Rational Catalan Combinatorics: Intro

Vic Reiner Univ. of Minnesota reiner@math.umn.edu

AIM workshop Dec. 17-21, 2012

V. Reiner Rational Catalan Combinatorics: Intro

- Reinforce existing connections and forge new connections between two groups:
 - Catalan combinatorialists
 - Representation theorists, particularly rational Cherednik algebra experts.
- Advertise to the RCA people the main combinatorial mysteries/questions.
- Have the RCA people explain what they perceive as the most relevant theory, directions, and questions.

- Outline Catalan combinatorics and objects, and 4 directions of generalization, mentioning keywords¹ here.
- Describe my own favorite combinatorial mystery: Why are two seemingly different families of objects,
 - noncrossing and
 - nonnesting,

equinumerous, both counted by W-Catalan numbers?

Oescribe (with example) a conjecture that would resolve it.

¹History and real definitions (mostly) omitted.

Catalan numbers

The Catalan number

$$\operatorname{Cat}_n = \frac{1}{n+1} \binom{2n}{n}$$

surprises us that it counts these "noncrossing" families

- noncrossing partitions of $[n] := \{1, 2, ..., n\}$
- 2 clusters of finite type A_{n-1}
- Solution Tamari poset on triangulations of an (n+2)-gon

but no longer surprises us counting these "nonnesting" families

- **1** nonnesting partitions of $[n] := \{1, 2, ..., n\}$
- 2 antichains of positive roots of type A_{n-1}
- Optimization of the second state of the sec
- increasing parking functions of length n
- (n, n + 1)-core integer partitions

Catalan numbers

The Catalan number

$$\operatorname{Cat}_n = \frac{1}{n+1} \binom{2n}{n}$$

surprises us that it counts these "noncrossing" families

- noncrossing partitions of $[n] := \{1, 2, ..., n\}$
- 2 clusters of finite type A_{n-1}
- Solution Tamari poset on triangulations of an (n+2)-gon

but no longer surprises us counting these "nonnesting" families

- nonnesting partitions of $[n] := \{1, 2, ..., n\}$
- 2 antichains of positive roots of type A_{n-1}
- Solution dominant Shi arrangement regions of type A_{n-1}
- increasing parking functions of length n
- (n, n + 1)-core integer partitions

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

Noncrossing partitions

Definition

A partition of $[n] := \{1, 2, ..., n\}$ is noncrossing if its blocks have disjoint convex hulls when $\{1, 2, ..., n\}$ are drawn cyclically.

Example

The $Cat_4 = 14$ noncrossing partitions of [4]
--

number of		tally
blocks <i>k</i>		
1	1234	1
2	123 4, 124 3, 134 2, 1 234,	6
	12 34, 14 23	
3	12 3 4, 13 2 4, 1 23 4,	6
	1 2 34, 14 2 3, 1 24 3	
4	1 2 3 4	1

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Nonnesting partitions

Plot $\{1, 2, ..., n\}$ along the *x*-axis, and depict set partitions by semicircular arcs in the upper half-plane, connecting *i*, *j* in the same block if no other *k* with *i* < *k* < *j* is in that block.

Definition

Say the set partition is nonnesting if no pair of arcs nest.

Example

124|35 is nonnesting,

while 1589|234|67 is nesting as arc 15 nests arc 23.

Example

number of		tally
blocks <i>k</i>		
1	1234	1
2	123 4, 124 3, 134 2, 1 234,	6
	12 34, 13 24	
3	12 3 4, 13 2 4, 1 23 4,	6
	1 2 34, 14 2 3, 1 24 3	
4	1 2 3 4	1

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

There are Cat_n total noncrossing or nonnesting partitions of [n], and in addition, the

number with k blocks is the Narayana number,

$$\operatorname{Nar}_{n,k} = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}$$

number with m_i blocks of size i is the Kreweras number

Krew
$$(1^{m_1}2^{m_2}\cdots) = \frac{n!}{(n-k+1)! \cdot m_1! m_2! \cdots}$$

国际 化国际

Triangulations, clusters, associahedra, Tamari poset

Cat_n counts

- triangulations of an (n+2)-gon,
- vertices of the (n-1)-dimensional associahedron,
- elements of the Tamari poset,
- clusters of type A_{n-1} .

Kirkman numbers

More generally, Kirkman numbers

$$\operatorname{Kirk}_{n,k} := \frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$$

count the

- (n-1-k)-dim'l faces, or the
- (n+2)-gon dissections using *k* diagonals.

k	Kirk _{4,k}	
3	14	vertices
2	21	edges
1	9	2-faces
0	1	the 3-face

□→ < □→ < □→</p>

Kirkman is to Narayana as *f*-vector is to *h*-vector

The relation between Kirkman and Narayana numbers is the (invertible) relation of the *f*-vector (f_0, \ldots, f_n) of a simple *n*-dimensional polytope to its *h*-vector (h_0, \ldots, h_n) :

$$\sum_{i=0}^{n} \frac{f_i}{t^i} t^i = \sum_{i=0}^{n} \frac{h_i}{(t+1)^{n-i}}.$$

Example

The 3-dimensional associahedron has f-vector (14, 21, 9, 1), and h-vector (1, 6, 6, 1).

Catalan, Narayana, Kirkman, Kreweras

This is one of the 4 directions of generalization:

$$\operatorname{Cat}_n = \sum_k \operatorname{Nar}_{n,k}$$

$$\operatorname{Nar}_{n,k} = \sum_{\ell(\lambda)=k} \operatorname{Krew}(\lambda)$$

and

$$\operatorname{Nar}_{n,k} \leftrightarrow \operatorname{Kirk}_{n,k}$$

h-vector \leftrightarrow f-vector

4 directions of generalization/refinement for Cat_n

Another fascinating direction: \mathfrak{S}_n -harmonics \rightarrow diagonal harmonics \rightarrow tridiagonal harmonics $\rightarrow \cdots$?

V. Reiner Rational Catalan Combinatorics: Intro

4 directions of generalization/refinement for Cat_n

Another fascinating direction: \mathfrak{S}_n -harmonics \rightarrow diagonal harmonics \rightarrow tridiagonal harmonics \rightarrow · · · ?

V. Reiner Rational Catalan Combinatorics: Intro

The Fuss and rational Catalan direction

Catalan number

$$\operatorname{Cat}_{n} = \frac{1}{n+1} \binom{2n}{n} = \frac{1}{2n+1} \binom{2n+1}{n}$$

Fuss-Catalan number

$$\operatorname{Cat}_{n} = \frac{1}{mn+1} \binom{(m+1)n}{n} = \frac{1}{(m+1)n+1} \binom{(m+1)n+1}{n}$$

(m = 1 gives Catalan)

Rational Catalan number

$$\operatorname{Cat}_n = \frac{1}{a+b} \begin{pmatrix} a+b\\a \end{pmatrix}$$
 with $\operatorname{gcd}(a,b) = 1$

(a = n, b = mn + 1 gives Fuss-Catalan)

The Fuss and rational Catalan direction

Catalan number

$$\operatorname{Cat}_{n} = \frac{1}{n+1} \binom{2n}{n} = \frac{1}{2n+1} \binom{2n+1}{n}$$

Fuss-Catalan number

$$\operatorname{Cat}_{n} = \frac{1}{mn+1} \binom{(m+1)n}{n} = \frac{1}{(m+1)n+1} \binom{(m+1)n+1}{n}$$

(m = 1 gives Catalan)

• Rational Catalan number

$$\operatorname{Cat}_n = \frac{1}{a+b} \binom{a+b}{a}$$
 with $\operatorname{gcd}(a,b) = 1$

(a = n, b = mn + 1 gives Fuss-Catalan)

The Fuss and rational Catalan direction

• Catalan number

$$\operatorname{Cat}_{n} = \frac{1}{n+1} \binom{2n}{n} = \frac{1}{2n+1} \binom{2n+1}{n}$$

Fuss-Catalan number

$$\operatorname{Cat}_{n} = \frac{1}{mn+1} \binom{(m+1)n}{n} = \frac{1}{(m+1)n+1} \binom{(m+1)n+1}{n}$$

(m = 1 gives Catalan)

• Rational Catalan number

$$\operatorname{Cat}_n = \frac{1}{a+b} \binom{a+b}{a}$$
 with $\operatorname{gcd}(a,b) = 1$

(a = n, b = mn + 1 gives Fuss-Catalan)

This direction is related to the parameter *c* in the definition of the RCA H_c (for *W* of type A_{n-1}).

 H_c has an irreducible highest weight module L(1), and it will be finite-dimensional if and only if $c = \frac{b}{a}$ with 1 < a < b and gcd(a, b) = 1.

The dimension of its *W*-fixed subspace $L(\mathbf{1})^W$ is

- the Catalan number for $c = \frac{n+1}{n}$,
- the Fuss-Catalan number for $c = \frac{mn+1}{n}$,
- the Rational Catalan number for $c = \frac{b}{a}$

伺 とく ヨ とく ヨ とう

The Kirkman direction from the RCA viewpoint

One can also reinterpret the Kirkman generalization in terms of the RCA in type A_{n-1} as follows:

> Cat_n = #vertices of associahedron = #clusters = # dim $L(1)^W$ = multiplicity of $\wedge^0 V$ in L(1)

but more generally

Kirk_{*n,k*} = #(n - 1 - k)-dim'l faces of associahedron = #compatible sets of *k* (unfrozen) cluster variables = multiplicity of $\wedge^{n-1-k} V$ in $L(1)^W$

(個) (ヨ) (ヨ) (ヨ)

The Kirkman direction from the RCA viewpoint

One can also reinterpret the Kirkman generalization in terms of the RCA in type A_{n-1} as follows:

> Cat_n = #vertices of associahedron = #clusters = # dim $L(1)^W$ = multiplicity of $\wedge^0 V$ in L(1)

but more generally

 $\operatorname{Kirk}_{n,k} = \#(n-1-k)$ -dim'l faces of associahedron

= #compatible sets of *k* (unfrozen) cluster variables

= multiplicity of $\wedge^{n-1-k} V$ in $L(\mathbf{1})^W$

< 個 > < 回 > < 回 > < 回

The q- and (q, t)-direction

The Garsia-Haiman (q, t)-Catalan can be thought of as a bigraded (or rather, filtered and graded) dimension for $L(1)^W$.

Before the last direction, a review of more nonnesting families...

Definition

Increasing parking functions of length *n* are weakly increasing sequences $(a_1 \leq \ldots \leq a_n)$ with a_i in $\{1, 2, \ldots, i\}$.

Definition

A parking function is sequence (b_1, \ldots, b_n) whose weakly increasing rearrangement is an increasing parking function.

- There are $(n+1)^{n-1}$ parking functions of length *n*, of which
- Cat_n many are increasing parking functions.

Example

The $(3 + 1)^{3-1} = 16$ parking functions of length 3, grouped into the $C_3 = \frac{1}{4} {6 \choose 3} = 5$ different \mathfrak{S}_3 -orbits, with increasing parking function representative shown leftmost:

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

< ロ > < 同 > < 回 > < 回 > .

By definition parking functions have an \mathfrak{S}_n -action on positions

$$w(b_1,\ldots,b_n) = (b_{w^{-1}(1)},\ldots,b_{w^{-1}(n)})$$

and increasing parking functions represent the \mathfrak{S}_n -orbits. Thus Cat_n is the dimension of the \mathfrak{S}_n -fixed space for this \mathfrak{S}_n -permutation action.

On the RCA side:

Character computation shows that for parameter $c = \frac{n+1}{n}$, the irreducible H_c -module L(1) carries \mathfrak{S}_n -representation isomorphic to

- the \mathfrak{S}_n -permutation action on parking functions,
- with \mathfrak{S}_n -fixed space $L(\mathbf{1})^{\mathfrak{S}_n}$ of dimension Cat_n .

By definition parking functions have an \mathfrak{S}_n -action on positions

$$w(b_1,\ldots,b_n) = (b_{w^{-1}(1)},\ldots,b_{w^{-1}(n)})$$

and increasing parking functions represent the \mathfrak{S}_n -orbits. Thus Cat_n is the dimension of the \mathfrak{S}_n -fixed space for this \mathfrak{S}_n -permutation action.

On the RCA side:

Character computation shows that for parameter $c = \frac{n+1}{n}$, the irreducible H_c -module L(1) carries \mathfrak{S}_n -representation isomorphic to

- the \mathfrak{S}_n -permutation action on parking functions,
- with \mathfrak{S}_n -fixed space $L(1)^{\mathfrak{S}_n}$ of dimension Cat_n .

< 回 > < 回 > < 回 >

Definition

The Shi arrangement of hyperplanes is

 $\{x_i - x_j = 0, 1\}_{1 \le i < j \le n}$

inside \mathbb{R}^n , or the subspace where $x_1 + \cdots + x_n = 0$.

It dissects these spaces into

- a total of $(n+1)^{n-1}$ regions, of which
- Cat_n lie in the dominant chamber $x_i \ge x_j$ for i < j

Regions, dominant regions in the Shi arrangement

Example

Here for $W = \mathfrak{S}_3$ of type A_2 are shown the

- $(3+1)^{3-1} = 16$ Shi regions, and
- the Cat₃ = 5 dominant Shi regions (shaded)

Definition

A partition λ is an *n*-core if it has no hooklengths divisible by *n*.

Example

< 日 > < 同 > < 回 > < 回 > < □ > <

Simultaneous (n+1,n)-cores

- There are Cat_n of the n-cores of them which are simultaneously (n + 1)-cores and n-cores. They label minimal alcoves in dominant Shi chambers.

Alcoves \iff *n*-cores

The bijection

24/48

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Antichains of positive roots

Definition

The root order on Φ_+ says that $\alpha < \beta$ if $\beta - \alpha$ is a nonnegative combination of roots in Φ_+ .

Example

For $W = \mathfrak{S}_5$, the root order on $\Phi_+ = \{e_i - e_j : 1 \le i < j \le 5\}$ is

V. Reiner Rational Catalan Combinatorics: Intro

Nonnesting partitions for Weyl groups

Nonnesting partitions of [*n*] biject with antichains in Φ_+ for \mathfrak{S}_n : to each arc *i* < *j* associate the root $e_i - e_j$.

Example 124|35 is nonnesting, corresponding to antichain

 $\{e_1 - e_2, e_2 - e_4, e_3 - e_5\}$:

The reflection group *W* direction

For *W* a finite real reflection group², acting irreducibly on $V = \mathbb{R}^{\ell}$, define the *W*-Catalan number

$$\operatorname{Cat}(W) := \prod_{i=1}^{\ell} \frac{d_i + h}{d_i}$$

where (d_1, \ldots, d_ℓ) are the fundamental degrees of homogeneous *W*-invariant polynomials f_1, \ldots, f_n in

 $S = \text{Sym}(V^*) \cong \mathbb{R}[x_1, \dots, x_\ell]$ with $S^W = \mathbb{R}[f_1, \dots, f_n]$, and Coxeter number

$$h := \max\{d_i\}_{i=1}^n = \frac{\#\{\text{reflections}\} + \#\{\text{reflecting} \\ \text{hyperplanes}\}}{n}$$

²... or even a complex reflection group, with suitably modified definition. $= - \circ \circ$

The reflection group *W* direction

For *W* a finite real reflection group², acting irreducibly on $V = \mathbb{R}^{\ell}$, define the *W*-Catalan number

$$\operatorname{Cat}(W) := \prod_{i=1}^{\ell} \frac{d_i + h}{d_i}$$

where (d_1, \ldots, d_ℓ) are the fundamental degrees of homogeneous *W*-invariant polynomials f_1, \ldots, f_n in

$$S = \operatorname{Sym}(V^*) \cong \mathbb{R}[x_1, \dots, x_\ell]$$

with $S^W = \mathbb{R}[f_1, \dots, f_n]$, and Coxeter number

$$h := \max\{d_i\}_{i=1}^n = \frac{\#\{\text{reflections}\} + \#\{\frac{\text{reflecting}}{\text{hyperplanes}}\}}{n}$$

²... or even a complex reflection group, with suitably modified definition. = -9 a

The reflection group *W* direction

For *W* a finite real reflection group², acting irreducibly on $V = \mathbb{R}^{\ell}$, define the *W*-Catalan number

$$\operatorname{Cat}(W) := \prod_{i=1}^{\ell} \frac{d_i + h}{d_i}$$

where (d_1, \ldots, d_ℓ) are the fundamental degrees of homogeneous *W*-invariant polynomials f_1, \ldots, f_n in

$$S = \text{Sym}(V^*) \cong \mathbb{R}[x_1, \dots, x_\ell]$$

with $S^W = \mathbb{R}[f_1, \dots, f_n]$, and Coxeter number
$$H := \max\{d_i\}_{i=1}^n = \frac{\#\{\text{reflections}\} + \#\left\{\begin{array}{c} \text{reflecting} \\ \text{hyperplanes} \end{array}\right\}}{n}$$

^{2...} or even a complex reflection group, with suitably modified definition.

The RCA $H_c(W)$ has its irreducible rep'n L(1) finite-dimensional only for certain parameter values *c*.

Among these values is $c = \frac{h+1}{h}$, constant on all conjugacy classes of reflections.

- This irreducible L(1) has dimension $(h + 1)^n$, and
- *W*-fixed subspace $L(1)^W$ of dimension Cat(W), by a standard³ character computation.

We are about to list the names of several

- W-nonnesting families of objects, and
- W-noncrossing families of objects

Although we won't explain it here, we understand well

- via bijections why they are equinumerous within in each family, and
- via character computation why the nonnestings are counted by Cat(*W*).

Mystery

Why are the noncrossings also counted by Cat(W)?

< 同 > < 回 > < 回 >

We are about to list the names of several

- W-nonnesting families of objects, and
- W-noncrossing families of objects

Although we won't explain it here, we understand well

- via bijections why they are equinumerous within in each family, and
- via character computation why the nonnestings are counted by Cat(*W*).

Mystery

Why are the noncrossings also counted by Cat(W)?

The W-nonnesting family for Weyl groups W

Parking functions generalize to ...

- sign types as defined by Shi
- Shi arrangement regions
- the finite torus Q/(h+1)Q

where Q is the root lattice for W

Increasing parking functions generalize to

- \oplus \oplus -sign types or antichains of positive roots Φ_W^+
- Idominant Shi arrangement regions
- W-orbits on Q/(h+1)Q.

★ ∃ ▶ ★

The W-nonnesting family for Weyl groups W

Parking functions generalize to ...

- sign types as defined by Shi
- Shi arrangement regions
- the finite torus Q/(h+1)Q

where Q is the root lattice for W

Increasing parking functions generalize to

- \oplus -sign types or antichains of positive roots Φ_W^+
- dominant Shi arrangement regions
- Solution Q/(h+1)Q.

Fix a choice of a Coxeter element $c = s_1 s_2 \cdots s_n$ in a finite reflection group W with Coxeter generators $\{s_1, \ldots, s_n\}$. Then

- noncrossing partition lattice,
- clusters of type A_{n-1},
- Tamari poset on triangulations,

will generalize to

) the lattice $NC(W, c) := [e, c]_{abs}$, an interval in $<_{abs}$ on W

C-clusters

- C-Cambrian lattice on c-sortable elements, and
- In the concatenation w_0 within the concatenation $w_0(c)$.

I'll focus here on NC(W,c).

⁴Here $\mathbf{c} = (s_1, s_2, \cdots, s_n)$ and $\mathbf{w}_0(\mathbf{c})$ is the **c**-sorting word for $\underline{w}_0 \prec \underline{z} \rightarrow \underline{z} = -\mathfrak{I} \mathfrak{s}_0 \mathfrak{s}_0$

Fix a choice of a Coxeter element $c = s_1 s_2 \cdots s_n$ in a finite reflection group W with Coxeter generators $\{s_1, \ldots, s_n\}$. Then

- noncrossing partition lattice,
- clusters of type A_{n-1},
- Tamari poset on triangulations,

will generalize to

- the lattice $NC(W, c) := [e, c]_{abs}$, an interval in $<_{abs}$ on W
- C-clusters
- C-Cambrian lattice on c-sortable elements, and
- reduced subwords for w_0 within the concatenation⁴ $cw_0(c)$.

I'll focus here on NC(W,c).

⁴Here $\mathbf{c} = (s_1, s_2, \cdots, s_n)$ and $\mathbf{w}_0(\mathbf{c})$ is the **c**-sorting word for $w_0 \in \mathbb{R}$ by \mathbb{R}

Absolute length and absolute order on W

Define the absolute order on W using the absolute length⁵

$$\ell_{\mathcal{T}}(w) := \min\{\ell : w = t_1 t_2 \cdots t_\ell \text{ with } t_i \in \mathcal{T}\}$$

where $T := \bigcup_{w \in W, s \in S} wsw^{-1}$. Then say $u \le v$ in the absolute order if

$$\ell_T(u) + \ell_T(u^{-1}v) = \ell_T(v)$$

that is, v has a T-reduced expression

$$\mathbf{v} = \underbrace{t_1 t_2 \cdots t_m}_{u:=} t_{m+1} \cdots t_\ell$$

with a prefix that factors *u*.

⁵Not the usual Coxeter group length!

The W-noncrossing partitions NC(W, c)

Define NC(W, c) to be the interval $[e, c]_{abs}$ from the identity *e* to the chosen Coxeter element $c = s_1 s_2 \cdots s_n$ in $<_{abs}$ on *W*.

Example

 $W = \mathfrak{S}_3$ of type A_2 , with $S = \{s_1, s_2\}$ and $c = s_1 s_2$. Absolute order shown, with $NC(W, c) = [e, c]_{abs}$ in red.

It's not hard to see that for $W = \mathfrak{S}_n$ of type A_{n-1} with $c = (123 \cdots n) = s_1 s_2 \cdots s_{n-1}$, a permutation *w* lies $NC(W, c) = [e, c]_{abs}$ if and only if the cycles of *w* are noncrossing and oriented clockwise.

→ Ξ ► < Ξ ►</p>

The picture in type B_n

Similarly, for *W* the hyperoctahedral group of type B_n of $n \times n$ signed permutation matrices, with *c* sending

$$e_1 \mapsto e_2 \mapsto \cdots e_{n-1} \mapsto e_n \mapsto -e_1$$

one has the same description of NC(W, c), imposing the extra condition that the cycles of *w* are centrally symmetric.

We wish to phrase a conjecture⁶ that would explain why

 $|NC(W, c)| = \operatorname{Cat}(W)$

along with some other remarkable numerology, at least for real reflection groups W.

There is a good deal of evidence in its favor, and evidence that RCA theory can play a role in proving it.

One needs the existence of a magical set of polynomials

$$\Theta = (\theta_1, \ldots, \theta_n)$$

inside

$$S := \mathbb{C}[x_1, \ldots, x_n] = \operatorname{Sym}(V^*)$$

having these properties:

- **1** each θ_i is homogeneous of degree h + 1,
- ② Θ is a system of parameters, meaning that the quotient $S/(\Theta) = S/(\theta_1, ..., \theta_n)$ is finite-dimensional over ℂ,
- 3 the subspace $\mathbb{C}\theta_1 + \cdots + \mathbb{C}\theta_n$ is a *W*-stable copy of *V*^{*}, so that one can make the map

$$V^* \cong \mathbb{C}\theta_1 + \dots + \mathbb{C}\theta_n$$
$$x_i \longmapsto \theta_i$$

a W-isomorphism.

One needs the existence of a magical set of polynomials

$$\Theta = (\theta_1, \ldots, \theta_n)$$

inside

$$S := \mathbb{C}[x_1, \ldots, x_n] = \operatorname{Sym}(V^*)$$

having these properties:

- each θ_i is homogeneous of degree h + 1,
- ② Θ is a system of parameters, meaning that the quotient $S/(\Theta) = S/(\theta_1, ..., \theta_n)$ is finite-dimensional over ℂ,
- 3 the subspace $\mathbb{C}\theta_1 + \cdots + \mathbb{C}\theta_n$ is a *W*-stable copy of *V*^{*}, so that one can make the map

$$V^* \cong \mathbb{C}\theta_1 + \dots + \mathbb{C}\theta_n$$
$$x_i \longmapsto \theta_i$$

a W-isomorphism.

One needs the existence of a magical set of polynomials

$$\Theta = (\theta_1, \ldots, \theta_n)$$

inside

$$S := \mathbb{C}[x_1, \ldots, x_n] = \operatorname{Sym}(V^*)$$

having these properties:

- each θ_i is homogeneous of degree h + 1,
- **2** Θ is a system of parameters, meaning that the quotient $S/(\Theta) = S/(\theta_1, \dots, \theta_n)$ is finite-dimensional over \mathbb{C} ,
- (a) the subspace $\mathbb{C}\theta_1 + \cdots + \mathbb{C}\theta_n$ is a *W*-stable copy of *V*^{*}, so that one can make the map

$$V^* \cong \mathbb{C}\theta_1 + \dots + \mathbb{C}\theta_n$$
$$x_i \longmapsto \theta_i$$

a W-isomorphism.

One needs the existence of a magical set of polynomials

$$\Theta = (\theta_1, \ldots, \theta_n)$$

inside

$$S := \mathbb{C}[x_1, \ldots, x_n] = \operatorname{Sym}(V^*)$$

having these properties:

- each θ_i is homogeneous of degree h + 1,
- **2** Θ is a system of parameters, meaning that the quotient $S/(\Theta) = S/(\theta_1, \dots, \theta_n)$ is finite-dimensional over \mathbb{C} ,
- So the subspace $\mathbb{C}\theta_1 + \cdots + \mathbb{C}\theta_n$ is a *W*-stable copy of *V*^{*}, so that one can make the map

$$\begin{array}{rcl} V^* &\cong & \mathbb{C}\theta_1 + \cdots + \mathbb{C}\theta_n \\ x_i &\longmapsto & \theta_i \end{array}$$

a W-isomorphism.

Yes, they exist, but it's subtle.

For classical types A_{n-1} , B_n , D_n , there are ad hoc constructions.

Example

For types B_n , D_n , one could take $\Theta = (x_1^{h+1}, \dots, x_n^{h+1})$.

Example

For type A_{n-1} , Mark Haiman gives an interesting construction in his 1994 paper^{*a*}, that works via the prime factorization of *n*.

^a"Conjectures on the quotient ring by diagonal invariants"

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

For general real reflection groups, RCA theory gives such a Θ : the image of V^* under a map in the BGG-like resolution of L(1):

In fact, the quotient $S/(\Theta)$ will again carry a *W*-representation isomorphic to the *W*-representation on Q/(h+1)Q, or on L(1).

That is, $S/(\Theta)$ is always a parking space.

伺 とくき とくき とう

For general real reflection groups, RCA theory gives such a Θ : the image of V^* under a map in the BGG-like resolution of L(1):

In fact, the quotient $S/(\Theta)$ will again carry a *W*-representation isomorphic to the *W*-representation on Q/(h+1)Q, or on L(1).

That is, $S/(\Theta)$ is always a parking space.

伺 ト イ ヨ ト イ ヨ ト

So $S/(\Theta)$ will have *W*-fixed space of dimension Cat(W). We don't understand geometry of $S/(\Theta)$: it's the coordinate ring for a fat point of multiplicity $(h + 1)^n$ at 0 in $V = \mathbb{C}^n$.

Let's try to resolve it, keeping the same *W*-representation, but hopefully better geometry, namely

$$S/(\Theta - \mathbf{x}) := S/(\theta_1 - x_1, \dots, \theta_n - x_n)$$

which is the coordinate ring for the zero locus of $(\Theta - \mathbf{x})$, or equivalently, the fixed points V^{Θ} of this map Θ :

$$V \xrightarrow{\Theta} V$$

$$\mathbf{x} = (x_1, \dots, x_n) \longmapsto (\theta_1(\mathbf{x}), \dots, \theta_n(\mathbf{x}))$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Example

W of type B_2 , the 2 \times 2 signed permutation matrices, with

$$S = \mathbb{C}[x_1, x_2]$$

$$S^W = \mathbb{C}[x_1^2 + x_2^2, x_1^2 x_2^2]$$

$$d_1 = 2 \quad d_2 = 4 = h$$

So *W*-parking spaces have dimension $(h + 1)^n = 5^2 = 25$, and their *W*-fixed spaces have dimension

$$\operatorname{Cat}(W) = \frac{(d_1 + h)(d_2 + h)}{d_1 d_2} = \frac{(2 + 4)(4 + 4)}{2 \cdot 4} = 6$$

э

Example

For *W* of type B_2 , as h + 1 = 5, the ad hoc choice of Θ is

$$\Theta = (\mathbf{x}_1^5, \mathbf{x}_2^5)$$

$$\Theta - \mathbf{x} = (\mathbf{x}_1^5 - \mathbf{x}_1, \mathbf{x}_2^5 - \mathbf{x}_2)$$

$$= (\mathbf{x}_1(\mathbf{x}_1^4 - 1), \mathbf{x}_2(\mathbf{x}_2^4 - 1))$$

Here V^{Θ} consists of $(h + 1)^n = 5^2$ distinct points in \mathbb{C}^{2^*} :

$$V^{\Theta} = \{(x_1, x_2) \text{ with } x_i \text{ in } \{0, +1, +i, -1, -i\}\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

We conjecture this always happens, and NC(W, c) describes the *W*-action on these $(h + 1)^n$ points.

Conjecture

For any magical Θ , the set V^{Θ} has these properties:

- V^{Θ} consists of $(h + 1)^n$ distinct points, and
- the W-permutation action on V^{Θ} has its W-orbits \mathcal{O}_w in bijection with elements w of NC(W, c), and
- the W-stabilizers within O_w are conjugate to the parabolic that pointwise stabilizes V^w.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

Continuing the example of type B_2 , where

$$V^{\Theta} = \{(x_1, x_2) : x_i \in \{0, +1, +i, -1, -i\}\}$$

the *W*-orbits on V^{Θ} are these 6:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The conjecture

Compare the 6 *W*-orbits on V^{\ominus} ...

... with $NC(B_2, c)$ where c maps $e_1 \mapsto e_2 \mapsto -e_1$

The conjecture

Compare the 6 *W*-orbits on V^{\ominus} ...

... with $NC(B_2, c)$ where c maps $e_1 \mapsto e_2 \mapsto -e_1$

Two remarks on the conjecture

- When Θ comes from RCA theory, Etingof proved for us that, indeed V^Θ has (h + 1)ⁿ distinct points.
- V^{Θ} actually carries a $W \times C$ -permutation action, where $C \cong \mathbb{Z}/h\mathbb{Z}$ acts via scalings $v \mapsto e^{\frac{2\pi i}{h}}v$.

The full $W \times C$ -orbit structure is predicted precisely by the elements of $NC(W) = [e, c]_{abs}$, where the *C*-action corresponds to conjugation by *c*.

Two remarks on the conjecture

- When Θ comes from RCA theory, Etingof proved for us that, indeed V^Θ has (h + 1)ⁿ distinct points.
- V^{Θ} actually carries a $W \times C$ -permutation action, where $C \cong \mathbb{Z}/h\mathbb{Z}$ acts via scalings $v \mapsto e^{\frac{2\pi i}{h}}v$.

The full $W \times C$ -orbit structure is predicted precisely by the elements of $NC(W) = [e, c]_{abs}$, where the *C*-action corresponds to conjugation by *c*.

- When Θ comes from RCA theory, Etingof proved for us that, indeed V^Θ has (h + 1)ⁿ distinct points.
- V^{Θ} actually carries a $W \times C$ -permutation action, where $C \cong \mathbb{Z}/h\mathbb{Z}$ acts via scalings $v \mapsto e^{\frac{2\pi i}{h}}v$.

The full $W \times C$ -orbit structure is predicted precisely by the elements of $NC(W) = [e, c]_{abs}$, where the *C*-action corresponds to conjugation by *c*.

Thanks for listening!

▶ < Ξ > ...