Math 8201
Homework 9
PJW
Date due: November 14, 2005.
Hand in only the starred questions.
Section 5.1 1, 2, $4^{*}, ~ 5, ~ 6, ~ 18 . ~$
Section 5.4 2, $4,7^{*}, 10.11^{*}$. 13. 15. 17. 19.
FF*. Show that every group of order 1001 is cyclic.
GG. Let G be the group of all isometries of the cube, and let H be the subgroup consisting of rotations which preserve the cube. Let -1 denote the element of G which is the transformation of \mathbb{R}^{3} given by multiplication by -1 .
(a) Show that $G=H \times\langle-1\rangle$.
(b) Show that if $g \in G$ is any element other than -1 then $G \neq H \times\langle g\rangle$.
(To do this you may need to prove that the center of H is $\{e\}$. Either use the isomorphism with S_{4} or note that if you conjugate one rotation by another rotation you get rotation about an axis obtained by applying the second rotation to the axis of the first.)

HH*. (a) Let G be the group of all isometries of the tetrahedron, and let H be the subgroup consisting of rotations which preserve the tetrahedron. Determine whether or not $G=H \times K$ for some subgroup K of G.
(b) Let G be the group of all isometries of the icosahedron, and let H be the subgroup consisting of rotations which preserve the icosahedron. Determine whether or not $G=H \times K$ for some subgroup K of G.

