Math 8201
Date due: September 19, 2005
Hand in only the five starred questions.
Section 1.1 nos. $14,25^{*}, 32,34,36$.
Section 1.2 nos. $4^{*}, 5,7,11$.
A. Let α be a rotation about the origin in the plane and let ρ be the reflection in the x-axis. Show that $\rho \alpha \rho^{-1}=\alpha^{-1}$.
B. ${ }^{*}$ Consider a pentagonal prism as shown, and let G be the group whose elements are the rotations of 3-dimensional space which leave the prism looking the same after doing the rotation as it looked before.
(a) What is the order of G ?
(b) How many elements of order 2 does G have?
(c) Show that G is not commutative.
C. Let n be a positive integer, and let G be the group whose elements are the $2 n$ symbols $x^{i} y^{j}$ where $i \in\{0,1\}$ and $j \in\{0, \ldots, n-1\}$, subject to the rules $x^{2}=y^{n}=e$ and $x y=y^{-1} x$. Express $y x$ in the form $x^{i} y^{j}$ with $i \in\{0,1\}$ and $j \in\{0, \ldots, n-1\}$.

Section 1.3 nos. 15, 19.
Section 1.4 no. 11.
D. * Show that the group $H(\mathbb{Z} / 2 \mathbb{Z})$ of 1.4 no. 11 is isomorphic to D_{8}.

Section 1.5 no. 3^{*} (proving that you have indeed found generators and relations).

