Math 8202
Homework 10
PJW
Date due: April 10, 2006. There will be a quiz on this date.
Hand in only the starred questions.
Section 14.1, page $5465,6^{*}, 7,8^{*}, 9^{*}, 10$.
Section 14.2, page $5623,4^{*}, 5^{*}, 6$.
J. (Fall 2001, qn. 5) (15\%) Let $f(x)=x^{4}+a x^{3}+b x^{2}+a x+1 \in \mathbb{Q}[x]$, and let E be the splitting field of f.
(a) (3) Show that for each root α of f in E, also α^{-1} is a root of f.
(b) (5) Show that $[E: \mathbb{Q}] \leq 8$.
(c) (7) Show that if f is irreducible in $\mathbb{Q}[x]$ and has exactly two real roots and two complex roots, then the Galois group $G_{E / \mathbb{Q}}$ is isomorphic to D_{4}, the dihedral group of order 8 .
K. (Spring 1995, qn. 3) (15\%) Let $f(X) \in k[X]$ be a polynomial of degree n over k and let K be a splitting field for f over k. Suppose that the Galois group $\operatorname{Gal}(K / k)$ is the symmetric group S_{n}.
(a) (7) Show that f is irreducible in $k[X]$, and separable.
(b) (5) Let α be a root of f in K. Show that in $k(\alpha)[X], f$ factorizes as

$$
f(X)=(X-\alpha) g(X)
$$

where $g(X)$ is an irreducible polynomial.
(c) (3) Determine the Galois group of g over $k(\alpha)$.

