Math 8202

Homework 4

PJW
Date due: February 20, 2006. There will be a quiz on this date.
Hand in only the starred questions.
Section 12.1, nos. $2^{*}, 4^{*}, 5,6^{*}, 10,11,12$
D*. (Modification of Fall 1993, qn. 8) Let M be the subgroup of \mathbb{Z}^{3} generated by the three vectors $(2,4,4),(6,3,-6)$ and $(4,14,20)$.
(a) Calculate the rank of M.
(b) Calculate the invariant factors and the elementary divisors of \mathbb{Z}^{3} / M.
(c) Find a basis f_{1}, f_{2}, f_{3} for \mathbb{Z}^{3} with the property that $a_{1} f_{1}, \ldots, a_{r} f_{r}$ is a basis for M, where r is the rank of M, and where $a_{1}|\cdots| a_{r}$.
E*. Let $A=\mathbb{Z} / 12 \mathbb{Z} \oplus \mathbb{Z} / 15 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z} \oplus \mathbb{Z} / 27 \mathbb{Z}$.
(a) Calculate the invariant factors of A.
(b) Calculate the elementary divisors of A.
(c) Calculate the structure of the group $3 A / 9 A$.

The following is a collection of past exam questions that are relevant for the material we are now covering. Some of them use ideas (notably the idea of a projective module) which we have not yet done. These questions are included here only for your information - you are not asked to do any of them!
2. (Spring 1999) (a) (9 pts) Let A be an $n \times n$ matrix with integer entries. Regarding the free abelian group \mathbb{Z}^{n} as the set of column vectors of length n with integer entries, let H be the subgroup of \mathbb{Z}^{n} generated by the columns of A. Prove that the group \mathbb{Z}^{n} / H is finite if and only if $\operatorname{det} A \neq 0$.
(b) (5 pts) Give an example of two subgroups of the group $\mathbb{Z} \oplus \mathbb{Z}$ each of which is a direct summand of $\mathbb{Z} \oplus \mathbb{Z}$ but such that their sum is not a direct summand of $\mathbb{Z} \oplus \mathbb{Z}$. Give reasons for your assertions.
2. (Spring 2001) (14\%) Let R be a commutative ring, $L=R^{n}$ a free R-module of rank n, and $A \in M_{n}(R)$ an $n \times n$ matrix viewed as an endomorphism of L.
(a) (5) Show that $\operatorname{det}(A) \cdot L \subseteq \operatorname{Im}(A)$.
(b) (9) If $R=\mathbb{Z}$ and $\operatorname{det}(A) \neq 0$, show that the size of $\operatorname{Coker}(A)$ equals $|\operatorname{det}(A)|$.
3. (Fall 2001) (11\%) (a) (7) Let A be a finitely generated abelian group with a subgroup B with the property that whenever $n a \in B$ for some $n \in \mathbb{Z}$ and $a \in A$ then $a \in B$. Show that $A \cong B \oplus A / B$.
[Additive notation is being used for these groups, so that na means $a+a+\cdots+a$ added n times. You may assume the structure theorem for finitely generated abelian groups.]
(b) (4) Let D be the subgroup of the free abelian group $C=\mathbb{Z}^{3}$ generated by the vector $(10,6,14)$. Show that C is not isomorphic to $D \oplus(C / D)$.
3. (Spring 2002) (15\%) Let A be a finitely generated abelian group, let B be a subgroup and put $C=A / B$. Suppose that

$$
\begin{aligned}
& A=\mathbb{Z}^{u} \oplus F_{A}, \\
& B=\mathbb{Z}^{v} \oplus F_{B}, \\
& C=\mathbb{Z}^{w} \oplus F_{C},
\end{aligned}
$$

where F_{A}, F_{B} and F_{C} are finite abelian groups.
(a) (9%) Show that $u=v+w$.
[If you use properties of the tensor product, they should be proved. You may assume the Structure Theorem for finitely generated abelian groups.]
(b) (6%) Suppose further that $F_{C}=0$. Show that $F_{B}=F_{A}$.
3. (Fall 2002) (14\%) Let $A=\mathbb{Z}^{3}$ be a free abelian group of rank 3, and let B be the subgroup of A generated by the elements $(2,-4,-1),(4,1,1)$ and $(-2,-2,1)$ (where we regard elements of A as row vectors of length 3 with integer entries). Writing

$$
A / B=\mathbb{Z}^{t} \oplus \mathbb{Z} / d_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{s} \mathbb{Z}
$$

calculate the values of the integers t, d_{1}, \ldots, d_{s}.

