresponding

representation is given by

ρk(a) =

[
αk 1
0 1

αk

]
, ρk(b) =

[
αk 0
tk

1
αk

]
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where αk + 1/αk = xk and yk = 2− tk by Lemma 2.11 and Lemma 2.14, αk, tk satisfies the
relation

tk = 2− yk = 2− (x2
k − 1) = 2− ((αk + 1/αk)

2 − 1) = 1− α2
k − 1/α2

k,

so we may write

ρk(b) =

[
αk 0

1− α2
k − 1/α2

k
1
αk

]
.

With this substitution, we can write ρ for ρk and α, t for αk, tk instead of assigning them
specific values depending on k. Denote M(k1, k2) = tr(ρ(S∗

2(S
∗
1)

3k1b−2(S1)
3k2S2a

2)), then by
Lemma 5.2, we have the following relations:

M(k, k) = tr(ρ(S∗
2(S

∗
1)

3kb−2(S1)
3kS2a

2))

= tr(ρ(S∗
2(S

∗
1)

3(k−1)b−2(S1)
3kS2a

2)) tr(ρ(S∗
1)

3)− tr(ρ(S∗
2(S

∗
1)

3(k−2)b−2(S1)
3kS2a

2))

= tr(ρ(S∗
1)

3)M(k − 1, k)−M(k − 2, k),

and similarly:

M(k − 1, k) = tr(ρ(S1)
3)M(k − 1, k − 1)−M(k − 1, k − 2);

M(k − 2, k) = tr(ρ(S1)
3)M(k − 2, k − 1)−M(k − 2, k − 2);

M(k, k − 1) = tr(ρ(S∗
1)

3)M(k − 1, k − 1)−M(k − 2, k − 1).

In SageMath, we can compute that tr(ρ(S1)
3) = tr(ρ(S∗

1)
3) = −2. Therefore we claim

that M(k, k) = −2 and M(k − 1, k) = M(k, k − 1) = 2.
We prove tr(ρ(µ12k+6λ)) = −2 inductively. For the base case, we compute in SageMath:

M(0, 0) = M(1, 1) = tr(−I) = −2;

M(0, 1) = M(1, 0) = tr(I) = 2.

Suppose our claim holds for values less than k. Then we have

M(k − 1, k) = −2M(k − 1, k − 1)−M(k − 1, k − 2) = −2 · (−2)− 2 = 2;

M(k − 2, k) = −2M(k − 2, k − 1)−M(k − 2, k − 2) = −2 · 2− (−2) = −2;

M(k, k − 1) = −2M(k − 1, k − 1)−M(k − 2, k − 1) = −2 · (−2)− 2 = 2;

M(k, k) = −2M(k − 1, k)−M(k − 2, k) = −2 · 2− (−2) = −2.

Therefore, we concluded that

tr(ρ(µ6k′+6λ)) = tr(ρ(µ12k+6λ)) = tr(ρ(S∗
2(S

∗
1)

3kb−2(S1)
3kS2a

2)) = M(k, k) = −2,

and by Theorem 2.35 this means µ6k′+6λ is the boundary slope of the essential surface
detected by this action. □
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Appendix A. Data for minimal polynomials

The following table records information about the character varieties of some two bridge
knots whose knot groups surject onto the trefoil knot. The table records intersection points
between 1) the irreducible component that is shared with the trefoil and 2) each other
irreducible component in the character variety. The polynomial in “product of min. poly.”
is the product of minimal polynomials of each intersection point.

knot # irr. comp. intersection points product of min. poly.
(27, 5) 1 ±3/2 4x2 − 9

(33, 5) 1 ±
√
11/2 4x2 − 11

(39, 7) 1 ±
√
13/2 4x2 − 13

(45, 7) 1 ±
√
15/2 4x2 − 15

(45, 19) 2 ±
√
6/2,±

√
10/2 4x4 − 16x2 + 15

(69, 19) 1 ±
√

±
√
2/2 + 5/2 4x4 − 20x2 + 23

(75, 29) 2 ±
√
10/2,±

√
10/2 4x2 − 20x2 + 25

(99, 29) 1 ±
√

±
√
3/2 + 3 4x4 − 24x2 + 33

(105, 29) 2 ±
√
10/2,±

√
14/2 4x4 − 24x2 + 35

(105, 41) 2 ±
√
14/2,±

√
10/2 4x4 − 24x2 + 35

(111, 31) 1 ±
√

±
√
−1/2 + 3 4x4 − 24x2 + 37

(141, 41) 1 ±
√

±
√
2/2 + 7/2 4x4 − 28x2 + 47

(147, 41) 2 ±
√
14/2,±

√
14/2 4x4 − 28x2 + 49

Table A.1. Epimorphisms onto (3, 1)

References

[Che20] Eric Chesebro, Farey recursion and the character varieties for 2-bridge knots, Characters in low-
dimensional topology, Contemp. Math., vol. 760, Amer. Math. Soc., [Providence], RI, 2020, pp. 9–
33, DOI 10.1090/conm/760/15284. MR4193919

[CEK+21] Eric Chesebro, Cory Emlen, Kenton Ke, Denise LaFontaine, Kelly McKinnie, and Cather-
ine Rigby, Farey recursive functions, Involve 14 (2021), no. 3, 439–461, DOI 10.2140/in-
volve.2021.14.439. MR4289678

[Chu17] Michelle Chu, Detecting essential surfaces as intersections in the character variety, Algebr. Geom.
Topol. 17 (2017), no. 5, 2893–2914, DOI 10.2140/agt.2017.17.2893. MR3704247

[CS83] Marc Culler and Peter B. Shalen, Varieties of group representations and splittings of 3-manifolds,
Ann. of Math. (2) 117 (1983), no. 1, 109–146, DOI 10.2307/2006973. MR0683804

[Fra67] John B. Fraleigh, A first course in abstract algebra, Addison-Wesley Publishing Co., Reading,
Mass.-London-Don Mills, Ont., 1967. MR0225619

[Hat82] A. E. Hatcher, On the boundary curves of incompressible surfaces, Pacific J. Math. 99 (1982),
no. 2, 373–377. MR0658066

[HT85] A. Hatcher andW. Thurston, Incompressible surfaces in 2-bridge knot complements, Invent. Math.
79 (1985), no. 2, 225–246, DOI 10.1007/BF01388971. MR0778125

[HS10] Jim Hoste and Patrick D. Shanahan, Epimorphisms and boundary slopes of 2-bridge knots, Algebr.
Geom. Topol. 10 (2010), no. 2, 1221–1244.



35

[Kaw96] Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised
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