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Abstract. In this paper we explore some of the properties of the comb poset, whose notion was

first introduced by J. M. Pallo. We show that three binary functions that are not well-behaved

in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation
distance, meets and joins, and the common parse words function for a pair of trees. We conclude

by giving explicit expressions for the number of common parse words for a pair of trees within an

interval of the comb poset, a problem whose generalization is known to be equivalent to the Four
Color theorem.

1. Introduction

The set Tn of all full binary trees with n leaves, or parenthesizations of n letters, is well-studied,
and carries much structure. The cardinality |Tn| is the (n− 1)th Catalan number

Cn−1 =
1

n

(
2n− 2

n− 1

)
.

There is an important graph structure Rn, with vertex set Tn, called the rotation graph, in which
edges correspond to a local change in the tree called a rotation, corresponding to changing a single
parenthesis pair in the parenthesization. This graph Rn forms the vertices and edges of an (n− 3)-
dimensional convex polytope called the associahedron. If we direct the edges of Rn in a certain
fashion, we obtain the Hasse diagram for the well-studied Tamari lattice Tn on Tn, as depicted
below for n = 4.

1(2(34))

1((23)4)

(1(23))4

((12)3)4

(12)(34))

The Tamari lattice Tn has many intriguing properties, but is diappointing in several ways. For
instance, it is not ranked. Although one can encode the order Tn by componentwise comparison of
their bracketing vectors 〈T 〉 ∈ {0, 1, . . . , n − 2}n−1, introduced by Huang and Tamari, only the
meet in Tn is given by the componentwise minimum of these bracketing vectors; the join is more
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subtle. Furthermore, computing the rotation distance dRn
(T1, T2) between two trees T1, T2 in the

graph Rn does not seem to follow easily from knowing their join T1 ∨Tn T2 and meet T1 ∧Tn T2.
There is another subtle binary function on Tn that one would like to compute, motivated by

an approach to the Four Color theorem suggested by Kauffman and explored more recently by
Cooper, Rowland and Zeilberger: the size |ParseWords(T1, T2)| of the set ParseWords(T1, T2) of
words w = (w1, w2, . . . , wn) ∈ {0, 1, 2}n which are parsed by both T1 and T2. Here, a word w
is parsed by T is the labelling of the leaves of T by w1, w2, . . . , wn from left to right extends to
a proper 3-coloring with colors {0, 1, 2} of all 2n − 1 vertices in T . Kauffman showed that the
Four Color theorem is equivalent to the statement that for all n and all T1, T2 ∈ Tn, one has
|ParseWords(T1, T2)| ≥ 1.

This last application to the Four Color theorem motivated us to introduce a poset Cn on the
set Tn, which we call the (right) comb order, as a weakening of the Tamari order. Cn was first
defined by J. M. Pallo in [8], where he proved that it is a meet-semilattice having the same bottom
element as Tn, which we denote RightCombTree(n). In fact, (see the remark following Corollary 3.3
below), one way to think about the poset Cn is that T1 <Cn

T2 exactly when T1 lies on a geodesic
path in the rotation graph Rn from T2 to this bottom element RightCombTree(n). These paths
form the dark edges in the picture above of T4, and this darkened subgraph is the Hasse diagram
of C4.

Although the comb order Cn is only a meet-semilattice whose meet ∧Cn does not in general
coincide with the Tamari meet ∧Tn , it fixes several deficiencies of Tn noted above:

• It is ranked, with exactly
(
n+r−2

r

)
−

(
n+r−2
r−1

)
elements of rank r (see Theorem 3.8).

• It is locally distributive; each interval forms a distributive lattice (see Corollary 2.9).
• Locally, that is, within each interval of Cn, the meet ∧Cn

and join ∨Cn
are easily described,

either in terms of intersection or union of parenthesizations (see Corollary 2.9), or by compo-
nentwise minimum or maximum of bracketing vectors (see Theorem 4.3). They also coincide
with the Tamari meet ∧Tn and Tamari join ∨Tn locally (see Corollary 4.4).
• When trees T1, T2 have an upper bound in Cn, we have (see Theorem 3.2)

dRn
(T1, T2) = rank(T1) + rank(T2)− 2 · rank(T1 ∧Cn

T2)

= 2 · rank(T1 ∨Cn
T2)− (rank(T1) + rank(T2)) .

• Furthermore, for T1, T2 with an upper bound in Cn, we have (see Theorem 6.7)

ParseWords(T1, T2) = ParseWords(T1 ∧Cn
T2, T1 ∨Cn

T2),

with cardinality 2n−2−r, where r = rank(T1 ∨Cn
T2)− rank(T1 ∧Cn

T2) (see Theorem 6.5).

Lastly, we also show in Section 5 that the well-known order-preserving surjection from the (right)
weak order on the symmetric group Sn to the Tamari poset Tn+1 restricts to an order-preserving
surjection from En to Cn, where En is a subposet of the weak order considered by Edelman in [4].

Because we will be mainly confining our attention for the rest of this paper to the poset Cn, we
will drop the subscripts from ∧, ∨, > and < when we mean meet, join, higher than, and lower than
in Cn respectively.

2. The Comb Poset and Distributivity

Definition 2.1. For each binary tree T ∈ Tn, consider the usual parenthesization of its leaves
12 . . . n taken in order. Then, delete all pairs of parentheses that enclose the leaf n. Call the
resulting parenthesization the reduced parenthesization of T , denoted RPT . Define an element
of RPT as either an unparenthesized leaf in RPT , or any pair of parentheses J in RPT (together
with all the leaves and internal parenthesization enclosed by J) which is not enclosed by some other
pair of parentheses in RPT . Moreover, we say that RPT1

is a subset of RPT2
, or RPT1

⊂ RPT2
iff

every pair of parentheses in RPT1
appears in RPT2

as well. Moreover, if RPT1
is a subset of RPT2

,
then we say RPT1

is a proper subset of RPT2
or RPT1

$ RPT2
if, in addition to all the parenthesis

pairs from RPT1 , RPT2 contains at least one other pair of parentheses as well.
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Proposition 2.2. Given the elements 1, 2, . . . , n in that order, a parenthesization of those elements
is the reduced parenthesization for some tree T ∈ Tn iff the two following conditions hold: n is not
enclosed by any parenthesis pair, and each pair of parentheses encloses precisely two factors within
it (which we shall call the left factor and the right factor).

Proof. Suppose we take some tree T and its reduced parenthesization RPT . Then, by definition, n
is not enclosed by any parenthesis pair. Furthermore, we know that in the full parenthesization of
the leaves of the tree T , each parenthesis pair encloses two factors (this is a well-known fact about
these parenthesizations). We leave it to the readers to verify that even after deleting parenthesis
pairs in order to get RPT , every remaining pair of parentheses still encloses precisely two factors.

Conversely, take some parenthesization of the form given. Then, the full parenthesization can be
recovered by pairing the two rightmost elements of RPT successively. The expression that we will get
is a full parenthesization of 1, 2, . . . , n such that every pair of parentheses encloses two factors, and
it is well known that such an expression represents the usual parenthesization of a binary tree. �

Remark. If two pairs of parentheses J1 and J2 enclose the same two factors in the same order, then
the internal parenthesization of J1 and J2 have to be the same. Definition 2.1 then implies that, if
RPT1

⊂ RPT2
, then each of the parenthesis pairs common to the two reduced parenthesizations also

has the same factors in both RPT1
and RPT2

.

Example. The reduced parenthesization of the following tree is 1((23)4)(56)7.

4

5

7

632

1

Figure 1.

The reduced parenthesization of this tree has four elements, given by 1, ((23)4), (56), and 7. Note
that n by itself is always an element of the reduced parenthesization of any tree in Tn.

Remark. All n-leaf binary trees have a unique reduced parenthesization. This follows because there
is a bijection between the full parenthesization of a tree T , and its reduced parenthesization. The
full parenthesization is recovered by pairing the two rightmost elements of RPT successively.

Definition 2.3. For n ≥ 2, the right comb tree of order n, denoted by RightCombTree(n) ∈ Tn,
is the n-leaf binary tree corresponding to the “empty” reduced parenthesization 12 . . . n. Similarly,
the left comb tree of order n is defined as the n-leaf binary tree corresponding to the reduced
parenthesization (((. . . ((a1a2)a3) . . .)an−2)an−1)an.

Example. RightCombTree(5), the right comb tree of order 5, is given by the following tree. The
nodes labeled 1, . . . , 5 represent the leaves of the tree, and 6, . . . , 9 represent the internal vertices.
Note that the structure of the left comb tree of order 5 is given by the reflection of the right comb
tree about the y axis; the leaves have to be renumbered, of course.

1

6

2

7

3

8

4

9

5

Figure 2. RightCombTree(5)
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Definition 2.4. We define the (right) comb poset of order n as the poset whose elements are
given by elements from Tn. If T1 and T2 are two trees in the poset, then T2 > T1 iff RPT1 $ RPT2 .
We denote the right comb poset of order n by Cn.

Remark. It is evident from the order relation that the poset Cn has a unique minimal element, which
is the tree corresponding to the “empty” parenthesization 12 . . . n, which is RightCombTree(n) from
Definition 2.3. This empty reduced parenthesization is clearly a proper subset of any other reduced
parenthesization.

Example. The Hasse diagram of the right comb poset of order 5 is shown below, in Figure 3. The
trees themselves corresponding to the parenthesizations are given in Appendix 1.

12345

(12)345 1(23)45 12(34)5

((12)3)45 (1(23))45 (12)(34)5 1((23)4)5 1(2(34))5

(((12)3)4)5 ((1(23))4)5 ((12)(34))5 (1((23)4))5 (1(2(34)))5

Figure 3. The Hasse diagram of C5

Definition 2.5. For any tree T ∈ Tn, define the reduced pruned poset of T , denoted by PT , as
the set of join irreducibles corresponding to parenthesis pairs in RPT , ordered by inclusion. So, for
instance, if RPT = ((12)3)4(56)7, and we number the parenthesis pair enclosing leaves 1 through 3
with the number 1, the pair enclosing leaves 1 and 2 with the number 2, and the pair enclosing 5
and 6 with the number 3, then PT corresponds to the set

Proposition 2.6. For any T ∈ Tn, the interval [RightCombTree(n), T ] in Cn is isomorphic to the
lattice of order ideals in the reduced pruned poset of T , ordered by inclusion. In other words, for any
tree T ,

[RightCombTree(n), T ] ∼= J(PT ).

Proof. The fact that there is a bijection between trees in the interval [RightCombTree(n), T ] and
elements in J(PT ) is trivial, and follows from the definition of PT and Proposition 2.2. That this
bijection is order-preserving follows from the fact that both are ordered by inclusion. We omit the
completely trivial details of this proof. �

Proposition 2.7. In Cn, T1 covers T2 iff RPT1 can be obtained from RPT2 by adding precisely one
parenthesis pair that encloses two adjacent elements of RPT2 .
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Corollary 2.8. Cn is a ranked poset, with the rank of any tree T in Cn given by the number of
parenthesis pairs in RPT .

Corollary 2.9. Any interval in Cn is a distributive lattice, with the reduced parenthesizations of
the join and meet of trees T1 and T2 in an interval given by the ordinary union and intersection of
parenthesis pairs from RPT1

and RPT2
.

Corollary 2.10. For any two trees T1 and T2 that are in the same interval of Cn, then rank(T1) +
rank(T2) = rank(T1 ∧ T2) + rank(TJ).

Proof. This is a well-known fact about distributive lattices. �

Note. In the rest of this paper, we shall consider only the right comb poset of order n. All the results
for the right comb tree hold for LeftCombTree(n) as well, by symmetry. Hence, whenever we state
any result about the right comb poset, it holds for the left comb poset as well, which can be defined
analogously.

Definition 2.11. For n ≥ 2, the right arm of any arbitrary tree T ∈ Tn is the connected graph
obtained by taking the edge connecting the root of T to its right child, and taking each subsequent
edge connecting each subsequent vertex to the right child below that. We stop including the edges
as soon as we come to a vertex which has no right child, which clearly corresponds to leaf n. We
shall call the length of the right arm the dexterity of the tree T . The tree in Figure 2 has dexterity
4, and its right arm is given by the connected graph 67895. We leave it to the reader to verify that
the dexterity of any tree T ∈ Tn must be a number between 1 and n− 1, both inclusive.

Proposition 2.12. For any tree T ∈ Tn, the elements other than leaf n in RPT represent precisely
the dangling left subtrees of the vertices on the right arm of T , taken in order, with the leftmost
element corresponding to the left subtree of the uppermost vertex on the right arm of T .

Proposition 2.13. For any two trees T1 and T2 in Tn, T1 covers T2 in Cn iff T1 can be obtained
from T2 by a right rotation of the form

X

Y Z

a

b

X Y

Z

b

a

such that the center of rotation (the vertex a in the figure) lies on the right arm of T2. In particular,
T1 is obtained from T2 in this way iff RPT1

is obtained from RPT2
by adding an additional pair of

parentheses, from Proposition 2.7. Note that in the figure given, X, Y and Z represent arbitrary
subtrees, while a and b represent vertices. In particular, from Proposition 2.7, any tree T ∈ Tn can
be obtained from the right comb tree by a sequence of tree rotations of this form.

Corollary 2.14. For any tree T ∈ Tn, if dex(T ) denotes the dexterity of T and k denotes the rank
of T in Cn, then we have dex(T ) = n− 1− k.

Remark. It is evident that the comb poset that we are considering is the same as the poset that J.
M. Pallo defined in [8]. It is evident, furthermore, from Lemma 3 of his paper that the comb poset
is a meet semilattice. Armed with a knowledge of the structure of the comb poset, we can now
endeavor to find some of the nice properties that it exhibits.

3. Some Properties of the Comb Poset

3.1. Distance Properties. Here we will prove some properties of the comb poset which relate to
the distance between pairs of trees in the rotation graph Rn.
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12345

(12)345 12(34)5

1(2(34))5 1(23)45

(12)(34)5 1((23)4)5

(1(2(34)))5 (1(23))45

((12)(34))5 (1((23)4))5

((1(23))4)5 ((12)3)45

(((12)3)4)5

Figure 4. C5 obtained by deleting the red edges of T5

Proposition 3.1. Suppose T1 and T2 are two trees in some interval in Cn. Furthermore, suppose
there is a pair of parentheses J in RPT1

and a pair of parentheses J2 in RPT2
such that J1 and J2

enclose a common factor (which in the hypothesis may be a left factor for one and a right one for
the other). Then, J1 = J2.
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Proof. Suppose without loss of generality that E is a left factor in J1 but a right factor in J2. Then,
because T1 ∨ T2 exists by our hypothesis, we know by Proposition 2.7 that J1 and J2 have to be
in RPT1∨T2 as well, which then clearly implies that E is enclosed as a single factor by a pair of
parentheses in RPT1∨T2

, which is a contradiction to Proposition 2.2. So, E has to be either the left
or the right factor for both J1 and J2. Now assume without loss of generality that E is the left factor
for J1 and J2. If we denote the right factor of J1 and J2 by E1 and E2 respectively, then these have
to be the right factor of the corresponding parenthesis pair in RPT1∨T2

, which forces E1 = E2. Then
it follows that J1 = J2, because a pair of parentheses is characterized wholly by its factors. �

Theorem 3.2. If T1 and T2 are two trees in some interval in Cn, then the shortest distance between
them along the edges of the rotation graph Rn is given by

d(T1, T2) = rank(T1) + rank(T2)− 2 · rank(T1 ∧ T2).

Equivalently, from Corollary 2.10, this shortest distance is also given by

d(T1, T2) = 2 · rank(T1 ∨ T2)− rank(T1)− rank(T2).

Proof. We know from Corollary 2.9 that RPT1∧T2
contains all the common parenthesis pairs of RPT1

and RPT2
. Hence, RPT1

and RPT2
are formed by adding respectively some r and s extra pairs of

parentheses to RPT1∧T2
, from Proposition 2.7, where r and s are nonnegative integers.

We claim that the r extra parenthesis pairs J1, J2, . . . , Jr in RPT1 and the s parenthesis pairs
J ′1, J

′
2, . . . , J

′
s in RPT2 are disjoint, i.e. there is no Jm and J ′n such that they both enclose the same

leaf from 1, 2, . . . , n. Suppose, on the contrary, that some leaf i is common to some pair from each
of the sets {J} and {J ′}. Take the smallest parenthesis pairs Jm and J ′n both enclosing the leaf i.
Now, it is not hard to see that this forces Jm = J ′n by Proposition 3.1. But then, this parenthesis
pair must belong to RPT1∧T2

as well, a contradiction.
So, J1, J2, . . . , Jr and J ′1, J

′
2, . . . , J

′
s are disjoint parenthesis pairs. Now, let’s ignore Cn for a

moment, and consider the rotation graph Rn. Suppose we want to get from T1 to T2 along the edges
of Rn. What is the length of the shortest path? Note that any such sequence of rotations will have the
overall effect of removing the r parenthesis pairs J1, . . . , Jr from RPT1

and adding the s parenthesis
pairs J ′1, . . . J

′
s needed to get RPT2

. Furthermore, any rotation shifts precisely one parenthesis pair
in the full parenthesization, and corresponds to shifting a parenthesis pair, or adding a parenthesis
pair, or subtracting a pair in the reduced parenthesization. In particular, a single rotation cannot
correspond to two or more of those operations. This implies that we need r distinct rotations to
remove the r parenthesis pairs J , and s distinct rotations to add the s parenthesis pairs J ′.

We claim now that the r rotations needed to remove the Js are all distinct from the s rotations
needed to add the J ′s. If this is not the case, then there is some rotation which simultaneously
removes some Jm and adds some J ′n to the reduced parenthesization. In particular, this can only
happen when the parenthesis pair Jm “moves” right or left by a single rotation and becomes J ′n.

But any rotation that moves a pair of parentheses J either maps an expression of the form (ab)c
to a(bc), or vice versa. In particular, the parenthesis pair J has a factor (b in the example shown)
that still remains within it after a rotation in any direction. This contradicts the fact that the Jms
and the J ′ns are disjoint, proving that the r distinct rotations to remove the Js and the s distinct
rotations to add the J ′s are disjoint. Therefore, the length of the shortest path between T1 and T2
along the edges of the rotation graph Rn must be at least r + s, and the rest of the result follows
immediately. �

Corollary 3.3. Given any two trees T1 and T2 such that T1 > T2 in Cn, the union of paths
connecting T1 and T2 in Cn are precisely all the shortest paths between T1 and T2 along the edges of
Rn.

Proof. This corresponds to the case when r = 0 or s = 0 in the proof of Theorem 3.2 above. The
theorem proves that any path in Cn is a shortest path in Rn. The other direction is also trivial to see,
because if r = 0, then any shortest path between T1 and T2 in Rn will necessarily have to precisely
add all the s extra parenthesis pairs, and from Proposition 2.7, this sequence will correspond to an
upward path in Cn. �
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Remark. It is now trivial to see that an alternative way of viewing the comb poset is as follows: Cn

is obtained by taking the rotation graph Rn, fixing the right comb tree, and then, for every tree T
different from the right comb itself, taking the union of all shortest paths along the rotation graph
from the right comb tree to T . The union of all the paths we included yields the edges of Cn, and
then we arrange this union as a ranked poset in the obvious way.

Conjecture 3.4. For trees T1 and T2 with a common upper bound in Cn, any shortest path between
them in Rn also lies in Cn. In fact, such a shortest path lies within the interval [T1 ∧ T2, T1 ∨ T2] in
Cn.

Corollary 3.5. The rank of any tree T ∈ Tn in Cn is its distance from the right comb tree along
the edges of the rotation graph Rn. Furthermore, from Corollary 2.8, the distance of T from the
right comb tree in Rn is given by the number of parenthesis pairs in RPT .

Remark. It can be easily shown from the results above that the diameter of the rotation graph Rn,
given by the maximum distance taken over all pairs of trees in Rn, is at most 2n− 4 for any n ∈ N.
Sleator, Tarjan and Thurston established an upper bound of 2n− 6 on the diameter of the rotation
graph in [10] for n ≥ 11.

3.2. Enumerative Properties. We now prove a few enumerative properties of Cn. To simplify
notation slightly, we will denote by Qi the set of trees in the ith rank of Cn.

Proposition 3.6. For n ≥ 3, Cn is a ranked poset with many maximal elements. Furthermore, a
tree is a maximal element iff its rank is n − 2 in Cn (or equivalently, from Corollary 2.14, iff its
dexterity is 1). In particular, the left comb tree is in the maximal rank in Cn.

Proposition 3.7. For 0 ≤ i ≤ n− 2, every tree in Qi is covered by precisely n− 2− i trees.

Proof. A tree in rank Qi has, by Corollary 2.14, dexterity n − 1 − i, i.e. its right arm is of length
n − 1 − i. Equivalently, its right arm has n − i vertices. But notice that by the way rotation is
defined, the center of rotation cannot be either of the two lowest vertices on the right arm, because
the lowest vertex by definition is a leaf. Hence, the only admissible rotations are on the upper
n − i − 2 vertices on the right arm, and they all yield distinct trees (because of distinct reduced
parenthesizations). �

Theorem 3.8. For 0 ≤ r ≤ n− 2, the number of elements in rank r of Cn is precisely

|Qr| =
(
n+ r − 2

r

)
−

(
n+ r − 2

r − 1

)
.

We state a famous lemma first. The proof of the lemma is well known, and can be found, for
instance, in [5].

Lemma 3.9 (Lagrange Inversion). For any function of the form y = xϕ(y), where ϕ is a power
series that does not vanish at 0, the coefficient of xn in any power series function ψ(y) (which we
will denote by [xn]ψ(y) to simplify notation) is given by

[xn]ψ(y) =
1

n
[un−1]ϕ(u)nψ′(u).

In particular, for just a single power, we have

[xm]yk =
k

n
[un−k](1− u)−n.

Proof of Theorem 3.8. First we will show that |Qr| is given by the coefficient of xr in the expression
c(x)n−r−1, where c(x) is the generating function for the Catalan numbers. After that, we will find
this precise number.

Fix a tree T in rank r of Cn. Note that from Corollary 2.14, we know that the dexterity of T is
n − r − 1, and so there are precisely n − r − 1 vertices on the right arm of T which have (possibly
single-leaf) left subtrees. The total number of leaves on these left subtrees is n − 1, because the
nth leaf is on the right arm. So, we are looking for the number of ways of distributing n− 1 leaves
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among n − r − 1 “blank” subtrees, such that the subtrees are also binary trees in their own right.
Furthermore, each of the n− r − 1 subtrees must have at least one leaf. Therefore, we can simplify
the problem slightly by putting in a leaf in each subtree to begin with. It is now obvious that we
are looking for the number of ways of putting n − 1 − (n − r − 1) = r indistinguishable objects in
n− r − 1 numbered boxes, with each box weighted Ci (if i objects go into it).

The number of ways of doing this is given by the coefficient of xr in the expansion (1 + C1x +
C2x

2 + C3x
3 + . . .)n−r−1. But the expression which is being raised to the (n − r − 1)th power is

nothing but the generating function c(x) for the Catalan numbers. This concludes the first part.
To see the second part, we will use Lagrange Inversion as follows: if c(x) is defined as above,

then we set y(x) = xc(x). Then, y satisfies y = x(1 − y)−1. Now, using Lagrange Inversion from
Lemma 3.9 above with k = n− r − 1 and m = n− 1, we get, after a few simplifications, the much
less intimidating formula

|Qr| =
n− r − 1

n− 1

(
n+ r − 2

r

)
.

We leave it to the reader to verify that the expression above reduces to the form desired. �

Corollary 3.10. The sizes of each rank in Cn weakly increase as we go up the poset to the rank,
and in fact they strongly increase up to the penultimate rank.

Proof. From Theorem 3.8, it is not hard to see that |Qi| = (n+i−2)!
i!(n−1)! · (n− i−1), and so, for arbitrary

adjacent ranks r and r + 1, we have

|Qr+1|
|Qr|

=
(n+ r − 1)(n− 2− r)

(r + 1)(n− 1− r)
.

We know that the rank size increases weakly whenever the numerator is at least as large as the
denominator, and hence the condition for weakly increasing rank size is simply (n+r−1)(n−r−2) ≥
(r + 1)(n − r − 1). But this condition reduces after a few simple manipulations to the condition
n2 − 4n+ 3− r(n− 1) ≥ 0. But since r ≤ n− 3 from Proposition 3.6 (recall that the rank r + 1 is
defined), we have r(n−1) ≤ n2−4n+3, and hence our condition above is trivially true. Furthermore,
for r ≤ n− 4, we have the strict inequality r(n− 1) < n2 − 4n+ 3, implying a strong increase. �

Corollary 3.11. The maximal rank (which is Qn−2 by Proposition 3.6) as well as the rank Qn−3
just below that, both have precisely Cn−2 elements.

Proof. These two results follow by direct calculation, using Theorem 3.8. �

3.3. Other Properties.

Proposition 3.12. Any upward-going path in Cn is a directed path in the Tamari lattice Tn, if we
define the right comb tree to be the minimal element of the Tamari lattice instead of the usual left
comb tree (and therefore reverse the usual Tamari order).

Proof. From Proposition 2.7, we know that T2 is a cover of T1 in Cn iff RPT2 can be obtained
from RPT1

by adding precisely one more parenthesis pair. We leave it to the reader to verify that
adding any parenthesis pair to RPT is the same as shifting a pair of parentheses to the left in the
corresponding full parenthesization of the leaves of T . �

Proposition 3.13. There is an order-preserving involution on Cn.

Proof. For any tree T , take RPT , and construct a new parenthesization RPT ′ by enclosing leave
n − j through n − i in RPT ′ for every parenthesis pair in RPT which encloses leaves i through j.
After all parenthesis pairs in RPT have been reconstructed as above in RPT ′ , it is not hard to see
(using Proposition 2.2) that RPT ′ corresponds to a tree T ′. Define π to be the map that takes T to
T ′ as described above. Then, π is an order preserving involution on Cn. �
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4. Tamari Meets and Joins for two Trees in Some Interval

From Corollary 2.9, we know the precise meaning of the meet and join of a pair of trees in some
interval of our lattice. It is natural to ask how these joins and meets relate to joins and meets in the
Tamari lattice. The first observation is that, while two arbitrary trees in Cn do have a well-defined
meet in Cn, this meet does not necessarily correspond to the Tamari meet. To see this, consider the
pair of trees represented by T1 = (((12)3)4)5 and T2 = ((1(23))4)5. This pair has Tamari meet T2,
while their meet in Cn is just the right comb tree. Furthermore, any two trees have a join in the
Tamari lattice, while this is not necessarily true of any arbitrary pair in the right comb poset.

However, something much stronger can be said if both the trees under consideration are in some
interval in the comb poset; it turns out that their meet and join in Cn correspond to their Tamari
meet and Tamari join respectively.

To prove this, we shall delve into the notion of bracketing vectors, as analyzed by J. M. Pallo.
In [9], Pallo proved an equivalence between the Tamari meet of two trees and the coordinatewise
minimum of the bracketing vectors corresponding to these two trees. We shall use this equivalence
and prove a potent result.

First, we will define what bracketing vectors mean in the context of this paper. In [6], Huang
and Tamari discuss bracketing vectors in a much more formal treatment, but we will not need the
details for our purposes. We will use the same concept of bracketing vectors used in [9].

We will make use of the notation introduced by Stanley in [11]; Stanley considered the set of
“pruned” trees on n − 1 vertices, which are obtained from ordinary n-leaf binary trees by simply
deleting all the leaves. The fact that this operation of “pruning” is a bijection (between n-leaf binary
trees and pruned trees on n− 1 vertices) is well-known, proven, for instance, in [12]. Furthermore,
there is an natural numbering of the vertices of the pruned tree using 1, 2, . . . , n − 1, in which a
vertex receives a higher number than any vertex in its left subtree, but a lower one than any vertex
in its right subtree. This labeling is unique, and well known. It is called the in order labeling of a
pruned tree on n− 1 vertices, discussed by Stanley in p. 24 of [11].

Example. The following pruned tree on 8 vertices, corresponding to the 9-leaf binary tree whose
reduced parenthesization is ((12)(34))5(6(78))9, is labeled in the in order labeling.

4

2 5

1 3
8

6

7

Figure 5.

Definition 4.1. Consider the “pruned” binary tree representation of some tree T ∈ Tn, and number
the n − 1 vertices by the in order labeling. Then, the bracketing vector for T corresponds to the
ordered (n− 1)-tuple of integers, whose jth coordinate is the number of vertices in the left subtree
of the vertex j in the pruned tree. In particular, the first coordinate of a bracketing vector is always
0.

Proposition 4.2. For any T ∈ Tn, take its corresponding RPT , and then enclose every leaf by
an additional parenthesis pair (which therefore encloses just one factor, the leaf itself). Then, for
i ∈ {1, . . . , n− 1}, take the largest parenthesis pair such that the leaf i is the largest leaf enclosed by
that parenthesis pair in the representation above. Then, if this parenthesis pair encloses ki leaves,
then the ith component of the bracketing vector for T is precisely ki − 1.

Proof. From Proposition 2.12, we know that the unbracketed elements in RPT correspond to vertices
on the right arm that do not have left subtrees (in other words, their coordinate in the bracketing
vector is 0). It is trivial to see that this implies the desired result for ki = 1. For ki > 1, we can
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follow a recursive argument by considering the subtrees represented by the bracketed elements as
trees in their own right. The details of this proof are left as an exercise for the reader. �

Theorem 4.3. Let 〈T 〉 denote the bracketing vector for T . Let T1 and T2 be arbitrary trees in the
same interval of Cn. Then, their meet and join in Cn are given by the trees corresponding respectively
to the componentwise minimum and the componentwise maximum of 〈T1〉 and 〈T2〉.

Proof. For any coordinate i of 〈T1 ∨ T2〉, the corresponding leaf is the largest leaf in one of more
parenthesis pairs in the representation described in the hypothesis of Proposition 4.2. It is easy
to see, from Corollary 2.9, that because these parenthesis pairs represent the union of pairs from
RPT1

and RPT2
, the same parenthesis pairs must be present in at least one of RPT1

and RPT2
.

Furthermore, any bigger pair enclosing the corresponding leaf would also have to appear in RPT1∨T2
,

a contradiction. From Proposition 4.2 above, this proves the theorem for joins, and the proof for
meets is analogous. �

Corollary 4.4. For T1 and T2 in some interval in Cn, their meet and join in Cn correspond
respectively to their meet and join in the Tamari lattice Tn.

Proof. The statement follows directly from the equivalence proven in Theorem 2 of [9], and Theorem
4.3 above. �

5. Relation with Edelman’s Poset

In [4], Paul Edelman introduced a poset obtained by imposing an additional condition on the
right weak order on the symmetric group Sn, which we summarize now.

Definition 5.1. The right weak order on Sn is a partial ordering of the elements of Sn defined
as the transitive closure of the following covering relation: a permutation A is a cover of another
permutation B = (a1, . . . , an) if A = (a1, . . . , aj−1, aj+1, aj , aj+2, . . . , an) is obtained from B by a
single transposition that is also an inversion. In other words, A is obtained from B by taking a pair
(a, b) of adjacent elements in B such that a < b, and then transposing them. It is a consequence of
this ordering that the identity permutation (1, 2, . . . , n) is the unique minimal element of the poset.

Edelman imposed an additional constraint on this ordering, where he only considered A to be a
covering element of B, if, after the transposition of aj and aj+1 as above, nothing to the left of aj+1

in A is greater than aj+1. Edelman’s poset is a subposet of the right weak ordering on Sn. We shall
denote this poset by En.

Example. The following is the representation of E3. The dashed red line represents the only extra
edge needed to specify the right weak order on S3 without Edelman’s further imposition.

Although this poset is clearly not a lattice, because it has are numerous maximal elements (specifi-
cally, (n−1)! maximal elements, as Edelman proved), it was proven that En has the beautiful property
that every interval of it is a distributive lattice, much like the comb poset Cn. In this section of the
paper, we will prove a further analogy between the comb poset and En: we will show that there is
a natural order-preserving surjective map from En to Cn+1.

First, we will define this natural map from En to Cn+1. In order to do this, we will make use
of the notation introduced by Stanley in [11] and the in order labeling once more, whence we will
obtain the surjection from Sn to the set of pruned trees on n vertices.

Definition 5.2 (Inverse Stanley map). We define the inverse Stanley map to be the map from En

to the set of pruned trees on n vertices, obtained as follows: given any permutation (a1, a2, . . . , an) ∈
Sn, we construct a pruned tree by taking a1 to be the root. Then, we take in order the elements
from a2 through an that are less than a1 (call this set A), and write them in that order as the left
child of a1. We do the same with the elements from a2 through an that are greater than a1 (denoted
by B), and write them (again, in order) as the right child of a1. Note that if A or B is empty, we do
not draw the branch to the corresponding child at all. We are allowed to do that, because a vertex
can have 0, 1 or 2 children in a pruned tree. Once we have finished this step, we keep repeating this
operation recursively on each of the lower elements until each vertex has received only one number
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123

213 132

231 312

321

Figure 6. Edelman’s Poset E3.

as a label. We have at this point obtained the final pruned tree. It is clear by the nature of the map
that we get the in order labeling of the pruned binary tree on n vertices, which we discussed before.

Remark. It is well known that the inverse Stanley map is a surjection: given any pruned tree on n
vertices, we can always find a permutation in Sn that maps to that tree under the inverse Stanley
map. It is left as an exercise for the reader to prove that it is not an injection.

Theorem 5.3. The inverse Stanley map of Definition 5.2 is an order-preserving surjection from En

to Cn+1.

Proof. We will prove that the inverse Stanley map is order-preserving. We shall prove an equivalent
statement: suppose B covers A in En. Then, if T2 is the image of B and T1 is the image of A under
the inverse Stanley map, then either T2 is the same as T1, or T2 covers T1 in Cn+1.

To see this, suppose A and B are as above. Let A be (a1, a2, . . . , aj , aj+1, . . . , an) ∈ Sn, and B
be (a1, a2, . . . , aj+1, aj , aj+2, . . . , an) ∈ Sn, with B covering A in En. From the definition of a cover
in the right weak order, we have aj < aj+1. Now, if j = 1, then this transposition represents a right
rotation centered on the root, and therefore T2 covers T1 in Cn+1, from Proposition 2.13. This fact
is not hard to see, and we will leave it as an exercise. So assume j 6= 1; in other words, aj is not the
root a1 of the tree.

Now, the first thing to note is that if aj < a1 < aj+1, then aj and aj+1 are in different subtrees of
the root. Furthermore, they are adjacent elements, and hence, the trasposition of aj and aj+1 will
not be reflected when we “separate” out the different subtrees. This is illustrated in the example
above. For instance, if A = (4, 3, 1, 6, 2, 5) and B = (4, 3, 6, 1, 2, 5), then they both yield the tree

4

312 65

after the first step of the inverse Stanley map, and hence, they are identical trees. So, in order for T1
and T2 to be different, aj and aj+1 must be on the same side of the root. But because of Edelman’s
extra imposition, we have aj+1 > ai for i ∈ {1, . . . , j}, and in particular, aj+1 > a1, and so the
condition of the two trees T1 and T2 being different forces aj+1 > aj > a1, i.e. aj and aj+1 are both
in the right subtree of the root.
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Now, we can disregard all the elements immediately to the right of a1 in A which are less than a1,
because they are in the left subtree of the root, and hence cannot play any role in determining the
labels of aj and aj+1 at all. So consider the first element, say ar, to the right of a1 in A, which is
greater than a1. Suppose r 6= j (the case r = j is what the condition T1 6= T2 reduces to eventually,
and this is discussed slightly later on in the proof). Then, we can argue that the tree will remain
the same if aj < ar < aj+1, by the same argument as above, and so they must be both on the right
subtree of ar if the trees T1 and T2 are to be different. This is illustrated by the example in E7, if
we take the two elements A = (3, 1, 5, 2, 4, 6, 7) and B = (3, 1, 5, 2, 6, 4, 7). Note that even though B
covers A in E7, the trees become identical under the inverse Stanley map, as seen from

3

12
5

4 67

Hence, a repeated application of the previous argument forces the conclusion that, if T1 and T2 are
to be different, then aj and aj+1 must continue being on the same (in particular, the right) subtree
at each step, and hence, we conclude that they must be consecutive elements on the right arm of
T1. Hence, in order for T1 and T2 to be different trees, T1 must be of the form

S

X

Y Z

aj

aj+1

Here the white circle S denotes the arbitrary parent tree of the entire subtree shown, with the
condition that aj and aj+1 lie on the right arm. The white circles X, Y and Z denote arbitrary
subtrees, whose interpretations in terms of the elements in A are as follows: X is the ordered sequence
of elements appearing after aj which are less than aj , Z is the ordered sequence of elements appearing
after aj+1 which are greater than aj+1, and Y is the ordered sequence of elements appearing after
aj that lie between aj and aj+1.

Now, consider what happens to T2, when we switch aj and aj+1. We draw T2 now, as shown.

S

X ′ Y ′

Z ′

aj+1

aj

Here, S is clearly going to be unchanged, and aj and aj+1 must go to the spaces shown. In addition,
there will be subtrees X ′, Y ′, and Z ′ as drawn above. However, notice that, if we interpret what
these subtrees must be with respect to the permutation B, the fact that aj and aj+1 are adjacent
forces the conclusion that the subtrees are unchanged from their interpretation in A, or in other
words that X = X ′, Y = Y ′ and Z = Z ′. So then, T2 is obtained by a rotation on T1 of the form
given in Proposition 2.13, i.e. a right rotation centered on a vertex on the right arm of T1. Therefore,
T2 covers T2 in Cn, and hence we are done. �
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Remark. It turns out that we can get an alternative proof of Corollary 2.9 by using a method
analogous to the one that Edelman used to obtain the same result for En. We omit this alternative
proof in this paper, but it is not particularly hard to derive it based on Theorems 2.7 and 2.8 in [4],
and proving the analogous results for Cn.

6. The ParseWords Function for the Comb Poset

What motivated us to define and explore the structure of the right comb poset in great detail in
Sections 2 and 3 was the problem of finding common parse words for any two n-leaf trees, for an
arbitrary positive integer n. The problem, discussed in great detail in [3], is of great importance
because of its implications: it is equivalent to the Four Color theorem.

In its shortest form, the Four Color theorem states that every bridgeless plane map can be colored
with at most four colors such that no two regions sharing a boundary are colored by the same color.
The problem remained unsolved for a long time until 1977, when Appel and Haken came up with
a controversial proof (see [1], [2]) that reduced the entire problem to 1,936 cases, and a computer
checked all of them. Thirteen years later, Kauffman proved in [7] that the Four Color theorem was
equivalent to the problem of finding a common parse word for any two arbitrary n-leaf binary trees,
which he stated in a slightly different form.

Kauffman had proven his problem by showing the equivalence. Recently, in [3], Cooper, Rowland
and Zeilberger recognized that the Four Color theorem could be solved by making use of the same
equivalence, by finding a combinatorial proof of the existence of a common parse word for an arbitrary
pair of trees. They made some progress, but not enough to solve the problem in its entirety.

The problem is a language theoretic one. Let G be a context-free grammar with three elements
0, 1 and 2, and the mapping rules 0 7→ 12, 0 7→ 21, 1 7→ 02, 1 7→ 20, 2 7→ 01 or 2 7→ 10. A binary
tree T ∈ Tn can, then, be labeled according to this scheme, and the final “word” can be read off the
bottom leaves in order. This word is said to be parsed by the tree T .

Example. An example of a tree parsing the word 2202 is as follows.

2

0

1

2

1

2 0

Figure 7.

Now, it is clear that the grammar G is ambiguous: a tree can parse two different words, and
what is more, two different trees can parse the same word. What is unclear is that G is totally
ambiguous, i.e. for any two arbitrary binary trees with the same number of leaves, there is a word
that they both parse. Kauffman proved this in [7] by showing that the statement is equivalent to
the Four Color theorem, while Cooper, Rowland and Zeilberger tried to prove the same statement
by other means. It may be formally stated at this point as the main conjecture in this paper, as it
was in [3].

Conjecture 6.1. For any n ∈ N, let T1 and T2 be arbitrary trees in Tn. Then, there exists a word
that they both parse, following the rules of the context-free grammar G described above.
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0

1 0

1

2

0 1

0

1

2

Figure 8.

Example. An example of two trees parsing the same word 010 is the following.

In this section we shall compute the precise number of common parse words for any two trees lying
in any interval of the right comb poset Cn. In particular, we will prove a special case of Conjecture
6.1.

Note. Whenever we talk about the number of common parse words, we will do so up to permutations
of the alphabet. This is because whenever we label a tree using the rules of G, we can easily switch
two or more of the letters whenever they occur throughout, by permuting the letters of the alphabet.
There are six possible such switches between 0, 1 and 2, given by the identity permutation, and the
five permutations (12), (23), (13), (123) and (132). We shall consider only distinct labelings that
do not depend on permutations; we can think of this as imposing the condition that the root of all
the trees under consideration get the label 0, and its left and right children get the labels 1 and 2
respectively. Since there are actually five other ways to label these (specifically, the root, the left
child and the right child get one of the orders 021, 102, 120, 210 and 201), hence all our results
should be multiplied by 6 in order to get the actual number of parse words.

To begin, we need two basic tools.

Proposition 6.2 (Common root property). If two trees T1, T2 ∈ Tn parse the same word, then their
roots receive the same label, no matter what their internal structure is. Hence, if T1, T2 ∈ Tn satisfy
the property that there is a vertex i in T1 and a vertex j in T2 such that the dangling subtrees from
these vertices have precisely the same leaves (i.e. both the dangling subtrees contain precisely the
leaves m1 through m2, for some natural numbers m1 < m2 ≤ n), then, the vertices i and j receive
the same label if we label the trees with the same parse word.

Proof. The first assertion, that two trees parsing the same word receive the same letter for the
root, is a well known result, proved in Proposition 2 of [3]. The second assertion can be seen by
considering the dangling subtrees as trees in themselves. Since T1 and T2 parse the same word in
this labeling, in particular, the dangling subtrees parse the same word, because they have precisely
the same corresponding leaves, and hence they have a common root by the first assertion. This root
is precisely given by the vertex i in the case of T1, and j in the case of T2. Hence, i and j receive
the same label. �

Proposition 6.3. For n ≥ 2, if T ∈ Tn, then
∣∣ParseWords(T )

∣∣ = 2n−2.

Proof. This can be seen in the way we construct a tree from its root. At each step, when we pick
a vertex with no children, and we add two children to it, we can label the new children in exactly
two different ways (following the mapping rules of the grammar G), depending on the label on their
parent. We leave the details of the proof as an easy exercise for the reader. �

Theorem 6.4. For any n ≥ 2, if T2 covers T1 in Cn, then |ParseWords(T1, T2)| = 2n−3.

Proof. Consider arbitrary T1 and T2 defined as above, with the trees given by:
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X

Y Z

S

a

b

X Y

Z

S

a′

b′

Here, in T1, a and b are on the right arm, S is the arbitrary parent tree, and X, Y and Z are
the corresponding subtrees. Because of the way tree rotation is defined, note that X, Y and Z will
assume the precise positions that they are shown in the figure for T2. Suppose we label both trees
so that the word they parse is the same.

Now, the first observation is that, since X, Y and Z will have the positions shown, any labeling
of the two trees with a common parse word will result in a and a′ receiving the same label by
Proposition 6.2, and therefore, we need not worry about what happens in S at all; the only variation
that can possibly arise is entirely within the dangling subtree of the vertex a in T1 and that of the
vertex a′ in T2, and so S may be disregarded entirely. We will show that T2 will share exactly half
the parse words of T1, thereby proving our result using Proposition 6.3.

Now, because the labeled parse word is the same for both trees, that means in particular that
each of the subtrees represented by X, Y and Z receives the same parse word in both the trees
(because their order is not changed). Hence, by Proposition 6.2, they each receive the same root in
T1 and T2. Let’s say these roots are labeled respectively x, y and z. Now, the key is to realize that
we can forget about what is happening within those subtrees, and only encode them by their roots.
This is because the subtrees X, Y and Z preserve their internal structure during the rotation from
T1 to T2, and so, as long as these subtrees receive the same label for their roots, they are guaranteed
of parsing the same word. So, we may forget the X, Y and Z, and simply concentrate on x, y and
z now. The problem now reduces to the following figure:

x

y z

a

b

x y

z

a′

b′

By Proposition 6.2, a and a′ must be the same, so we can label them both 0 without loss of
generality. Now, in T1, this means that b is nonzero, say 1, and so, (y, z) = (0, 2) or (2, 0) with equal
probability. If b were 2, it would be same for (0, 1) or (1, 0). What this means is that for all labelings
of T1, exactly half of them have the same label for a and y, and the other half has different labelings.
We will now show that the half with a different labeling for a and y never yields a common parse
word, while the half with the same label for a and y always does.

Say a and y are different, with a = 0, b = 1 and y = 2. Then, z = 0 and x = 2, and the parse
word in the figure above is 220. This cannot be a parse word for T2, because x and y must have
different labels, as its structure necessitates.

So alternatively, suppose a = 0, b = 1 and y = 0. Then, z = 2, x = 2 and the parse word is 202.
If we label T2 correspondingly with that, we see that it is indeed a valid labeling that yields a = 0
as well, in accordance with what is desired. Therefore, this case yields a common parse word.

Hence, we see that ParseWords(T1, T2) has exactly half as many elements as ParseWords(T1),
which, coupled with Proposition 6.3, yields our desired result. �

Theorem 6.5. Suppose T1 and T2 are comparable in Cn, with the difference in their ranks equal
to k. Then, the number of common parse words between T1 and T2 (up to permutation) is given by
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2n−2−k. In fact, since k ≤ n − 2, from Proposition 3.6, any pair T1 and T2 of trees comparable in
Cn always has a common parse word.

Proof. The cases k = 0 and k = 1 are precisely Proposition 6.3 and Theorem 6.4 respectively. So
let’s assume k > 1.

This proof relies heavily on the proof of Theorem 6.4. The key is to notice that, if T1 and T2 are
comparable, with T2 higher in the poset Cn by k ranks, then there exist trees T1′ , T2′ , . . . , T(k−1)′ ,
all in Cn, such that T1lT1′ l . . .lT(k−1)′ lT2, where at each step, TilT1 ∨T2 means that T1 ∨T2
covers Ti. Then we can apply the same reasoning as in the proof of Theorem 6.4 repeatedly at each
covering.

x

y z

a

b

x y

z

b

a

In each case, only half of the labelings in the lower tree will have a common parse word with its
cover, as above, and because the condition for that to happen (i.e. for a and y to have the same
labeling in the proof of Theorem 6.4) only affects two vertices which both pass into a left subtree at
each step (and are encoded not by any of the subtree elements but only by their common root a in
the figure above, which acts effectively as a leaf henceforth), thereby not affecting the two vertices
in the next step. For instance, in Figure 6, the relevant vertices a and y both pass into a left subtree
after the rotation, and therefore, from now on, no rotation can affect these labels. Hence, because of
the highly localized nature of the condition for a common parse word (which arises from the highly
localized nature of the potent Proposition 6.2), the relevant vertices will never interact in order to
give anything but a nice halving of the number of common parse words. The crucial point to note
here is that after each rotation, the remaining vertices on the right arm will be labeled with the
same letters as before.

So, Theorem 6.4 will be applicable at each intermediate step, so that we have a nice halving at
each step up the poset, and the result follows immediately. �

Corollary 6.6. If T1 and T2 are defined as in Theorem 6.5, then every tree in the interval between
T1 and T2 in Cn will parse all the common parse words of T1 and T2.

Proof. This follows from the same localized property of the common roots that was exploited in
proving Theorem 6.5. We leave the details as an exercise. �

Example. Corollary 6.6 is very easy to check for any specific case, as illustrated by this example.
Consider the example shown below. Then Corollary 6.6 can be checked as follows: take any parse
word of the first and the last one tree, say 01202. Now, by numbering the leaves in this order in all
the intermediate trees, we can label the internal vertices (by “backward” reasoning) until we come
to the root (which will be 1 for all the trees in this example). In every case, we will be able to obtain
a labeling of the internal vertices following the rules of G.

0

1

2

2

0

0

1

2

1

0 1

2

1

2

0

1

2

0

0 1

2
1

0

2

2

0

1

0 1

2

0

2

1

1

0

2

Figure 9.
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Theorem 6.7. Fix any two trees T1 and T2 in Cn which lie in some interval (or in other words,
which have a well-defined join). Then, the set of common parse words between T1 and T2 is precisely
the set of common parse words of their join and meet (which are both well-defined from Corollary
2.9).

Proof. If T1 and T2 are comparable in Cn, then the result is trivially true, because the join and meet
are the trees themselves, in some order. So consider only the case where they are not comparable,
but in fact lie in the same interval; in other words, they have a join that does not equal one of them.

Now they are guaranteed from Corollary 2.9 to have a join T1 ∨ T2 and a meet T1 ∧ T2. One
direction of the proof is immediate, because along with T1∨T2 and T1∧T2 (which are comparable by
definition), T1 and T2 separately satisfy the hypotheses of Corollary 6.6, and therefore, any common
parse word of T1 ∨ T2 and T1 ∧ T2 is also parsed by T1 as well as T2. We will now show that any
word that is parsed by T1 and T2 is also, in fact, parsed by T1 ∧ T2. The same result will hold for
T1 ∨ T2 by a symmetric argument, and this will be enough for our desired proof.

We will make extensive use of Corollary 2.9. To do so, consider RPT1∧T2
, and suppose it has k

elements (including the leaf n, which is one of the elements immediately from the definition).
Now, each of the internal parenthesizations of these k elements must also be present in the reduced

parenthesizations of T1, T2 and T1∨T2 from Corollary 2.9. Hence, the subtrees represented by these
parenthesizations will be present in all four trees, and therefore, we may choose to ignore the internal
parenthesizations of these k elements. They are all encoded by their roots, and if we can obtain
the same label for these roots, then we can label each vertex of each such subtree in the same way
(because their structure is the same in all four of T1, T2, T1∧T2 and T1∨T2). Hence, we only consider
the roots of these k elements, which encode all internal parenthesizations within them; these roots
act as new “leaves” in some sense. We will, therefore, refer to these roots a1 through ak as “leaves”
henceforth, and using Proposition 2.12, assume T1 ∧ T2 to be RightCombTree(k).

Now, RPT1
and RPT2

must have completely disjoint parenthesis pairs; if not, this means that
there exists some parenthesis pair J in RPT1

and some pair J ′ in RPT2
such that they enclose the

same factor (which may be the right factor in one and the left one in the other). But then, by
Proposition 3.1 forces J = J ′, and so, this common parenthesis pair J is also present in RPT1∧T2 by
definition, which implies that the number of elements of RPT1∧T2

is strictly less than k, contradicting
the assumption that RPT1∧T2

has k elements. We will use this fact (that the parenthesis pairs of
RPT1

and RPT2
are disjoint) as the basis of our proof.

Take any common parse word w = w1w2 . . . wk of T1 and T2 (recall that from our simplification,
all trees are now effectively k-leaf trees), and label both T1 and T2 completely with the word w,
including all internal vertices.

We will now construct the same parse word for T1 ∧ T2, starting with the rightmost letter wk.
Now, wk labels the leaf n, which is unbracketed in RPT1

as well as RPT2
. So, we may label this

leaf with the letter it is labeled with in T1 and T2. Now, take a look at the next leaf, wk−1.
Either this wk−1 will be unbracketed in RPT1 as well as RPT2 , in which case, we may continue
labeling these leaves as before. Otherwise, wk−1 will be bracketed in exactly one of RPT1 and RPT2 ,
say RPT1

, and in particular, will correspond to some element containing some bracketing of the
letters wjwj+1 . . . wk−1, for some j ≤ k − 2. The crucial observation here is that all these letters
wj , . . . , wk−1, will be unbracketed in RPT2

, from Corollary 2.9 and the discussion above. Hence, the
subtree containing the leaves aj , . . . , ak in RPT2

will have the exact same internal structure in T2
and T1 ∧T2. So, we can label this entire subtree of T1 ∧T2 in the same way as T2. Once we do that,
we have already labeled the last k− j + 1 leaves in T1 ∧ T2. Now consider all three trees T1, T2 and
T1∧T2 with this entire subtree (the subtree containing leaves wj through wk) encoded by its common
root as a dangling “new” leaf. By the potent Proposition 6.2, this “new” leaf will receive the same
label for all three trees. Now we can keep doing the exact same thing by considering this new leaf
as the new rightmost element (corresponding to aj), and apply the process above recursively. At
each step of this process, we can either choose both trees (if none of them bracket the next leaf), or
exactly one of the trees. Either way, we can continue recursively and label T1 ∧ T2 with the same
parse word w.

We proved above that RPT1
and RPT2

, under the assumptions above, have disjoint parenthesis
pairs. This fact, coupled with Corollary 2.9, guarantees that RPT1∨T2

is the disjoint union of RPT1
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and RPT2
. We can now label T1∨T2 with w, by the same process described above, thereby concluding

the proof. This proof is best understood by an example, which we give below. �

Example. This example will demonstrate the construction described in the proof of Theorem 6.7.
Suppose we have the situation of Figure 10 below, with RPT1

= (1(23))4567, RPT2
= 1234(56)7,

RPT1∧T2
= 1234567, and RPT1∨T2

= (1(23))4(56)7. We will illustrate the proof of Theorem 6.7
above by labeling the join T1 ∨ T2 with a common parse word. We take any parse word common
to T1 and T2 in this example, and label T1 ∨ T2 with that same parse word. The construction for
T1 ∧ T2 will be analogous.

T1 ∧ T2

T2

T1

T1 ∨ T2

T ′1

T ′2

Figure 10.

Consider T1 and T2 in Cn, with their reduced parenthesizations as given above. Furthermore,
Corollary 2.8 tells us the ranks of T1 and T2 in terms of parenthesis pairs, meaning that there are
trees T ′1 and T ′2 in the places shown. RPT1∧T2

, RPT1
, RPT2

and RPT1∨T2
have 7, 5, 6 and 4 elements

respectively (we will call each of the 7 elements of T1∧T2 “leaves” in this example just as in the proof
of Theorem 6.7, as the internal labelings of the subtrees they represent will be the same throughout;
this corresponds to k = 7 in the proof of Theorem 6.7). For ease of understanding of the proof, draw
all trees with black dotted lines for now.

We start with an arbitrary parse word for T1 and T2, say 0011020, and then label leaf 7 in T1∨T2
with 0.
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Then, the subtree in T1 ∨ T2 containing the leaves 5, 6 and 7 has exactly the same structure as the
corresponding subtree in T2, so we color this corresponding subtree red in both T2 and T1 ∨ T2, and
label this subtree of T1 ∨ T2 throughout in the exact way as T2, as shown. The subtree containing
the corresponding leaves in T1 is shown in brown. Then, from here on, we can disregard the subtree
containing leaves 5, 6 and 7 in all three trees, because this subtree has already received the same
parse word, and it can now be encoded by their common root (which is guaranteed to receive the
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same label 2 for all three trees, from Proposition 6.2). This common root will now act as the
rightmost leaf in the next step. Let’s call this leaf 567 from now.
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Leaf 4 (which is unparenthesized in both RPT1 and RPT2), is labeled in T1 and T2 in the same way,
so the subtree containing the leaves 4 and 567 has the same structure in all three trees. So we color
all three of these subtrees blue and label it in T1 ∨ T2 exactly in the same way as either of T1 or
T2. Again, we disregard the internal structure of this subtree from here on, because Proposition 6.2
ensures that the root, which now encodes the whole subtree, receives the same label 0 for all three
trees. This leaf henceforth acts as the new rightmost leaf; call this leaf 4567.
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Finally, the subtree containing leaves 1, 2, 3, and 4567 is the same in T1 and T1 ∨ T2. So, we can
color this subtree orange in both T1 and T1 ∨ T2, as shown, and label it in T1 ∨ T2 in the same
way as it is labeled in T1, to finish off the labeling. The corresponding subtree in T2 is shown in
green, and in particular, once again, from Proposition 6.2, they receive the same root 2 (which is
now effectively the root of the whole tree T1 ∨ T2).

1

2

0

0
2

10 1

2

0

1

0

2

0
1

2

0

0
2

10

We can finally attach all the colored subtrees again to check our result. Note that attaching the
subtrees back correctly recovers T1, T2 and T1∨T2, and the labels remain intact because of the potent
Proposition 6.2. Given a common parse word of T1 and T2, this potent common root property has
been used in the proof of Theorem 6.7 in order to construct the same parse word for T1 ∨ T2 by
following the algorithm described.
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An exactly analogous proof is applicable for the meet T1 ∧ T2, which can be labeled similarly, with
7 common to T1 and T2, then 5, 6 and 7 common to T1, then 4 and 567 common to both T1 and T2,
and finally, 1, 2, 3 and 4567 common to T2. We leave that construction as an easy exercise.
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Remark. Theorem 6.7 is potent because it gives the exact number of parse words for any two trees
in an interval in Cn. In particular, if T1 and T2 are defined as in Theorem 6.7, and if T1 ∧ T2 and
T1 ∨ T2 are respectively the meet and join of T1 and T2, then we have∣∣ParseWords(T1, T2)

∣∣ =
∣∣ParseWords(T1 ∧ T2, T1 ∨ T2)

∣∣,
where both sides are nonzero, from Theorem 6.5, as T1 ∧ T2 and T1 ∨ T2 are comparable in Cn.

The discussions above reveal astonishing insights into the structure of the comb poset Cn and the
behavior of the ParseWords function within an interval of Cn (in particular, Conjecture 6.1 is an
immediate consequence of Theorem 6.7 if the pair of trees under consideration lies within an interval
in Cn). However, our results so far do not reveal any clear insight into the corresponding behavior
for two trees that do not both lie in some interval in Cn. Unfortunately, this is the generalization
that is required if we are to prove Conjecture 6.1 in full generality.

Even though we did not find nice expressions relating the parse words common to an arbitrary
pair of trees in different intervals, we shall salvage some hopes for complete generalization in Section
6 by a different approach.

7. Towards Complete Generalization: the Rotation Graph

In this final section we shall attempt to probe a little deeper into the behavior of the ParseWords
function in the neighborhood of any fixed tree in Rn. This generalization adds back some extra
edges of Rn which were not present in Cn (and we also do not lose any of the edges), which is a
distinct advantage. However, we also have to give up the beautiful and rigid structure of Cn now,
and the behavior of the ParseWords functions deviates from the completely predictable behavior
within an interval.

Proposition 7.1. For n ≥ 3, suppose T ∈ Tn, and T ′ is obtained from T by precisely one rotation
in any direction on any vertex. Then,∣∣ParseWords(T, T ′)

∣∣ = 2n−3.

Proof. The proof follows the same idea as the proof of Theorem 6.4. Consider an arbitrary rotation
of the form shown, that takes the tree T1 to the tree T2. As before, S represents the arbitrary parent,
X, Y and Z are arbitrary subtrees, and a and b are vertices.

X

Y Z

S

a

b

X Y

Z

S

b

a

We shall prove the result only for the forward direction, i.e. for a right rotation; the argument for a
left rotation will be symmetric. Furthermore, it is important to note that, unlike a rotation of the
form described in Proposition 2.13, the center of rotation a does not have to lie on the right arm of
the tree T1. This will not affect the proof, but it is an important distinction worth keeping in mind.
Once again, we can encode everything inside X, Y and Z by their respective common roots, because
the existence of common parse words depends only on the preservation of the “word” labeling the
roots of X, Y and Z in order. Furthermore, similar to before, no variation can be introduced in
the arbitrary parent S, and hence the only possible change will occur below S. With these two
observations, the figure reduces precisely to the second figure in the proof of Theorem 6.4, and the
exact same proof becomes applicable after this point. The proof for a left rotation is analogous. �
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Proposition 7.2. Suppose for some tree T ∈ Tn, we perform two rotations, the first one on vertex
i and the second one on vertex j. Suppose we reach the tree T ′′ by the two rotations. Then,
ParseWords(T, T ′′) = 2n−4 for each of the following scenarios:

(1) The rotation on i leaves the internal structure of the dangling subtree from j unchanged.
(2) The rotation on j leaves the internal structure of the dangling subtree from i unchanged (note

that this dangling subtree may have changed during the first rotation on i; this assumption
is that it does not change from this intermediate step to the final one).

Proof. For the first part, denote by Vj the subtree dangling from the vertex j which is unchanged
during the rotation on i. Now, it is clear that a rotation (right or left) of the form shown in
Proposition 2.13 changes the structures of precisely the dangling subtrees from a and b shown in
that diagram. So, the assumption implies that the vertex j must be in one of the subtrees X, Y
or Z. We leave it as an exercise for the reader to show that the two “halvings” represented by two
applications of Proposition 7.1 for the rotations on i and j will give us a quartering of the number
of common parse words, as desired.

For the second part, note that “halving” holds for the first rotation, from Proposition 7.1. Then,
by an argument similar to the one above, it follows that after this first rotation, i must lie within
one of the subtrees X, Y and Z for the second rotation, on j. So, for this rotation, because the
dangling subtree does not change, we can encode the entire subtree by just the root i. It is now easy
to see how the quartering still follows. �

Theorem 7.3. For any n ≥ 3, fix any tree T ∈ Tn in the rotation graph Rn. Consider the single-
variable function

f(T ′) =
∣∣ParseWords(T, T ′)

∣∣
on T ′ ∈ Tn. Then, f(T ′) = 2n−2−i for i ∈ {0, 1, 2}, where i represents the distance along the edges
of Rn between T ′ and T .

Proof. The cases i = 0 and i = 1 are Proposition 6.3 and Theorem 7.1 respectively. To prove the
case i = 2, we will show that the “halving” property utilized in the proofs of Theorem 6.5 and
Proposition 7.1 holds for one more rotation as well.

If the dangling subtrees of the two centers of rotation are disjoint, then Proposition 7.2 applies,
and we get a quartering, as desired. So consider only the case when the center for one rotation lies
in the subtree dangling from the center of the other rotation. Suppose the centers are a and b, with
b lying in the subtree dangling from a. Denote the subtrees dangling (before any of the rotations
are performed) from a and b by Va and Vb respectively. In particular, Vb is wholly contained in Va.

If the vertices a and b have two or more edges of the tree T separating them, then any rotation
(right or left) on a will leave the dangling subtree from b intact, and so Proposition 7.2 applies again,
and we get the desired quartering of the number of common parse words again.

We now have the case where a is a parent of b in T . Without loss of generality take b to be a
right child of a. Suppose we rotate on a first. Then, if the rotation on a is a left rotation, then
Proposition 7.2 is applicable again. So it only remains to consider the case where the rotation on a
is a right rotation. Now, a has become a left child of b in the process of this rotation (again, see the
figure with Proposition 2.13). If we now perform a left rotation on b, we just get back the original
tree, in contradiction of our hypothesis. So, if we rotate on a first, the only nontrivial case is when
both the rotations are right rotations. This results in the figure below.
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b
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a

31 42

b

1

3

2

4

As in all proofs, we leave out the common arbitrary parent above, because that does not get affected,
and encode the dangling subtrees by their roots, which are numbered as leaves here. The specified
sequence of two rotations takes us from the first tree to the third tree above. So, we need to find
a common parse word for the first and the last tree. But these two are effectively the right comb
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tree and the left comb tree of order 4. Hence, by Proposition 3.6 and Theorem 6.5, the two trees
share precisely one common parse word, up to permutations. But the number of ways of labeling
the original tree T1 is 22 = 4, from Proposition 6.3. Hence it follows that precisely a quarter of the
possible labelings of the first tree above yield a common parse word for the third tree as well. This
completely proves the case where we perform the rotation on the vertex a first.

The only nontrivial case left is where the first rotation is on b. Now, the fact that we assumed
without loss of generality that b is a right child of a necessitates a crucial observation: if the
(second) rotation on a is a left rotation, then Proposition 7.2 is applicable once again. So, we need
only consider the case where the rotation on a is a right rotation. Once again, we leave out the
common arbitrary parent and encode the subtrees by their common roots.

Because we only consider a right rotation on a, there are two cases, both depending on the rotation
on b. The two cases are respectively when the rotation on b is a right rotation, and when it is a left
rotation. The two cases can be represented by the two following figures (encoding all subtrees by
their roots, and without showing the arbitrary parent whose labeling is unaffected):
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In both cases, note that the subtree dangling from b is unchanged during the second rotation. So
then, Proposition 7.2 applies to both these cases as well, and we obtain our quartering result as
before.

The only case left to consider is when a and b are, in fact, the same, or in other words, we
perform two rotations on the same vertex. For this case, notice that, because we can without loss
of generality suppose that the first rotation is a left rotation. The only two cases left, then, are
when the second rotation is also a left rotation, or when it is a right rotation. Now, refer to the
same figures above, and look at the reverse sequences of rotations, which take the last trees shown
above to the first ones. In particular, notice that these two rotations are both on the vertex c, and
correspond precisely to the two cases mentioned above. The quartering property clearly still holds,
because our previous result stated that the number of parse words common to the first and last trees
is exactly one fourth of the number parsed by just the first tree, which is also the number parsed by
the last tree from Proposition 6.3. So, a symmetric argument proves the final case.

So, if T ′ ∈ Tn is obtained from some T ∈ Tn by two rotations, then
∣∣ParseWords(T, T ′)

∣∣ =
1
4

∣∣ParseWords(T, T )
∣∣, which coupled with Proposition 7.1 yields our desired result in its entirety. �

Corollary 7.4. Suppose T , T ′ and T ′′ are elements of Rn satisfying the hypotheses of Theorem
7.3, such that T ′ is at a distance 1 from T and T ′′ is at a distance 2 from T along the same path,
i.e. T ′′ is at a distance 1 from T ′. Then, the common parse words shared by T and T ′′ are, in fact,
parsed by T ′ as well.

Proof. If the centers of the two rotations are sufficiently far apart, then the result is readily seen
to be true, from the same arguments as in the proof of Theorem 7.3. All the nontrivial cases if
the centers do interact have been drawn as separate figures in the proof of Theorem 7.3, which all
indicate the intermediate tree T ′. The easiest way to get our desired result is to label the leaves of
the intermediate trees in all these figures with a common parse word of its two adjacent trees (the
precise form of which can be easily found), and label the internal vertices by “backward” reasoning
to check that it is, in fact, a valid parse word for these intermediate trees as well. We leave this as
a straightforward exercise. �
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Conjecture 7.5. The property in Theorem 7.3 above is stronger, in the sense that it holds for the
case i = 3 as well.

Corollary 7.6. For n ≥ 5, a result analogous to Corollary 7.4 holds for a radius of 3. Stated
precisely, if T , T ′, T ′′ and T ′′′ are defined in the obvious way (keeping in mind that they lie on
the same path in the rotation graph Rn starting from T and have distances 0, 1, 2 and 3 from T
respectively), then ∣∣ParseWords(T, T ′, T ′′, T ′′′)

∣∣ =
1

8

∣∣ParseWords(T )
∣∣ = 2n−5.

In particular, |ParseWords(T, T ′′′)| ≥ 2n−5.

Proof. The proof of Corollary 7.6 is long and depends on a lot of casework similar to the proof of
Theorem 7.3. We omit the long and arduous proof here. �

Remark. Interestingly, this nice and predictable behavior of the ParseWords function evident in all
the results above (Proposition 7.1, Theorem 7.3, Corollaries 7.4, 7.6, and Conjecture 7.5) breaks
down for distances greater than 3.

In spite of that, it seems from our observations that the value of the function always jumps up
when it does not “halve”, i.e. when the halving does not hold, we get a higher number of common
parse words than half the previous value. This is the main motivation behind the next extremely
important conjecture, which is actually stronger than Conjecture 6.1. However, it seems a more
tangible conjecture with possibly an easier proof than the previously stated one, so we will state it
formally below.

Conjecture 7.7. Let T , T ′, T ′′ be elements of Rn such that there is an edge connecting T ′ and T ′′,
and

dRn
(T, T ′′) = dRn

(T, T ′) + 1.

Then, ∣∣ParseWords(T, T ′′)
∣∣ ≥ 1

2

∣∣ParseWords(T, T ′)
∣∣.
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Appendix 1

Below we indicate all the elements of C5, along with their reduced parenthesizations.

12345

(12)345

12(34)5

1(23)45

((12)3)45 T (12)(34)5 1(2(34))5

(1(23))45 1((23)4)5 (((12)3)4)5

((12)(34))5

(1(2(34)))5 ((1(23))4)5

(1((23)4))5
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Appendix 2

Below we write out the reduced parenthesizations for all trees in C6 in the form of a table, and
label them with the numbers 0 through 41. This labeling is for clarity in the figure that follows,
which depicts the Hasse diagram of the comb poset of order 6, labeled with the appropriate number
from the table to avoid unnecessary clutter.

Table of trees in Figure 11
Zeroth Rank 0 123456

First Rank

1 1(23)456
2 123(45)6
3 (12)3456
4 12(34)56

Second Rank

5 1((23)4)56
6 (1(23))456
7 1(23)(45)6
8 12(3(45))6
9 (12)3(45)6
10 ((12)3)456
11 (12)(34)56
12 12((34)5)6
13 1(2(34))56

Third Rank

14 (1((23)4))56
15 1(((23)4)5)6
16 ((1(23))4)56
17 (1(23))(45)6
18 1((23)(45))6
19 1(2(3(45)))6
20 (12)(3(45))6
21 ((12)3)(45)6
22 (((12)3)4)56
23 ((12)(34))56
24 (12)((34)5)6
25 1(2((34)5))6
26 (1(2(34)))56
27 1((2(34))5)6

Fourth Rank

28 ((1((23)4))5)6
29 (1(((23)4)5))6
30 (((1(23))4)5)6
31 ((1(23))(45))6
32 (1((23)(45)))6
33 (1(2(3(45))))6
34 ((12)(3(45)))6
35 (((12)3)(45))6
36 ((((12)3)4)5)6
37 (((12)(34))5)6
38 ((12)((34)5))6
39 (1(2((34)5)))6
40 ((1(2(34)))5)6
41 (1((2(34))5))6
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0

1 2 3 4

5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39 40 41

Figure 11. The Hasse diagram of C6
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