Rational Catalan Combinatorics: Intro

Vic Reiner
Univ. of Minnesota
reiner@math.umn.edu

AIM workshop
Dec. 17-21, 2012

Goals of the workshop

- Reinforce existing connections and forge new connections between two groups:
- Catalan combinatorialists
- Representation theorists, particularly rational Cherednik algebra experts.
(2) Advertise to the RCA people the main combinatorial mysteries/questions.
(3) Have the RCA people explain what they perceive as the most relevant theory, directions, and questions.

Goals of this talk

(1) Outline Catalan combinatorics and objects, and 4 directions of generalization, mentioning keywords ${ }^{1}$ here.
(2) Describe my own favorite combinatorial mystery: Why are two seemingly different families of objects,

- noncrossing and
- nonnesting, equinumerous, both counted by W-Catalan numbers?
(3) Describe (with example) a conjecture that would resolve it.

[^0]
Catalan numbers

The Catalan number

$$
\mathrm{Cat}_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

surprises us that it counts these "noncrossing" families
(1) noncrossing partitions of $[n]:=\{1,2, \ldots, n\}$
(2) clusters of finite type A_{n-1}
(3) Tamari poset on triangulations of an $(n+2)$-gon
but no longer surprises us counting these "nonnesting" families
(1) nonnesting partitions of $[n]:=\{1,2, \ldots, n\}$
(2) antichains of positive roots of type A_{n-1}
(3) dominant Shi arrangement regions of type A_{n-1}
(4) increasing parking functions of length n
(5) ($n, n+1)$-core integer partitions

Catalan numbers

The Catalan number

$$
\mathrm{Cat}_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

surprises us that it counts these "noncrossing" families
(1) noncrossing partitions of $[n]:=\{1,2, \ldots, n\}$
(2) clusters of finite type A_{n-1}
(3) Tamari poset on triangulations of an ($n+2$)-gon
but no longer surprises us counting these "nonnesting" families
(1) nonnesting partitions of $[n]:=\{1,2, \ldots, n\}$
(2) antichains of positive roots of type A_{n-1}
(3) dominant Shi arrangement regions of type A_{n-1}
(4) increasing parking functions of length n
(5) ($n, n+1$)-core integer partitions

Noncrossing partitions

Definition

A partition of $[n]:=\{1,2, \ldots, n\}$ is noncrossing if its blocks have disjoint convex hulls when $\{1,2, \ldots, n\}$ are drawn cyclically.

Example

$$
8-7
$$

noncrossing
crossing
$1,10,12|2,3,6,9| 4,5|7,8| 11$
$1,3 \mid 2,4$

Noncrossing partitions

Example

The Cat $_{4}=14$ noncrossing partitions of [4]

number of blocks k	tally	
1	1234	1
2	$123\|4,124\| 3,134\|2,1\| 234$, $12\|34,14\| 23$	6
3	$12\|3\| 4,13\|2\| 4,1\|23\| 4$, $1\|2\| 34,14\|2\| 3,1\|24\| 3$	6
4	$1\|2\| 3 \mid 4$	1

Nonnesting partitions

Plot $\{1,2, \ldots, n\}$ along the x-axis, and depict set partitions by semicircular arcs in the upper half-plane, connecting i, j in the same block if no other k with $i<k<j$ is in that block.

Definition

Say the set partition is nonnesting if no pair of arcs nest.

Example

$124 \mid 35$ is nonnesting, while $1589|234| 67$ is nesting as arc 15 nests arc 23 .

Nonnesting partitions

Example

The $\mathrm{Cat}_{4}=14$ nonnesting partitions of [4]

number of blocks k	tally	
1	1234	1
2	$123\|4,124\| 3,134\|2,1\| 234$, $12\|34,13\| 24$	6
3	$12\|3\| 4,13\|2\| 4,1\|23\| 4$, $1\|2\| 34,14\|2\| 3,1\|24\| 3$	6
4	$1\|2\| 3 \mid 4$	1

More shared numerology: Narayana, Kreweras

There are Cat_{n} total noncrossing or nonnesting partitions of $[n]$, and in addition, the
(1) number with k blocks is the Narayana number,

$$
\operatorname{Nar}_{n, k}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}
$$

(2) number with m_{i} blocks of size i is the Kreweras number

$$
\operatorname{Krew}\left(1^{m_{1}} 2^{m_{2}} \cdots\right)=\frac{n!}{(n-k+1)!\cdot m_{1}!m_{2}!\cdots}
$$

Triangulations, clusters, associahedra, Tamari poset

Cat $_{n}$ counts

- triangulations of an ($n+2$)-gon,
- vertices of the ($n-1$)-dimensional associahedron,
- elements of the Tamari poset,
- clusters of type A_{n-1}.

Kirkman numbers

More generally, Kirkman numbers

$$
\operatorname{Kirk}_{n, k}:=\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}
$$

count the

- ($n-1-k$)-dim'l faces, or the
- ($n+2$)-gon dissections using k diagonals.

k	Kirk $_{4, k}$	
3	14	vertices
2	21	edges
1	9	2-faces
0	1	the 3-face

Kirkman is to Narayana as f-vector is to h-vector

The relation between Kirkman and Narayana numbers is the (invertible) relation of the f-vector $\left(f_{0}, \ldots, f_{n}\right)$ of a simple n-dimensional polytope to its h-vector $\left(h_{0}, \ldots, h_{n}\right)$:

$$
\sum_{i=0}^{n} f_{i} t^{i}=\sum_{i=0}^{n} h_{i}(t+1)^{n-i} .
$$

Example

The 3-dimensional associahedron has f-vector ($14,21,9,1$), and h-vector (1, 6, 6, 1).

Catalan, Narayana, Kirkman, Kreweras

This is one of the 4 directions of generalization:

$$
\begin{aligned}
\mathrm{Cat}_{n} & =\sum_{k} \mathrm{Nar}_{n, k} \\
\mathrm{Nar}_{n, k} & =\sum_{\ell(\lambda)=k} \operatorname{Krew}(\lambda)
\end{aligned}
$$

and

$$
\begin{array}{rll}
\text { Nar }_{n, k} & \leftrightarrow & \text { Kirk }_{n, k} \\
h \text {-vector } & \leftrightarrow & f \text {-vector }
\end{array}
$$

4 directions of generalization/refinement for Cat_{n}

Another fascinating direction: \mathfrak{S}_{n}-harmonics \rightarrow diagonal harmonics \rightarrow tridiagonal harmonics \rightarrow

4 directions of generalization/refinement for Cat_{n}

Another fascinating direction: \mathfrak{S}_{n}-harmonics \rightarrow diagonal harmonics \rightarrow tridiagonal harmonics $\rightarrow \cdots$?

The Fuss and rational Catalan direction

- Catalan number

$$
\text { Cat }_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}
$$

- Fuss-Catalan number

($m=1$ gives Catalan)
- Rational Catalan number

($a=n, b=m n+1$ gives Fuss-Catalan)

The Fuss and rational Catalan direction

- Catalan number

$$
\mathrm{Cat}_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}
$$

- Fuss-Catalan number

$$
\mathrm{Cat}_{n}=\frac{1}{m n+1}\binom{(m+1) n}{n}=\frac{1}{(m+1) n+1}\binom{(m+1) n+1}{n}
$$

($m=1$ gives Catalan)

- Rational Catalan number

The Fuss and rational Catalan direction

- Catalan number

$$
\mathrm{Cat}_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}
$$

- Fuss-Catalan number

$$
\mathrm{Cat}_{n}=\frac{1}{m n+1}\binom{(m+1) n}{n}=\frac{1}{(m+1) n+1}\binom{(m+1) n+1}{n}
$$

($m=1$ gives Catalan)

- Rational Catalan number

$$
\text { Cat }_{n}=\frac{1}{a+b}\binom{a+b}{a} \text { with } \operatorname{gcd}(a, b)=1
$$

$$
\text { (} a=n, b=m n+1 \text { gives Fuss-Catalan) }
$$

Fuss, rational Catalan and the RCA parameter

This direction is related to the parameter c in the definition of the RCA H_{c} (for W of type A_{n-1}).
H_{c} has an irreducible highest weight module $L(1)$, and it will be finite-dimensional if and only if $c=\frac{b}{a}$ with $1<a<b$ and $\operatorname{gcd}(a, b)=1$.

The dimension of its W-fixed subspace $L(\mathbf{1})^{W}$ is

- the Catalan number for $c=\frac{n+1}{n}$,
- the Fuss-Catalan number for $c=\frac{m n+1}{n}$,
- the Rational Catalan number for $c=\frac{b}{a}$

The Kirkman direction from the RCA viewpoint

One can also reinterpret the Kirkman generalization in terms of the RCA in type A_{n-1} as follows:

$$
\begin{aligned}
\mathrm{Cat}_{n} & =\# \text { vertices of associahedron } \\
& =\# \text { clusters } \\
& =\# \operatorname{dim} L(\mathbf{1})^{W} \\
& =\text { multiplicity of } \wedge^{0} V \text { in } L(\mathbf{1})
\end{aligned}
$$

but more generally
Kirk $_{n, k}=\#(n-1-k)$-dim'l faces of associahedron
= \#compatible sets of k (unfrozen) cluster variables
\square

The Kirkman direction from the RCA viewpoint

One can also reinterpret the Kirkman generalization in terms of the RCA in type A_{n-1} as follows:

$$
\begin{aligned}
\text { Cat }_{n} & =\# \text { vertices of associahedron } \\
& =\# \text { clusters } \\
& =\# \operatorname{dim} L(\mathbf{1})^{W} \\
& =\text { multiplicity of } \wedge^{0} V \text { in } L(\mathbf{1})
\end{aligned}
$$

but more generally

$$
\begin{aligned}
\text { Kirk }_{n, k} & =\#(n-1-k) \text {-dim'l faces of associahedron } \\
& =\# \text { compatible sets of } k \text { (unfrozen) cluster variables } \\
& =\text { multiplicity of } \wedge^{n-1-k} V \text { in } L(\mathbf{1})^{W}
\end{aligned}
$$

The q - and (q, t)-direction

The Garsia-Haiman (q, t)-Catalan can be thought of as a bigraded (or rather, filtered and graded) dimension for $L(1)^{W}$.

Parking and increasing parking functions

Before the last direction, a review of more nonnesting families...

Definition

Increasing parking functions of length n are weakly increasing sequences ($a_{1} \leq \ldots \leq a_{n}$) with a_{i} in $\{1,2, \ldots, i\}$.

Definition

A parking function is sequence $\left(b_{1}, \ldots, b_{n}\right)$ whose weakly increasing rearrangement is an increasing parking function.

- There are $(n+1)^{n-1}$ parking functions of length n, of which
- Cat ${ }_{n}$ many are increasing parking functions.

Parking functions of length $n=3$

Example

The $(3+1)^{3-1}=16$ parking functions of length 3, grouped into the $C_{3}=\frac{1}{4}\binom{6}{3}=5$ different \mathfrak{S}_{3}-orbits, with increasing parking function representative shown leftmost:

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

Parking functions and $L(\mathbf{1})$

By definition parking functions have an \mathfrak{S}_{n}-action on positions

$$
w\left(b_{1}, \ldots, b_{n}\right)=\left(b_{w^{-1}(1)}, \ldots, b_{w^{-1}(n)}\right)
$$

and increasing parking functions represent the \mathfrak{S}_{n}-orbits. Thus Cat_{n} is the dimension of the \mathfrak{S}_{n}-fixed space for this \mathfrak{S}_{n}-permutation action.

On the RCA side:
Character computation shows that for parameter $c=\frac{n+1}{n}$ the irreducible H_{c}-module $L(\mathbf{1})$ carries \mathfrak{S}_{n}-representation isomorphic to

- the \mathfrak{S}_{n}-permutation action on parking functions,
- with \mathfrak{S}_{n}-fixed space $L(1)^{\mathfrak{S}_{n}}$ of dimension Cat ${ }_{n}$.

Parking functions and $L(\mathbf{1})$

By definition parking functions have an \mathfrak{S}_{n}-action on positions

$$
w\left(b_{1}, \ldots, b_{n}\right)=\left(b_{w^{-1}(1)}, \ldots, b_{w^{-1}(n)}\right)
$$

and increasing parking functions represent the \mathfrak{S}_{n}-orbits. Thus Cat $_{n}$ is the dimension of the \mathfrak{S}_{n}-fixed space for this \mathfrak{S}_{n}-permutation action.

On the RCA side:
Character computation shows that for parameter $c=\frac{n+1}{n}$, the irreducible H_{c}-module $L(\mathbf{1})$ carries \mathfrak{S}_{n}-representation isomorphic to

- the \mathfrak{S}_{n}-permutation action on parking functions,
- with \mathfrak{S}_{n}-fixed space $L(1)^{\mathfrak{S}_{n}}$ of dimension Cat ${ }_{n}$.

Regions, dominant regions in the Shi arrangement

Definition

The Shi arrangement of hyperplanes is

$$
\left\{x_{i}-x_{j}=0,1\right\}_{1 \leq i<j \leq n}
$$

inside \mathbb{R}^{n}, or the subspace where $x_{1}+\cdots+x_{n}=0$.
It dissects these spaces into

- a total of $(n+1)^{n-1}$ regions, of which
- Cat $_{n}$ lie in the dominant chamber $x_{i} \geq x_{j}$ for $i<j$

Regions, dominant regions in the Shi arrangement

Example

Here for $W=\mathfrak{S}_{3}$ of type A_{2} are shown the

- $(3+1)^{3-1}=16$ Shi regions, and
- the $\mathrm{Cat}_{3}=5$ dominant Shi regions (shaded)

Simultaneous ($\mathrm{n}+1, \mathrm{n}$)-cores

Definition

A partition λ is an n-core if it has no hooklengths divisible by n.

Example

$\lambda=(5,3,1,1)$ is a 3-core:

8	5	4	2	1
5	2	1		
2				
1				

Simultaneous ($\mathrm{n}+1, \mathrm{n}$)-cores

- Naturally n-cores label dominant alcoves for the affine Weyl group $\tilde{\mathfrak{S}}_{n}$.
- There are Cat_{n} of the n-cores of them which are simultaneously $(n+1)$-cores and n-cores. They label minimal alcoves in dominant Shi chambers.

Alcoves $\Longleftrightarrow n$-cores

Antichains of positive roots

Definition

The root order on Φ_{+}says that $\alpha<\beta$ if $\beta-\alpha$ is a nonnegative combination of roots in Φ_{+}.

Example

For $W=\mathfrak{S}_{5}$, the root order on $\Phi_{+}=\left\{e_{i}-e_{j}: 1 \leq i<j \leq 5\right\}$ is

Nonnesting partitions for Weyl groups

Nonnesting partitions of $[n]$ biject with antichains in Φ_{+}for \mathfrak{S}_{n} : to each arc $i<j$ associate the root $e_{i}-e_{j}$.

Example

$124 \mid 35$ is nonnesting, corresponding to antichain $\left\{e_{1}-e_{2}, e_{2}-e_{4}, e_{3}-e_{5}\right\}:$

The reflection group W direction

For W a finite real reflection group ${ }^{2}$, acting irreducibly on $V=\mathbb{R}^{\ell}$, define the W-Catalan number

$$
\operatorname{Cat}(W):=\prod_{i=1}^{\ell} \frac{d_{i}+h}{d_{i}}
$$

where $\left(d_{1}, \ldots, d_{k}\right)$ are the fundamental degrees of
homogeneous W-invariant polynomials f_{1}, \ldots, f_{n} in

${ }^{2} .$. or even a complex reflection group, with suitably modified definition.

The reflection group W direction

For W a finite real reflection group ${ }^{2}$, acting irreducibly on $V=\mathbb{R}^{\ell}$, define the W-Catalan number

$$
\operatorname{Cat}(W):=\prod_{i=1}^{\ell} \frac{d_{i}+h}{d_{i}}
$$

where $\left(d_{1}, \ldots, d_{\ell}\right)$ are the fundamental degrees of homogeneous W-invariant polynomials f_{1}, \ldots, f_{n} in

$$
\begin{align*}
S & =\operatorname{Sym}\left(V^{*}\right) \cong \mathbb{R}\left[x_{1}, \ldots, x_{\ell}\right] \\
\text { with } S^{W} & =\mathbb{R}\left[f_{1}, \ldots, f_{n}\right], \text { and Coxete }
\end{align*}
$$

${ }^{2} .$. or even a complex reflection group, with suitably modified definition.

The reflection group W direction

For W a finite real reflection group ${ }^{2}$, acting irreducibly on $V=\mathbb{R}^{\ell}$, define the W-Catalan number

$$
\operatorname{Cat}(W):=\prod_{i=1}^{\ell} \frac{d_{i}+h}{d_{i}}
$$

where $\left(d_{1}, \ldots, d_{\ell}\right)$ are the fundamental degrees of homogeneous W-invariant polynomials f_{1}, \ldots, f_{n} in

$$
\begin{aligned}
S & =\operatorname{Sym}\left(V^{*}\right) \cong \mathbb{R}\left[x_{1}, \ldots, x_{\ell}\right] \\
\text { with } S^{W} & =\mathbb{R}\left[f_{1}, \ldots, f_{n}\right], \text { and Coxeter number }
\end{aligned}
$$

$$
h:=\max \left\{d_{i}\right\}_{i=1}^{n}=\frac{\#\{\text { reflections }\}+\#\left\{\begin{array}{c}
\text { reflecting } \\
\text { hyperplanes }
\end{array}\right\}}{n} .
$$

${ }^{2} .$. or even a complex reflection group, with suitably modified definition.

W-Catalan and the RCA

The RCA $H_{c}(W)$ has its irreducible rep'n $L(\mathbf{1})$ finite-dimensional only for certain parameter values c.

Among these values is $c=\frac{h+1}{h}$, constant on all conjugacy classes of reflections.

- This irreducible $L(1)$ has dimension $(h+1)^{n}$, and
- W-fixed subspace $L(\mathbf{1})^{W}$ of dimension $\operatorname{Cat}(W)$, by a standard ${ }^{3}$ character computation.

[^1]
My favorite mystery

We are about to list the names of several
(1) W-nonnesting families of objects, and
(2) W-noncrossing families of objects

Although we won't explain it here, we understand well

- via bijections why they are equinumerous within in each family, and
- via character computation why the nonnestings are counted by $\operatorname{Cat}(W)$.

Mystery
Why are the noncrossings also counted by $\operatorname{Cat}(W)$?

My favorite mystery

We are about to list the names of several
(1) W-nonnesting families of objects, and
(2) W-noncrossing families of objects

Although we won't explain it here, we understand well

- via bijections why they are equinumerous within in each family, and
- via character computation why the nonnestings are counted by $\operatorname{Cat}(W)$.

Mystery
Why are the noncrossings also counted by $\operatorname{Cat}(W)$?

The W-nonnesting family for Weyl groups W

Parking functions generalize to ...
(1) sign types as defined by Shi
(2) Shi arrangement regions
(3) the finite torus $Q /(h+1) Q$
where Q is the root lattice for W

Increasing parking functions generalize to
(9)-sign tynes or antichains of nositive roots Φ_{W}^{+}
(2) dominant Shi arrangement regions
(3) W-orbits on $Q /(h+1) Q$.

The W-nonnesting family for Weyl groups W

Parking functions generalize to ...
(1) sign types as defined by Shi
(2) Shi arrangement regions
(3) the finite torus $Q /(h+1) Q$
where Q is the root lattice for W

Increasing parking functions generalize to
(1) \oplus-sign types or antichains of positive roots Φ_{W}^{+}
(2) dominant Shi arrangement regions
(3) W-orbits on $Q /(h+1) Q$.

The W-noncrossing family

Fix a choice of a Coxeter element $c=s_{1} s_{2} \cdots s_{n}$ in a finite reflection group W with Coxeter generators $\left\{s_{1}, \ldots, s_{n}\right\}$. Then

- noncrossing partition lattice,
- clusters of type A_{n-1},
- Tamari poset on triangulations, will generalize to
(1) the lattice $N C(W, c):=[e, c]_{a b s}$, an interval in $<a b s$ on W (2) c-clusters
(3) c-Cambrian lattice on c-sortable elements, and
(4) reduced subwords for w_{0} within the concatenation ${ }^{4} \mathrm{cw}_{0}(\mathrm{c})$ I'll focus here on $\mathrm{NC}(\mathrm{W}, \mathrm{c})$.

The W-noncrossing family

Fix a choice of a Coxeter element $c=s_{1} s_{2} \cdots s_{n}$ in a finite reflection group W with Coxeter generators $\left\{s_{1}, \ldots, s_{n}\right\}$. Then

- noncrossing partition lattice,
- clusters of type A_{n-1},
- Tamari poset on triangulations, will generalize to
(1) the lattice $N C(W, c):=[e, c]_{\text {abs }}$, an interval in $<_{\text {abs }}$ on W
(2) c-clusters
(3) c-Cambrian lattice on c-sortable elements, and
(4) reduced subwords for w_{0} within the concatenation ${ }^{4} \mathrm{cw}_{0}(\mathbf{c})$.

I'll focus here on $\mathrm{NC}(\mathrm{W}, \mathrm{c})$.

[^2]
Absolute length and absolute order on W

Define the absolute order on W using the absolute length ${ }^{5}$

$$
\ell_{T}(w):=\min \left\{\ell: w=t_{1} t_{2} \cdots t_{\ell} \text { with } t_{i} \in T\right\}
$$

where $T:=\bigcup_{w \in W, s \in S} w s w^{-1}$.
Then say $u \leq v$ in the absolute order if

$$
\ell_{T}(u)+\ell_{T}\left(u^{-1} v\right)=\ell_{T}(v)
$$

that is, v has a T-reduced expression

$$
v=\underbrace{t_{1} t_{2} \cdots t_{m}}_{u:=} t_{m+1} \cdots t_{\ell}
$$

with a prefix that factors u.

[^3]
The W-noncrossing partitions $N C(W, c)$

Define $N C(W, c)$ to be the interval $[e, c]_{\text {abs }}$ from the identity e to the chosen Coxeter element $c=s_{1} s_{2} \cdots s_{n}$ in $<_{\text {abs }}$ on W.

Example

$W=\mathfrak{S}_{3}$ of type A_{2}, with $S=\left\{s_{1}, s_{2}\right\}$ and $c=s_{1} s_{2}$.
Absolute order shown, with $N C(W, c)=[e, c]_{\text {abs }}$ in red.

The picture in type A_{n-1}

It's not hard to see that for $W=\mathfrak{S}_{n}$ of type A_{n-1} with $c=(123 \cdots n)=s_{1} s_{2} \cdots s_{n-1}$, a permutation w lies $N C(W, c)=[e, c]_{\text {abs }}$ if and only if the cycles of w are noncrossing and oriented clockwise.

Example

The picture in type B_{n}

Similarly, for W the hyperoctahedral group of type B_{n} of $n \times n$ signed permutation matrices, with c sending

$$
e_{1} \mapsto e_{2} \mapsto \cdots e_{n-1} \mapsto e_{n} \mapsto-e_{1}
$$

one has the same description of $N C(W, c)$, imposing the extra condition that the cycles of w are centrally symmetric.

Example

A conjecture

We wish to phrase a conjecture ${ }^{6}$ that would explain why

$$
|N C(W, c)|=\operatorname{Cat}(W)
$$

along with some other remarkable numerology, at least for real reflection groups W.

There is a good deal of evidence in its favor, and evidence that RCA theory can play a role in proving it.
${ }^{6}$... from Armstrong-R.-Rhoades "Parking spaces"

A conjecture

One needs the existence of a magical set of polynomials

$$
\Theta=\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

inside

$$
S:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=\operatorname{Sym}\left(V^{*}\right)
$$

having these properties:
(1) each θ_{i} is homogeneous of degree $h+1$,
(2) Θ is a system of parameters, meaning that the quotient $S /(\Theta)=S /\left(\theta_{1}, \ldots, \theta_{n}\right)$ is finite-dimensional over \mathbb{C},
(3) the subspace $\mathbb{C} \theta_{1}+\cdots+\mathbb{C} \theta_{n}$ is a W-stable copy of V^{*}, so that one can make the map
a W-isomorphism.

A conjecture

One needs the existence of a magical set of polynomials

$$
\Theta=\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

inside

$$
S:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=\operatorname{Sym}\left(V^{*}\right)
$$

having these properties:
(1) each θ_{i} is homogeneous of degree $h+1$,

(2) Θ is a system of parameters, meaning that the quotient $S /(\Theta)=S /\left(\theta_{1}, \ldots, \theta_{n}\right)$ is finite-dimensional over \mathbb{C},
 (3) the subsnace $\mathbb{C} A_{1}+\cdots+\mathbb{C} A_{n}$ is a W-stable cony of V, so that one can make the map

a W-isomorphism.

A conjecture

One needs the existence of a magical set of polynomials

$$
\Theta=\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

inside

$$
S:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=\operatorname{Sym}\left(V^{*}\right)
$$

having these properties:
(1) each θ_{i} is homogeneous of degree $h+1$,
(2) Θ is a system of parameters, meaning that the quotient $S /(\Theta)=S /\left(\theta_{1}, \ldots, \theta_{n}\right)$ is finite-dimensional over \mathbb{C},
(3) the subspace $\mathbb{C} \theta_{1}+\cdots+\mathbb{C} \theta_{n}$ is a W-stable copy of V^{*}, so that one can make the map

A conjecture

One needs the existence of a magical set of polynomials

$$
\Theta=\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

inside

$$
S:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=\operatorname{Sym}\left(V^{*}\right)
$$

having these properties:
(1) each θ_{i} is homogeneous of degree $h+1$,
(2) Θ is a system of parameters, meaning that the quotient $S /(\Theta)=S /\left(\theta_{1}, \ldots, \theta_{n}\right)$ is finite-dimensional over \mathbb{C},
(3) the subspace $\mathbb{C} \theta_{1}+\cdots+\mathbb{C} \theta_{n}$ is a W-stable copy of V^{*}, so that one can make the map

$$
\begin{aligned}
V^{*} & \cong \mathbb{C} \theta_{1}+\cdots+\mathbb{C} \theta_{n} \\
x_{i} & \longmapsto \theta_{i}
\end{aligned}
$$

a W-isomorphism.

Do such magical Θ exist?

Yes, they exist, but it's subtle.
For classical types A_{n-1}, B_{n}, D_{n}, there are ad hoc constructions.

Example

For types B_{n}, D_{n}, one could take $\Theta=\left(x_{1}^{h+1}, \ldots, x_{n}^{h+1}\right)$.

Example

For type A_{n-1}, Mark Haiman gives an interesting construction in his 1994 paper a, that works via the prime factorization of n.

[^4]
Why do they exist in general?

For general real reflection groups, RCA theory gives such a Θ : the image of V^{*} under a map in the BGG-like resolution of $L(\mathbf{1})$:

$$
\cdots \rightarrow M\left(\wedge^{2} V^{*}\right) \rightarrow \begin{array}{lll}
M\left(V^{*}\right) & \rightarrow M(\mathbf{1}) & \rightarrow L(\mathbf{1}) \rightarrow 0 \\
& \| \otimes_{\mathbb{C}} V^{*} & \rightarrow \\
\hline
\end{array}
$$

In fact, the quotient $S /(\Theta)$ will again carry a W-representation isomorphic to the W-representation on $Q /(h+1) Q$, or on $L(1)$. That is, $S /(\Theta)$ is always a parking space.

Why do they exist in general?

For general real reflection groups, RCA theory gives such a Θ : the image of V^{*} under a map in the BGG-like resolution of $L(1)$:

$$
\begin{array}{lll}
\cdots \rightarrow M\left(\wedge^{2} V^{*}\right) \rightarrow \begin{array}{l}
M\left(V^{*}\right)
\end{array} & \rightarrow M(\mathbf{1}) & \rightarrow L(\mathbf{1}) \rightarrow 0 \\
& \| \otimes_{\mathbb{C}} V^{*} & \rightarrow \\
\|
\end{array}
$$

In fact, the quotient $S /(\Theta)$ will again carry a W-representation isomorphic to the W-representation on $Q /(h+1) Q$, or on $L(\mathbf{1})$.

That is, $S /(\Theta)$ is always a parking space.

Resolve the singularity

So $S /(\Theta)$ will have W-fixed space of dimension $\operatorname{Cat}(W)$. We don't understand geometry of $S /(\Theta)$: it's the coordinate ring for a fat point of multiplicity $(h+1)^{n}$ at 0 in $V=\mathbb{C}^{n}$.

Let's try to resolve it, keeping the same W-representation, but hopefully better geometry, namely

$$
S /(\Theta-\mathbf{x}):=S /\left(\theta_{1}-x_{1}, \ldots, \theta_{n}-x_{n}\right)
$$

which is the coordinate ring for the zero locus of $(\Theta-\mathbf{x})$, or equivalently, the fixed points V^{\ominus} of this map Θ :

$$
\begin{aligned}
V & \stackrel{\Theta}{\longmapsto} V \\
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\theta_{1}(\mathbf{x}), \ldots, \theta_{n}(\mathbf{x})\right)
\end{aligned}
$$

Example: Type B_{2}

Example

W of type B_{2}, the 2×2 signed permutation matrices, with

$$
\begin{array}{rlc}
S & =\mathbb{C}\left[\begin{array}{cc}
x_{1}, & x_{2} \\
S^{W} & =\mathbb{C}[\\
x_{1}^{2}+x_{2}^{2}, & x_{1}^{2} x_{2}^{2} \\
d_{1}=2 & d_{2}=4=h
\end{array}\right]
\end{array}
$$

So W-parking spaces have dimension $(h+1)^{n}=5^{2}=25$, and their W-fixed spaces have dimension

$$
\operatorname{Cat}(W)=\frac{\left(d_{1}+h\right)\left(d_{2}+h\right)}{d_{1} d_{2}}=\frac{(2+4)(4+4)}{2 \cdot 4}=6
$$

Example: Type B_{2}

Example

For W of type B_{2}, as $h+1=5$, the ad hoc choice of Θ is

$$
\begin{aligned}
\Theta & =\left(x_{1}^{5}, x_{2}^{5}\right) \\
\Theta-\mathbf{x} & =\left(x_{1}^{5}-x_{1}, x_{2}^{5}-x_{2}\right) \\
& =\left(x_{1}\left(x_{1}^{4}-1\right), x_{2}\left(x_{2}^{4}-1\right)\right.
\end{aligned}
$$

Here V^{Θ} consists of $(h+1)^{n}=5^{2}$ distinct points in $\mathbb{C}^{2 \prime}$:

$$
V^{\Theta}=\left\{\left(x_{1}, x_{2}\right) \text { with } x_{i} \text { in }\{0,+1,+i,-1,-i\}\right\}
$$

The conjecture

We conjecture this always happens, and $N C(W, c)$ describes the W-action on these $(h+1)^{n}$ points.

Conjecture

For any magical Θ, the set V^{Θ} has these properties:
(1) V^{Θ} consists of $(h+1)^{n}$ distinct points, and
(2) the W-permutation action on V^{Θ} has its W-orbits \mathcal{O}_{w} in bijection with elements w of $N C(W, c)$, and
(3) the W-stabilizers within \mathcal{O}_{w} are conjugate to the parabolic that pointwise stabilizes V^{w}.

The conjecture

Example

Continuing the example of type B_{2}, where

$$
V^{\Theta}=\left\{\left(x_{1}, x_{2}\right): x_{i} \in\{0,+1,+i,-1,-i\}\right\}
$$

the W-orbits on V^{Θ} are these 6:

		$(0,0)$		
$(\pm 1,0)$,	$(\pm i, 0)$,		$\pm(1,1)$,	$\pm(i, i)$,
$(0, \pm 1)$	$(0, \pm i)$		$\pm(1,-1)$	$\pm(i,-i)$
		$(\pm i, \pm 1)$,		
		$(\pm 1, \pm i)$		

The conjecture

Compare the $6 W$-orbits on V^{\ominus}...

		$(0,0)$		
$(\pm 1,0)$,	$(\pm i, 0)$,		$\pm(1,1)$,	$\pm(i, i)$,
$(0, \pm 1)$	$(0, \pm i)$		$\pm(1,-1)$	$\pm(i,-i)$
		$(\pm i, \pm 1)$,		
		$(\pm 1, \pm i)$		

Compare the 6 W -orbits on V^{\ominus}...

		$(0,0)$		
$(\pm 1,0)$,	$(\pm i, 0)$,		$\pm(1,1)$,	$\pm(i, i)$,
$(0, \pm 1)$	$(0, \pm i)$		$\pm(1,-1)$	$\pm(i,-i)$
		$(\pm i, \pm 1)$,		
		$(\pm 1, \pm i)$		

\ldots with $N C\left(B_{2}, c\right)$ where c maps $e_{1} \mapsto e_{2} \mapsto-e_{1}$

$-2 \overbrace{-1}^{1} 2$	$-2()_{-1}^{1} 2$		<	-2
		-2 2 -1		

Two remarks on the conjecture

- When Θ comes from RCA theory, Etingof proved for us that, indeed V^{Θ} has $(h+1)^{n}$ distinct points.
- V^{\ominus} actually carries a $W \times C$-permutation action, where $C \cong \mathbb{Z} / h \mathbb{Z}$ acts via scalings $v \mapsto e^{\frac{2 \pi i}{h}} v$. The full $W \times$-orbit structure is predicted precisely by the elements of $N C(W)=[e, c]_{\text {abs }}$, where the C-action corresponds to conjugation by c.

Two remarks on the conjecture

- When Θ comes from RCA theory, Etingof proved for us that, indeed V^{Θ} has $(h+1)^{n}$ distinct points.
- V^{Θ} actually carries a $W \times C$-permutation action, where $C \cong \mathbb{Z} / h \mathbb{Z}$ acts via scalings $v \mapsto e^{\frac{2 \pi i}{h}} v$.

The full $W \times$-orbit structure is predicted precisely by the elements of $N C(W)=[e, c]_{\text {abs }}$, where the C-action corresponds to conjugation by c.

Two remarks on the conjecture

- When Θ comes from RCA theory, Etingof proved for us that, indeed V^{Θ} has $(h+1)^{n}$ distinct points.
- V^{Θ} actually carries a $W \times C$-permutation action, where $C \cong \mathbb{Z} / h \mathbb{Z}$ acts via scalings $v \mapsto e^{\frac{2 \pi i}{h}} v$.

The full $W \times C$-orbit structure is predicted precisely by the elements of $N C(W)=[e, c]_{\text {abs }}$, where the C-action corresponds to conjugation by c.

Two remarks on the conjecture

Thanks for listening!

[^0]: ${ }^{1}$ History and real definitions (mostly) omitted.

[^1]: ${ }^{3}$ Using a theorem of Solomon

[^2]: ${ }^{4}$ Here $\mathbf{c}=\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ and $\mathbf{w}_{0}(\mathbf{c})$ is the \mathbf{c}-sorting word for w_{0}

[^3]: ${ }^{5}$ Not the usual Coxeter group length!

[^4]: a"Conjectures on the quotient ring by diagonal invariants"

