Date due: February 20, 2006. There will be a quiz on this date.

Hand in only the starred questions.

Section 12.1, nos. 2*, 4*, 5, 6*, 10, 11, 12

- D*. (Modification of Fall 1993, qn. 8) Let M be the subgroup of \mathbb{Z}^3 generated by the three vectors (2,4,4), (6,3,-6) and (4,14,20).
 - (a) Calculate the rank of M.
 - (b) Calculate the invariant factors and the elementary divisors of \mathbb{Z}^3/M .
 - (c) Find a basis f_1, f_2, f_3 for \mathbb{Z}^3 with the property that $a_1 f_1, \ldots, a_r f_r$ is a basis for M, where r is the rank of M, and where $a_1 \mid \cdots \mid a_r$.
- E*. Let $A = \mathbb{Z}/12\mathbb{Z} \oplus \mathbb{Z}/15\mathbb{Z} \oplus \mathbb{Z}/18\mathbb{Z} \oplus \mathbb{Z}/27\mathbb{Z}$.
 - (a) Calculate the invariant factors of A.
 - (b) Calculate the elementary divisors of A.
 - (c) Calculate the structure of the group 3A/9A.

The following is a collection of past exam questions that are relevant for the material we are now covering. Some of them use ideas (notably the idea of a projective module) which we have not yet done. These questions are included here only for your information – you are not asked to do any of them!

- 2. (Spring 1999) (a) (9 pts) Let A be an $n \times n$ matrix with integer entries. Regarding the free abelian group \mathbb{Z}^n as the set of column vectors of length n with integer entries, let H be the subgroup of \mathbb{Z}^n generated by the columns of A. Prove that the group \mathbb{Z}^n/H is finite if and only if det $A \neq 0$.
 - (b) (5 pts) Give an example of two subgroups of the group $\mathbb{Z} \oplus \mathbb{Z}$ each of which is a direct summand of $\mathbb{Z} \oplus \mathbb{Z}$ but such that their sum is not a direct summand of $\mathbb{Z} \oplus \mathbb{Z}$. Give reasons for your assertions.
- 2. (Spring 2001) (14%) Let R be a commutative ring, $L = R^n$ a free R-module of rank n, and $A \in M_n(R)$ an $n \times n$ matrix viewed as an endomorphism of L.
 - (a) (5) Show that $det(A) \cdot L \subseteq Im(A)$.
 - (b) (9) If $R = \mathbb{Z}$ and $det(A) \neq 0$, show that the size of Coker(A) equals |det(A)|.
- 3. (Fall 2001) (11%) (a) (7) Let A be a finitely generated abelian group with a subgroup B with the property that whenever $na \in B$ for some $n \in \mathbb{Z}$ and $a \in A$ then $a \in B$. Show that $A \cong B \oplus A/B$.
 - [Additive notation is being used for these groups, so that na means $a + a + \cdots + a$ added n times. You may assume the structure theorem for finitely generated abelian groups.]
 - (b) (4) Let D be the subgroup of the free abelian group $C = \mathbb{Z}^3$ generated by the vector (10, 6, 14). Show that C is not isomorphic to $D \oplus (C/D)$.

3. (Spring 2002) (15%) Let A be a finitely generated abelian group, let B be a subgroup and put C = A/B. Suppose that

$$A = \mathbb{Z}^u \oplus F_A,$$

$$B = \mathbb{Z}^v \oplus F_B,$$

$$C = \mathbb{Z}^w \oplus F_C,$$

where F_A , F_B and F_C are finite abelian groups.

- (a) (9%) Show that u = v + w. [If you use properties of the tensor product, they should be proved. You may assume the Structure Theorem for finitely generated abelian groups.]
- (b) (6%) Suppose further that $F_C = 0$. Show that $F_B = F_A$.
- 3. (Fall 2002) (14%) Let $A = \mathbb{Z}^3$ be a free abelian group of rank 3, and let B be the subgroup of A generated by the elements (2, -4, -1), (4, 1, 1) and (-2, -2, 1) (where we regard elements of A as row vectors of length 3 with integer entries). Writing

$$A/B = \mathbb{Z}^t \oplus \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_s\mathbb{Z},$$

calculate the values of the integers t, d_1, \ldots, d_s .