
Rational Catalan Combinatorics: Intro

Vic Reiner

Univ. of Minnesota

reiner@math.umn.edu

AIM workshop

Dec. 17-21, 2012

V. Reiner Rational Catalan Combinatorics: Intro



Goals of the workshop

1 Reinforce existing connections and forge new connections

between two groups:

Catalan combinatorialists
Representation theorists,

particularly rational Cherednik algebra experts.

2 Advertise to the RCA people the

main combinatorial mysteries/questions.

3 Have the RCA people explain what they perceive as the

most relevant theory, directions, and questions.
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Goals of this talk

1 Outline Catalan combinatorics and objects,

and 4 directions of generalization,

mentioning keywords1 here.

2 Describe my own favorite combinatorial mystery:

Why are two seemingly different families of objects,

noncrossing and

nonnesting,

equinumerous, both counted by W -Catalan numbers?

3 Describe (with example) a conjecture that would resolve it.

1History and real definitions (mostly) omitted.
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Catalan numbers

The Catalan number

Catn =
1

n + 1

(
2n

n

)

surprises us that it counts these “noncrossing” families

1 noncrossing partitions of [n] := {1,2, . . . ,n}

2 clusters of finite type An−1

3 Tamari poset on triangulations of an (n + 2)-gon

but no longer surprises us counting these “nonnesting” families

1 nonnesting partitions of [n] := {1,2, . . . ,n}

2 antichains of positive roots of type An−1

3 dominant Shi arrangement regions of type An−1

4 increasing parking functions of length n

5 (n,n + 1)-core integer partitions

V. Reiner Rational Catalan Combinatorics: Intro



Catalan numbers

The Catalan number

Catn =
1

n + 1

(
2n

n

)

surprises us that it counts these “noncrossing” families

1 noncrossing partitions of [n] := {1,2, . . . ,n}

2 clusters of finite type An−1

3 Tamari poset on triangulations of an (n + 2)-gon

but no longer surprises us counting these “nonnesting” families

1 nonnesting partitions of [n] := {1,2, . . . ,n}

2 antichains of positive roots of type An−1

3 dominant Shi arrangement regions of type An−1

4 increasing parking functions of length n

5 (n,n + 1)-core integer partitions

V. Reiner Rational Catalan Combinatorics: Intro



Noncrossing partitions

Definition

A partition of [n] := {1,2, . . . ,n} is noncrossing if its blocks have

disjoint convex hulls when {1,2, . . . ,n} are drawn cyclically.

Example

1

��
��
��
��
��
�

2
<<

12
}}

3

11 4

10

������
5

9

�������������
6

8 7

1

4 2

3

noncrossing crossing

1,10,12|2,3,6,9|4,5|7,8|11 1,3|2,4
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Noncrossing partitions

Example

The Cat4 = 14 noncrossing partitions of [4]

number of tally

blocks k

1 1234 1

2 123|4, 124|3, 134|2, 1|234, 6

12|34, 14|23

3 12|3|4, 13|2|4, 1|23|4, 6

1|2|34, 14|2|3, 1|24|3

4 1|2|3|4 1
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Nonnesting partitions

Plot {1,2, . . . ,n} along the x-axis, and depict set partitions by

semicircular arcs in the upper half-plane, connecting i , j in the

same block if no other k with i < k < j is in that block.

Definition

Say the set partition is nonnesting if no pair of arcs nest.

Example

124|35 is nonnesting,

while 1589|234|67 is nesting as arc 15 nests arc 23.

1  2  3  4  5

1   2   3   4   5   6   7   8   9
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More shared numerology: Narayana, Kreweras

There are Catn total noncrossing or nonnesting partitions of [n],
and in addition, the

1 number with k blocks is the Narayana number,

Narn,k =
1

n

(
n

k

)(
n

k − 1

)

2 number with mi blocks of size i is the Kreweras number

Krew(1m12m2 · · · ) =
n!

(n − k + 1)! · m1!m2! · · ·
.
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Triangulations, clusters, associahedra, Tamari poset

Catn counts

triangulations of an (n + 2)-gon,

vertices of the (n − 1)-dimensional associahedron,

elements of the Tamari poset,

clusters of type An−1.
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Kirkman numbers

More generally, Kirkman numbers

Kirkn,k :=
1

k + 1

(
n + k + 1

k

)(
n − 1

k

)

count the

(n − 1 − k)-dim’l faces, or the

(n + 2)-gon dissections using k diagonals.

k Kirk4,k

3 14 vertices

2 21 edges

1 9 2-faces

0 1 the 3-face
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Kirkman is to Narayana as f -vector is to h-vector

The relation between Kirkman and Narayana numbers is the

(invertible) relation of the f -vector (f0, . . . , fn) of a simple

n-dimensional polytope to its h-vector (h0, . . . ,hn):

n∑

i=0

fi t
i =

n∑

i=0

hi(t + 1)n−i .

Example

The 3-dimensional associahedron has f -vector (14,21,9,1),
and h-vector (1,6,6,1).

1

1 9

1 8 21

1 7 13 14

(1, 6, 6, 1)
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Catalan, Narayana, Kirkman, Kreweras

This is one of the 4 directions of generalization:

Catn =
∑

k

Narn,k

Narn,k =
∑

ℓ(λ)=k

Krew(λ)

and
Narn,k ↔ Kirkn,k

h-vector ↔ f -vector
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4 directions of generalization/refinement for Catn

W -Catalan

Narayana, Kirkman,
Kreweras

Catalan

OO

//oo

��

q-Catalan,
(q, t)-Catalan

Fuss-Catalan,
rational Catalan

Another fascinating direction: Sn-harmonics → diagonal harmonics → tridiagonal harmonics → · · · ?
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The Fuss and rational Catalan direction

Catalan number

Catn =
1

n + 1

(
2n

n

)

=
1

2n + 1

(
2n + 1

n

)

Fuss-Catalan number

Catn =
1

mn + 1

(
(m + 1)n

n

)

=
1

(m + 1)n + 1

(
(m + 1)n + 1

n

)

(m = 1 gives Catalan)

Rational Catalan number

Catn =
1

a + b

(
a + b

a

)

with gcd(a,b) = 1

(a = n,b = mn + 1 gives Fuss-Catalan)
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Fuss, rational Catalan and the RCA parameter

This direction is related to the parameter c

in the definition of the RCA Hc (for W of type An−1).

Hc has an irreducible highest weight module L(1),
and it will be finite-dimensional if and only if c = b

a with

1 < a < b and gcd(a,b) = 1.

The dimension of its W -fixed subspace L(1)W is

the Catalan number for c = n+1
n

,

the Fuss-Catalan number for c = mn+1
n ,

the Rational Catalan number for c = b
a
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The Kirkman direction from the RCA viewpoint

One can also reinterpret the Kirkman generalization

in terms of the RCA in type An−1 as follows:

Catn = #vertices of associahedron

= #clusters

= # dim L(1)W

= multiplicity of ∧0V in L(1)

but more generally

Kirkn,k = #(n − 1 − k)-dim’l faces of associahedron

= #compatible sets of k (unfrozen) cluster variables

= multiplicity of ∧n−1−kV in L(1)W
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The q- and (q, t)-direction

Catn = 1
n+1

(
2n
n

)

Carlitz-Riordan
Catn(1, t)

t=1

77nnnnnnnnnnnnn
MacMahon
Catn(q,q

−1)

q=1

OO

Carlitz-Riordan
Catn(q,1)

q=1
ggPPPPPPPPPPPPP

Garsia-Haiman
Catn(q, t)

t=1

77ooooooooooo
q=1

ggOOOOOOOOOOO
t=q−1

OO

The Garsia-Haiman (q, t)-Catalan can be thought of as a

bigraded (or rather, filtered and graded) dimension for L(1)W .
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Parking and increasing parking functions

Before the last direction, a review of more nonnesting families...

Definition

Increasing parking functions of length n are weakly increasing

sequences (a1 ≤ . . . ≤ an) with ai in {1,2, . . . , i}.

Definition

A parking function is sequence (b1, . . . ,bn) whose weakly

increasing rearrangement is an increasing parking function.

There are (n + 1)n−1 parking functions of length n, of which

Catn many are increasing parking functions.

V. Reiner Rational Catalan Combinatorics: Intro



Parking functions of length n = 3

Example

The (3 + 1)3−1 = 16 parking functions of length 3,

grouped into the C3 = 1
4

(
6
3

)
= 5 different S3-orbits,

with increasing parking function representative shown leftmost:

111

112 121 211

113 131 311

122 212 221

123 132 213 231 312 321
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Parking functions and L(1)

By definition parking functions have an Sn-action on positions

w(b1, . . . ,bn) = (bw−1(1), . . . ,bw−1(n))

and increasing parking functions represent the Sn-orbits.

Thus Catn is the dimension of the Sn-fixed space for this

Sn-permutation action.

On the RCA side:

Character computation shows that for parameter c = n+1
n

,

the irreducible Hc-module L(1) carries Sn-representation

isomorphic to

the Sn-permutation action on parking functions,

with Sn-fixed space L(1)Sn of dimension Catn.
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Regions, dominant regions in the Shi arrangement

Definition

The Shi arrangement of hyperplanes is

{xi − xj = 0,1}1≤i<j≤n

inside R
n, or the subspace where x1 + · · ·+ xn = 0.

It dissects these spaces into

a total of (n + 1)n−1 regions, of which

Catn lie in the dominant chamber xi ≥ xj for i < j
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Regions, dominant regions in the Shi arrangement

Example

Here for W = S3 of type A2 are shown the

(3 + 1)3−1 = 16 Shi regions, and

the Cat3 = 5 dominant Shi regions (shaded)
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Simultaneous (n+1,n)-cores

Definition

A partition λ is an n-core if it has no hooklengths divisible by n.

Example

λ = (5,3,1,1) is a 3-core:

8 5 4 2 1

5 2 1

2

1
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Simultaneous (n+1,n)-cores

Naturally n-cores label dominant alcoves for the affine Weyl group S̃n .

There are Catn of the n-cores of them which are simultaneously (n + 1)-cores and n-cores.
They label minimal alcoves in dominant Shi chambers.
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Antichains of positive roots

Definition

The root order on Φ+ says that α < β if β − α is a nonnegative

combination of roots in Φ+.

Example

For W = S5, the root order on Φ+ = {ei − ej : 1 ≤ i < j ≤ 5} is

e1 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e4

ww
ww
ww
w

GG
GG

GG
G

e2 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e3

ww
ww
ww
w

GG
GG

GG
G

e2 − e4

ww
ww
ww
w

GG
GG

GG
G

e3 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e2 e2 − e3 e3 − e4 e4 − e5

V. Reiner Rational Catalan Combinatorics: Intro



Nonnesting partitions for Weyl groups

Nonnesting partitions of [n] biject with antichains in Φ+ for Sn:

to each arc i < j associate the root ei − ej .

Example

124|35 is nonnesting, corresponding to antichain

{e1 − e2,e2 − e4,e3 − e5}:

e1 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e4

ww
ww
ww
w

GG
GG

GG
G

e2 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e3

ww
ww
ww
w

GG
GG

GG
G

e2 − e4

ww
ww
ww
w

GG
GG

GG
G

e3 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e2 e2 − e3 e3 − e4 e4 − e5
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The reflection group W direction

For W a finite real reflection group2, acting irreducibly on

V = R
ℓ, define the W -Catalan number

Cat(W ) :=

ℓ∏

i=1

di + h

di

where (d1, . . . ,dℓ) are the fundamental degrees of

homogeneous W -invariant polynomials f1, . . . , fn in

S = Sym(V ∗) ∼= R[x1, . . . , xℓ]

with SW = R[f1, . . . , fn], and Coxeter number

h := max{di}
n
i=1 =

# {reflections}+#

{
reflecting

hyperplanes

}

n
.

2... or even a complex reflection group, with suitably modified definition.
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W -Catalan and the RCA

The RCA Hc(W ) has its irreducible rep’n L(1)
finite-dimensional only for certain parameter values c.

Among these values is c = h+1
h

, constant on all conjugacy

classes of reflections.

This irreducible L(1) has dimension (h + 1)n, and

W -fixed subspace L(1)W of dimension Cat(W ),
by a standard3 character computation.

3Using a theorem of Solomon
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My favorite mystery

We are about to list the names of several

1 W -nonnesting families of objects, and

2 W -noncrossing families of objects

Although we won’t explain it here, we understand well

via bijections why they are equinumerous

within in each family, and

via character computation why

the nonnestings are counted by Cat(W ).

Mystery

Why are the noncrossings also counted by Cat(W )?
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The W -nonnesting family for Weyl groups W

Parking functions generalize to ...

1 sign types as defined by Shi

2 Shi arrangement regions

3 the finite torus Q/(h + 1)Q

where Q is the root lattice for W

Increasing parking functions generalize to

1 ⊕-sign types or antichains of positive roots Φ+
W

2 dominant Shi arrangement regions

3 W -orbits on Q/(h + 1)Q.
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The W -noncrossing family

Fix a choice of a Coxeter element c = s1s2 · · · sn in a finite

reflection group W with Coxeter generators {s1, . . . , sn}. Then

noncrossing partition lattice,

clusters of type An−1,

Tamari poset on triangulations,

will generalize to

1 the lattice NC(W , c) := [e, c]abs, an interval in <abs on W

2 c-clusters

3 c-Cambrian lattice on c-sortable elements, and

4 reduced subwords for w0 within the concatenation4 cw0(c).

I’ll focus here on NC(W,c).

4Here c = (s1, s2, · · · , sn) and w0(c) is the c-sorting word for w0
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Absolute length and absolute order on W

Define the absolute order on W using the absolute length5

ℓT (w) := min{ℓ : w = t1t2 · · · tℓ with ti ∈ T}

where T :=
⋃

w∈W ,s∈S wsw−1.

Then say u ≤ v in the absolute order if

ℓT (u) + ℓT (u
−1v) = ℓT (v)

that is, v has a T -reduced expression

v = t1t2 · · · tm
︸ ︷︷ ︸

u:=

tm+1 · · · tℓ

with a prefix that factors u.

5Not the usual Coxeter group length!
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The W -noncrossing partitions NC(W , c)

Define NC(W , c) to be the interval [e, c]abs from the identity e to

the chosen Coxeter element c = s1s2 · · · sn in <abs on W .

Example

W = S3 of type A2, with S = {s1, s2} and c = s1s2.

Absolute order shown, with NC(W , c) = [e, c]abs in red.

s1s2 s2s1

s1

kkkkkkkkkkkkkkkkkk
s2

DDDDDDDD

tttttttttt
t = s1s2s1

SSSSSSSSSSSSSSSS

e

ssssssssss

EEEEEEEEE
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The picture in type An−1

It’s not hard to see that for W = Sn of type An−1 with

c = (123 · · ·n) = s1s2 · · · sn−1, a permutation w lies

NC(W , c) = [e, c]abs if and only if the cycles of w are

noncrossing and oriented clockwise.

Example

4

2

3

6

8
9 1

7

5
4

2

3

6

8
9 1

7

5
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The picture in type Bn

Similarly, for W the hyperoctahedral group of type Bn

of n × n signed permutation matrices, with c sending

e1 7→ e2 7→ · · · en−1 7→ en 7→ −e1

one has the same description of NC(W , c), imposing the extra

condition that the cycles of w are centrally symmetric.

Example

1

��+
++
++
++
++
++
++
++
++
++
++

2

  @
@@

@@
@@

@

−4

��1
11
11
11
11
11
11
1 3

��
−3

OO

4

WW00000000000000

−2

aaBBBBBBBB
−1

UU+++++++++++++++++++++
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A conjecture

We wish to phrase a conjecture6 that would explain why

|NC(W , c)| = Cat(W )

along with some other remarkable numerology,

at least for real reflection groups W .

There is a good deal of evidence in its favor,

and evidence that RCA theory can play a role in proving it.

6... from Armstrong-R.-Rhoades “Parking spaces”
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A conjecture

One needs the existence of a magical set of polynomials

Θ = (θ1, . . . , θn)

inside

S := C[x1, . . . , xn] = Sym(V ∗)

having these properties:

1 each θi is homogeneous of degree h + 1,

2 Θ is a system of parameters, meaning that the quotient

S/(Θ) = S/(θ1, . . . , θn) is finite-dimensional over C,

3 the subspace Cθ1 + · · ·+ Cθn is a W -stable copy of V ∗, so

that one can make the map

V ∗ ∼= Cθ1 + · · · + Cθn

xi 7−→ θi

a W -isomorphism.
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Do such magical Θ exist?

Yes, they exist, but it’s subtle.

For classical types An−1,Bn,Dn, there are ad hoc constructions.

Example

For types Bn,Dn, one could take Θ = (xh+1
1 , . . . , xh+1

n ).

Example

For type An−1, Mark Haiman gives an interesting construction

in his 1994 papera, that works via the prime factorization of n.

a“Conjectures on the quotient ring by diagonal invariants”
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Why do they exist in general?

For general real reflection groups, RCA theory gives such a Θ:

the image of V ∗ under a map in the BGG-like resolution of L(1):

· · · → M(∧2V ∗) → M(V ∗) → M(1) → L(1) → 0

‖ ‖
S ⊗C V ∗ → S

In fact, the quotient S/(Θ) will again carry a W -representation

isomorphic to the W -representation on Q/(h + 1)Q, or on L(1).

That is, S/(Θ) is always a parking space.
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Resolve the singularity

So S/(Θ) will have W -fixed space of dimension Cat(W ).
We don’t understand geometry of S/(Θ): it’s the coordinate

ring for a fat point of multiplicity (h + 1)n at 0 in V = C
n.

Let’s try to resolve it, keeping the same W -representation, but

hopefully better geometry, namely

S/(Θ− x) := S/(θ1 − x1, . . . , θn − xn)

which is the coordinate ring for the zero locus of (Θ− x),
or equivalently, the fixed points VΘ of this map Θ:

V
Θ

−→ V

x = (x1, . . . , xn) 7−→ (θ1(x), . . . , θn(x))
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Example: Type B2

Example

W of type B2, the 2 × 2 signed permutation matrices, with

S = C[ x1, x2 ]

SW = C[ x2
1 + x2

2 , x2
1 x2

2 ]
d1 = 2 d2 = 4 = h

So W -parking spaces have dimension (h + 1)n = 52 = 25,

and their W -fixed spaces have dimension

Cat(W ) =
(d1 + h)(d2 + h)

d1d2
=

(2 + 4)(4 + 4)

2 · 4
= 6
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Example: Type B2

Example

For W of type B2, as h + 1 = 5, the ad hoc choice of Θ is

Θ = (x5
1 , x

5
2 )

Θ− x = (x5
1 − x1, x

5
2 − x2)

= (x1(x
4
1 − 1), x2(x

4
2 − 1)

Here VΘ consists of (h + 1)n = 52 distinct points in C
2’:

VΘ = {(x1, x2) with xi in {0,+1,+i ,−1,−i}}.
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The conjecture

We conjecture this always happens, and

NC(W , c) describes the W -action on these (h + 1)n points.

Conjecture

For any magical Θ, the set VΘ has these properties:

1 VΘ consists of (h + 1)n distinct points, and

2 the W-permutation action on VΘ has its W-orbits Ow in

bijection with elements w of NC(W , c), and

3 the W-stabilizers within Ow are conjugate to the parabolic

that pointwise stabilizes V w .
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The conjecture

Example

Continuing the example of type B2, where

VΘ = {(x1, x2) : xi ∈ {0,+1,+i ,−1,−i}}

the W -orbits on VΘ are these 6:

(0,0)

(±1,0), (±i ,0), ±(1,1), ±(i , i),
(0,±1) (0,±i) ±(1,−1) ±(i ,−i)

(±i ,±1),
(±1,±i)
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The conjecture

Compare the 6 W -orbits on VΘ ...
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Two remarks on the conjecture

When Θ comes from RCA theory, Etingof proved for us

that, indeed VΘ has (h + 1)n distinct points.

VΘ actually carries a W × C-permutation action,

where C ∼= Z/hZ acts via scalings v 7→ e
2πi
h v .

The full W × C-orbit structure is predicted precisely by the

elements of NC(W ) = [e, c]abs, where the C-action

corresponds to conjugation by c.
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Two remarks on the conjecture

Thanks for listening!
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