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I. Definitions and Introduction.

A permutation of size n is a linear ordering of the set [] = {1,2,3,...n}, and
let S, be the symmetric group of all permutations of size n. It is well-known and
easy to see that S, forms a group which is generated by the adjacent transpositions
8; = (i,4 + 1), where s; swaps the numbers in positions 4,7 + 1 of the permutation.
A reduced word for a permutation w is a sequence @ = 3145 - - - 1; of minimal length
[ such that w = s;,8i, -~ 8;;. The set of all reduced words for w will be denoted
Red(w).

Ezample. Let w = 4312 in S;. Then one example of a reduced word for w is
a = 23212, corresponding to the application of the following sequence of adjacent

transpositions in going from the identity permutation 1234 to w:

1234
82(

1324
83(

1342
82<

1432
81(

4132
82(

4312

In this case the set of all reduced words Red(w) is

{23121,21321, 23212, 32312, 32132}.

Notice that in the symmetric group Sn, one has the following braid relations on
the generators s;:
8i 85 = 85 84 lfl'l.-—]|22
8;8;418; — 8it18:i8it1
and therefore two reduced words a,a’ will correspond to the same permutation w
if they differ by either of the following relations, which we call elementary Cy- and
C5-equivalences, respectively:

Cgfee & e giee if i - j1 22

ciitliee 2 i+ lii4le-
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A well-known theorem of J. Tits (see e.g. [Br|) gives a converse: any two reduced
words for w are connected by a sequence of elementary C1— and C3-equivalences.
We will say two reduced words a,a’ for w are C-equivalent if they are connected by

a sequence of clementary C;-equivalences, and Cj-equivalence is defined similarly.

Ezample. For w = 4312 as before, the Cy-equivalence classes of reduced words are
{23121,21321}, {23212}, {32312,32132}
and the Cs-equivalence classes of reduced words are

{23121,23212,32312}, {21321}, {32132}.

It will sometimes be convenient to draw a picture of a reduced word g for a
permutation in S, called its braid picture. This picture contains n “strands” which
flow across the page from left to right, with the i** and (¢ + 1)** strand crossing in
the same order as s; occur in the reduced word. For example, the braid picture for

a = 23212 from before is shown in Figure 1.

|

— b
)| . . A
5| X f ]
q 2

FIGURE 1. Braid picture for a reduced word

Given a reduced word g, let C;(a), Cg (a) denote its C;—, Cz-equivalence classes
respectively. The cardinality and structure of the set Red(w) has been extensively
studied in recent years (see e.g. [EG]). Even more recently, C;-equivalence has re-
ceived some attention (see e.g. [El]). This thesis concentrates on C-equivalence. In
the next section, we discuss the main result (Theorem 3) which gives an encoding of
the Cy-equivalence class Cy(a) of a reduced word a. This encoding shows that even
though a Cy(a) may be large, it has a very simple internal structure. As a conse-
quence, we deduce a number of corollaries in Section III. For example, in contrast
to the situation for Cy, it is easy to compute the cardinality #C»(a) (Corollary 6).
We also show that no two reduced words are simultaneously C;- and Cs-equivalent
(Corollary 10). |




II. The Main Encoding Theorem.

Before we can state the main theorem, we first need some terminology related to
the encoding of C;(a), and a few lemmas to show that this encoding is well-defined.

Given a quadruple (I, k,n,¢) where

(1) !is a positive integer,

(2) k is an integer in the range [0,] — 1]

(3) m is a positive integer

(4) e is either +,—, or 0, and is 0 exactly when 1<2

define a particular kind of reduced word ok n,e which we call a string as follows:

For I > 3, 01 n + is the first 21 — 1 letters in the following sequence

n+lnn+2,n+1,n+3,n+2,- - ,n+kn+k—1,

nt+kn+k+1,ntk,

nt+k+2n+k+1l,n+k+3,n+k+2, -

and the letter n + k shown in boldface is called the core of the string. The string
Ok n,— is defined to be the reverse of the string 07 j—1—k,n,+, and has an analogously
defined core. For I = 1,2, define

daono=nn+1n
02,1,n,0 =n+1 n n+1

01,0,2,0 = 11
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Ezamples.

01,0,3,0 =
| 02,0,5,0 = 965
02,1,5,0 = 656

05,0,2,+ = 232435465
05,1,2,+ = 323435465
052,24+ = 3243454635
05,3,2,+ = 324354565
05,4,2,+ = 324354656

04,0,5,~ = 8786756
a15,~ = 1876756
04,25, = 1867656
G435, = 1867565

’ The braid pictures for {04 k5, } ke[o,3] aT€ shown in Figure 2.

Note that for I > 3, the value k in the string o k,n,e 18 the number of pairs of ]
letters preceding the core of the string, and these pairs look like 1 +1,7 when € = +
and i,i + 1 when ¢ = —. Furthermore, if the core is not at the end of the string, ‘
then pairs of the same form will follow the core as well. Thus the braid picture for

a string looks like a sequence of “steps”, followed by the core, followed by another

sequence of “steps”. Notice that performing an elementary Cy-equivalence on a
string may be viewed as “sliding” up or down the core of the string. In fact, from

this point of view, the following Lemma is completely trivial:

Lemma 1. The Cy-equivalence class of the string o1k n,c 1S ezactly

‘ CZ(Ul,k,n,e) = {Ul,k’,n,e}k’e[o,l—l]

Proof. The only elementary C,-equivalences that may be performed on oy i n e SiM-

% ply raise or lower k by 1. B ‘

.
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FIGURE 2. Some braid pictures of strings
Given a reduced word a, a string in @ means a consecutive subsequence of a
which is equal to some string 0y k n e, and a mazimal stringin a is a string which is
embedded within no longer string of a. A decomposition
Q = 0'11,k1,n1,e1 * alz,kz,nz,ez e a'l,.,k,,n.,.,e,.
in which - denotes concatenation and each of the oy, k; n;.¢;’s is a maximal string of
a will be called a mazimal string decomposition of a.

Ezample. a = 213234356521878 is a reduced word for w = 534276981 in Sy, and

a= 2132343 565 2 1 878
0421+ 02050 01,020 01,010 021,70

is a maximal string decomposition for a.

The encoding of Ca(a) will be derived from the fact that maximal string decom-

positions are unique, which we now prove.
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Lemma 2. Every letter v in g is contained in a unique mazimal siring, and there-

fore every reduced word a has a unigue mazimal siring decompostition.

Proof. Let v be a letter in a. Since v = 01,0,0,0, We have that v is itself a string
which is either maximal or is contained in some maximal string. Now assume v
is contained in two maximal strings, a; = 0 k;,ni,e; and a5 = O kjnjejs where
a; # a;. Since we know what the braid picture for a string must look like, it is easy
to check that for v to be contained in two maximal strings, the braid pictures for
a; and g; must “fit together” in one of two ways:

(1) if a contains

ceer,r+ 1,70+ 2,7+ 1,000 yuyee 7+ 8,7+ 8 —-lLr+s,r+s+1,7r+s,---
a; are in boldface respectively, then we

&
have a braid picture that looks like:

for some 7, s where the cores of a,,

e

(2) if a contains
oo —1,7=2,7,7r—Lr+1,r,r+1,r-1,7,r — 2,7 —1,---

for some r (where this time v could be any of the letters r + 1,7,7 + 1 in
the middle) and the cores of g;,a; appear in boldface, then we have a braid

picture that looks like:




T

In case 1, it is easy to see by looking at the braid picture that as we perform

Cs-equivalences on g; which will slide the core of the string a; down, this core

eventually bumps into the core of a;, creating the pattern
"'T,T+1,7’,7'+1,7'+2,7T+1,"'

which is not reduced and hence cannot be contained in a reduced word.

In case 2, a contains
coeryr—1,r 4+ 1,77+ 1,7 —1,7,---

which is again not reduced. Therefore two maximal strings cannot “fit together” in
a reduced word, and thus a letter v cannot be contained in more than one maximal

string. B

As a consequence, we can now define the encoding code(a) to be

code(a) = ((Ii,n1,€1),--- o (Ir,nr, €0))

where the unique maximal string decomposition of a is

a= all,k1,n1,€1 T alr;kr:nnfr'
Ezample. If a = 2132343 565 2 1 878 as in the previous example, then

code(a) = ((4,1,+),(2,5,0),(1,2,0),(1,1,0),(2,7,0))

We can now state the main result (The encoding theorem):

Theorem 3. If a,a’ are reduced words, then a < a' if and only if
5 code(a) = code(a').

i To prove this theorem, we need two lemmas.

f Lemma 4. If two strings a and a' are Cs-equivalent, then code(a) = code(a').
q

Proof. Let @ = 01, 1, n,,e; and @' = 01, k; n, e, Since g and a' are Cz-equivalent, by |

Lemma 1 they are both of the form oy, . for some fixed I,n,e. Thus by definition,
code(a) = code(a’) = (I,n,¢). B '
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Lemma 5. Given a reduced word a with mazimal string decomposition

g:a’lgz ..-gr

and a reduced word o' with mazimal string decomposition

such that a % a', then r = s and g; % a; for all1 <i<r.

Proof. Without loss of generality, we may assume g,a’ differ by a single elementary
Cq-equivalence. Therefore, ¢ and a' are identical except for one j,j + 1,5 in @
replaced by one j+1,j,j+1in &, for some integer j. By definition, j,j+1,7 Cais
the string 02 9 j 0 and is thus equal to or contained in some maximal stringin g. Since
maximal string decomposition is unique, say without loss of generality a2,0,5,0 C g,
for some 1 < p < r. Similarly, j+1,5,j+1 = 02,1,j0in a', solet 62,1 ;0 C a;. Since
a and ¢’ are identical prior to g, and a;, we have a, = al,a;, = a5, 8, 3 = Gy,
and therefore p = ¢. Now let a, = 01,k ,ny ¢, and let Gy, = Ol ky,nz,c,- Assume that
I3 # 3, so without loss of generality Iy > l;. Since o1, ,k, n,,e, is identical to the
2l; — 1 letters of o' following a;,_, except for one C;-equivalence, then these 2[; —1
letters of g' are a string in the Cz-class of @, by Lemma 1. This string contains
Ol;,kz,ma,¢2, Which cannot then be maximal. This is a contradiction, and thus l; = I5.
Therefore a,, and g;, are identical except for one C3-equivalence, and so g, % a4y
Furthermore, since a and a' are identical outside of a, and _q;,, we have that a, = g
for any p < t < r. Therefore g, < @’ for any 1 < ¢ < 7, and it is then clear that

r=gs, B
We are now ready to prove the main encoding theorem:

Theorem 3. If a,a’' are reduced words, then a % a' if and only if

code(a) = code(a').

Proof.

<=: Assume code(a) = code(a'). Let g have maximal string decomposition

a=30y89 8,

8




and let o’ have maximal string decompostition

/ "al «..d

a

where g, = !
a; Oliy kiy niy e, and @) = oy

iarkig mig,cip+ OilCE code(a) = code(a’), then
7 =8, and furthermore I;, = li;;niy = ni, and €, = €, for all a <4 < 7. Then by
Lemma 1 we have that a; & a; for each i, and hence g L.
. C J
:.. Now.assume a < ¢ Again let ¢ = a8, -@a, and o' = 0185 - &), be
maximal string decompositions. Then by Lemma 5 we have r = s and g, < a; for
all 1 <4 <r. By Lemma 4 we know then that code(a;) = code(a}) forall 1 < i < 7,

and therefore by definition code(a) = code(a'). B
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IT1. Consequences of the Encoding Theorem:.

We can now state some interesting corollaries about the structure of a C, equiv-
alence class.

The following is an immediate consequence of the main encoding theorem and

Lemma 1.

Corollary 6. Given a reduced word a such that

code(a) = ((l1,n1,61)(l2,na,€2) - - - (Iry s €r)), then

Cz(g'—) = {011,k1,n1,e1 o .o-lr,krynraer . ki e [O’Z“ - 1] for eaCh i}

and hence

#Cs(a) = [J1:.m
i=1

The next two corollaries give upper bounds on the cardinality of C3(a) in terms
of the length of a, and in terms of the size of the permutation w for which ais a

reduced word.

Corollary 7. Let m(n) be the mazimum cardinality #C2(a) as a runs over all

reduced words of length n for any permutation. Then

27 if n=3j
2 if n=3j+1, j<2
297332 if n=3j+1, j>2
2913 if n=3j+2

m(n) =

Proof. Let n be a fixed non-negative integer. Given any sequence ly,l,,---1, € Z+
such that .7 .(2l; — 1) = n, we can produce a reduced word a of length n such

that #C5(a) = []i_, L by letting a = 04, 0,n,,4+ - - 1, 0,n, + Where
Np 2> Np] >> -+ >> N

i.e. the set of letters in O1; 0,n;,+ 18 disjoint from the set of letters in o1 0,n;,+ for
any ¢ # j. Therefore

m(n) = maz {Hli iyl € Z+,Z(2h -1)= n}
i=1 i=1
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m(n) = maz {Hli :r,l; € Z+’Zl‘i = n-zi—r}
i=1 =1

This is now purely an arithmetic problem, and therefore proofs of all cases of Corol-
lary 7 will not be given. Assuming the first 3 cases have been proven, we will show

how the case for n = 3j + 2 is derived, since it is intermediate in complexity.

Case 4. If n =35 + 2, and thus i li= i@ then

-
ma:cHl,- =2/-1.3,

=1

Proof by induction on j. For the base case j = 1. Then n = 5, so D b = M
and hence » € {1,3,5}. Therefore Yili=14+1414+1+10r2+1+1o0r3,and
thus max([];_, &) = 3 as desired.

Now assume the result is true for 1,2,...,j — 1, and we will prove it for j. If
there exists some subset of I;’s of size h such that the sum of that subset is i.‘%k—h,
then by case 1 the maximum product of that subset of I;’s is 271, Furthermore, the
sum of the remaining 7 — A I;’s must be 172_+22ﬂ;’£ for j2 < j, where j; +j5 = j. By
our induction hypothesis, the maximum product of those remaining [;’s is 27271 . 3,
Therefore the maximum product of all I;’s is 291 - 292—1 . 3, which is 271 . 3,

If there does not exist such a subset of I; ’s, then one can check by consideration
of remainders of 2I; — 1 mod 3 that either r =1 or r = 2.

Ifr=1thenl; = %ﬂ, and thus #C =, = 37:'—3, and one can use algebra to
check that i% <2971.3, If r = 2, then

351 +2 3j2 +2
=Ty b=
where j; + j; = j. Clearly [; - I; is maximized when J1 = J2 and thus I; = I,. Then

j1 = j2 = 1j. Therefore
- 2
32 +2 37 +4\°
#C, ( 5 ) ( " )

It is easy to check by algebra that (244)2 < 2i-1.3 for 5 > 3 and for j =2, then

li +1; = 5, and it is clear that max(l, - l2) = 3-2. The case for j = 1 was shown in
the first induction step, and thus case 4 holds for all j. &

hL




Corollary 8. Let u(n) be the mazimum cardinality #C2(a) as a runs over Red(w)
for allw in S,,. Then

2

i

n?
2% <p(n)<2®
asymptotically in n.

Proof. Clearly a is longest when w reverses the identity permutation in Sy, in
which case (a) has length (), since every pair of numbers in [n] must be switched.
By Corollary 7, we know that #C2(a) is maximized when a is composed almost
completely of strings of length 3, of which there are asymptotically %2 Therefore
2 n2

3

=27,

p(n) <2

Now let n be some fixed integer. The following algorithm produces a reduced
word g, for n n —1 .-- 1, the reverse of the identity permutation, which achieves
#Co(a,) = 2% .
Algorithm for a,:
(1) Start with w =123...n.
(2) Let ¢ be the smallest number such that w, = ¢ and » # n + 1 — i. If there
is no such 7, then we are done.
(3) If wy41 < wyys then reverse wy, wyp1, W2 using the transpositions $,8,413;.
If wyy1 > wyqo, then swap wy, w41 using s,.
(4) Repeat step 2.

Ezample of Algorithm for n =1.

: . transpositions
w z to be performed

1234567 1 818281
3214567 1 838483
3254167 1 858685
3254761 2 82
3524761 2 8384383
3574261 2 S5
3574621 3 $18283
7534621 3 838483
7564321 5 82
7654321

Now define ¢; as the number of times this algorithm used s,s,41s, at Step 3

when ¢ = w,. Thus in our example above, t; = 3,1, = 1,t3 = 2 and ¢,,, = 0 for all

12




m > 3. Notice that every reduced word created by this algorithm is made up of
maximal strings of length 3 or length 1. Since there are two Ca-equivalent strings
for every string of length 3, then the size of the C, class of any of these reduced

words is 22,

If n is odd, say n = 2j — 1 for some j, one can check that componentwise
(tl,tZ,' ytjo1) 2 (1-4,5-3,—2,—5,5— 4, )

If n is even, say n = 2j for some j, one can check that componentwise

(tl’t2"" 7t.7'—1)2 (j—l,j—2,j—2,j-—-4,j—4,j—6,j—6,°")
2(j_l’j_3’j_2aj_5)j—47"')

Thus for n odd or even,

j—1 i ;
. (1) —-2)
L > -
Zt‘ = .Z’ 2
i>1 =2

where j = [2]. One can then check that

(1 +10%1 -2)
2

8
n?—2n—11
8

>

{ nlzdn-8 for n odd

for n even.B

Besides the cardinality of C,-classes, it is also interesting to consider the possible
relationships between C;- and Cj-equivalence, for instance, is it possible for two
reduced words a,a’ to be both C;- and C,-equivalent when a # a'? A priori, this is
not obviously impossible, since it is possible for two different Cs-equivalent words

to have the same content, such as
1213243212 £ 2123243121.

In order to resolve this question, we need to understand one way in which Cj-
equivalence is encoded.

Consider a permutation w = wyw; -+ - w, € Sy, and let a € Red(w). Let
Trip(w) = {(iaj,k) 11 < J < k,w; > w; > wi}.

Since w reverses the order of ¢,5,k, and since g is reduced, then the sequence

of transpositions represented by the letters of @ must swap each pair in {i,7,k}

13




exactly once. Furthermore, since j is between i and k, then the first switch in the

set {i,7,k} must be (i,5) or (j, k), moving j either left or right. One can see then

that there are only two possible sequences of switching pairs in this set:
(1) (1), (i, k), (j, k) OR
(2) (J,k), (4, k), (3, 5).
Now let fq : Trip(w) — {L, R} be the map which assigns to each (%, j, k) € Trip(w)

an L if g switches pairs as in (1) above, or an R is a switches pairs as in (2) above.

The following Lemma [Zi] shows that f, characterizes the C-class of a.

: . c
Lemma 9. Given a,a' reduced words of some permutation w € S,,, then a <~

if and only if fo = fo.

1=}

For our purposes, we will only need the easier implication, namely that a <

IS}

implies fo = fo. For a proof that f, = f, implies a % g , see [Zi].

Proof. Assume a & a', and furthermore assume a and a' differ by exactly one

? elementary C;-equivalence. Thus we can say

1 g,_:alaz...araa...at
a' =aja3---asa,---a; where |a, —a,| > 2.

Fix (¢,7,k) € Trip(w). Clearly the relative positions of 4,7, k during the processes

a and g’ are the same up to the performance of a,,a,. Since |a, —a,| > 2, we know

a, switches two letters in w and a, switches two entirely different letters in w.
First assume a, switches two letters in {3, 7,k}, so without loss of generality say

a, switches (i,5). Let a, switch (k,q), where q is some other letter in w. Then k

will still have the same relative position to the now switched pair 1, j, regardless of
the order of a,,a,, since k and q are clearly left or right of i and j.
| If neither a, nor a, switch more than one letter in {i,j,k}, then a, and a, have
no effect on the relative positions of {i,7,k}, since a, and a, cannot move one past
the other.

Therefore i, j,k are in the same order after the performance of a,,a, or a,,ar.

Furthermore, the permutations are identical after a,,a,, and thus f,(4,5,k) =

fw(i,5,k). &

We can now use this Lemma to prove our final result:

14




Corollary 10. Leta and a' be reduced words of some permutation w = wywsy - - Wy,

C C . .
Thena < o' anda < a' if and only ifa =4d'.

Proof. =: It is trivial that when a = a', then both a e a anda ~ 4.

o C
«: Assumea ~ d' and ¢ < &' where

a=0a10203 ++:8j «+-Qm

7 [N | 7 !
a =a1aa2a3...a:j...a:m.

Then a; = a; up to some point, say a; # a}, where a; = a; for all < < j. Since
a % @', we know a; and a} are in C3-equivalent maximal strings by Lemma 5, and
furthermore |a; — aj| = 1, since sliding the core of the strings containing a; and
aj
say a; = a; + 1. Since g and a' are identical up to aj_1, then the sequences

can change any letter in the string by at most 1. Without loss of generality,

of permutations that result as the transpositions of a and @' are performed are
identical up to the (j — 1)** permutation. Let this (j — 1)** permutation be v =
V1Vg * + - Up. By performing an 84; On U, this becomes vivg -« Va;+1Va;Va;+2 * " Un,
and by performing Sa; OB V it becomes v1V3 * - Vo;Va;+2Vaj+1" " VUn, since aj =
aj + 1. Since a} # a;, the core of some string must be precisely at a; or a}, and so
without loss of generality we can say

(aj,a541,a542) = (hyh +1,h)

for some h. Thus v,;,v4;41,%a;+2 are reversed in ¢ and a', and therefore
(Va;yVaj+1,Va;+2) € Trip(w). Furthermore, fo(va;rVa;+1,Va;+2) = L and
fa'(va;,Ya;+1,Va;+2) = R. Thus by the contrapositive of Lemma 9, a and a' cannot

be Ci-equivalent if a,a’ are Cz-equivalent. B

15




IV. Open questions. There are many question about Cs-equivalence which we
have not answered, and we list some here.

Let 'w‘()n) be the permutation in S, which reverses the identity permutation.

(1) For Red(w((,n)), how many different C>-classes are there? By implementing
the main encoding theorem (Theorem 3) in the computer language C, we

have computed these values for n < 5:

#Red(w™)] L #Red(w()

n

1 1 1
2 1 1
3 1 1
4 8 16
5 432 768

Is it true that c
lim #Red(w(™)] 2

— =17
n — 00 v#Red(w((,'n)') -
(2) Let G,, be the graph with a vertex for each C;-class in Red('w((,n)) and an edge

between two classes Ca(a), C2(a') if they have representatives a,a’ which dif-

fer by an elementary C;-equivalence. By Tits’ Theorem (see Introduction),

G, is connected. For example, Gy is depicted in Figure 3.

{23111 LS 33

123211 ] ; =9 321232

132312 312132

JREP A » 323123

| 212321 132113
% 2132.3\ ' 131243

FIGURE 3

Note that this graph always has two commuting symmetries coming from
aiy Gz---Qa] <> 410Gy Gy

a1 02 """Q < N—ay--"N—Aa3 N — aj.
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What else can one say about this graph? For example, what is its diameter
as a function of n?
(3) Let v(n) be the number of a € Red(w((,n)) which have #C3(a) = 1. The

table below shows some of the first few values for v(n).

n v(n) #Red(ws")
1 1 1

2 1 1

3 0 2

4 4 16

5 256 768

6 100208 292864

Can one find a generating function or asymptotic formula for v(n)? Com-

putations with random reduced words in Mathematica suggest that

lim v(n) .
n — 00 4 Red(w{™)

where ¢ is a constant approximately equal to %.

17




REFERENCES

[Br]K. S. Brown, Buildings, Springer-Verlag, New York, 1989.

[EGP. H. Edelman and C. Greene, Balanced tableauz, Adv. Math. 83 (1987), 42-99.

(El] S. Elnitsky, Rhombic tilings of polygons and classes of reduced words in Cozter groups, Doc-
toral thesis, Univ. of Mich. (1992).

[Zi] G. Ziegler, Higher Bruhat orders and cyclic hyperplane arrangements, Topology 32 (1993),
259-279.

18




