Date due: November 21, 2005. There will be a quiz on this date.
Hand in only the starred questions.
Section 7.1 1, 6, 7, 9, 10*, 11, 13, 14*, 15, 16*, 21, 24, 28*, 30
There are many good questions in the exercises at the end of this section.
II. Find a ring R and elements a, b, c all distinct from 0 such that $a \cdot b=a \cdot c$ and yet $b \neq c$.

JJ. Show that the quaternions z for which $z^{2}+1=0$ are precisely those which may be written $z=b i+c j+d k$ with $b^{2}+c^{2}+d^{2}=1$.
[Hint: you may want to show as a first step that if z satisfies the equation then $z= \pm \bar{z}$, and then go on to show that in fact $z=-\bar{z}$. Now continue.]

Section 7.2 2, $7^{*}, 8$

