Math 8245

Homework 5

PJW

Date due: November 13, 2006. Either hand it to me in class or put it in my mailbox by 3:30.

1. (i) Show that $C_2 * C_2$ is isomorphic to the group of distance-preserving mappings $\mathbb{R} \to \mathbb{R}$ generated by the two mappings α and β defined by $\alpha(x) = -x$ and $\beta(x) = -x + 2$. (ii) Show that $C_2 * C_2$ is isomorphic to the group of 2 by 2 integer matrices generated by $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$.

(iii) Show that $C_2 * C_2$ has an infinite cyclic subgroup of index 2 and that every other element has order 2.

(iv) Show that every subgroup of $C_2 * C_2$ is isomorphic to $1, C_2, C_\infty$ or $C_2 * C_2$.

[You may use any techniques you wish to do this. You could use Bass-Serre theory to deduce the free product decomposition, or not!]

- 2. Let N be kernel of the homomorphism $SL(2,\mathbb{Z}) \to C_{12} = \langle x \rangle$ which sends $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ to x^3 and $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ to x^2 . You may assume without proof that N is a free group. Find a set of matrices which are free generators for N.
- 3. Let Y be a connected graph with maximal subtree Y_0 and suppose that A is a group with subgroups A(v) and $A(e) \leq A$ for each vertex $v \in Y$ and edge $e \in Y$. Suppose that $A(e) \leq A(\iota e)$ always, and for each edge $e \in Y$ there is an element a_e so that $a_e^{-1}A(e)a_e \subseteq A(\tau e)$. Suppose that $a_e = 1$ for all $e \in Y_0$. Let Γ be the coset graph determined by this information, so that the vertices of Γ are the cosets gA(v) of the various groups A(v), the edges are the cosets gA(e) of the various groups A(e) and $\tau gA(e) = ga_eA(\tau e)$. Show that Γ is connected if and only if the subgroups A(v) and elements a_e taken together generate A.

[It is completely acceptable to reduce this question to a result proven in class and quote that result. You should assume that in case some of the groups A(v) or A(e) happen to be the same, for different v and e, then we take the vertices and edges of Γ to be distinct sets in bijection with the sets of cosets gA(v) and gA(e), not the actual sets of cosets.]

4. With the set-up of the last question, let the group A be $SL(2,\mathbb{Z})$, let Y be a single edge with its two vertices, and let $A(\iota e) = \langle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle$, $A(\tau e) = \langle \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \rangle$ and $A(e) = \langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ with $A_e = 1$. Prove that the coset graph Γ of the last question is a tree.

[It is completely acceptable to reduce this question to a result proven in class and quote that result. You may assume anything you want about the geometry of the action of $SL(2,\mathbb{Z})$ on the upper half plane.]

- 5. With the set-up of question 3, suppose that Y has a single vertex with a number of edges which all start and finish at that vertex. Suppose that A(v) = 1. Show that each connected component of Γ is isomorphic to the Cayley graph of the subgroup of A generated by the elements a_e .
- 6. Let $(G(-), Y, Y_0)$ be a graph of groups in which Y is a single edge e with its end vertices, so there is an injective group homomorphism $t_e : G(e) \to G(\tau e)$. Let $\alpha :$ $G(\tau e) \to G(\tau e)$ be a group automorphism and consider the graph of groups with exactly the same specification except that t_e is replaced by $\alpha \circ t_e$. Show that the fundamental groups of these two graphs of groups are isomorphic.
- 7. Let

$$B = \mathbb{Z}[\frac{1}{3}] = \{\frac{a}{3^n} \mid a, n \in \mathbb{Z}\} \subseteq \mathbb{Q}.$$

Let $\theta : B \to B$ be the group automorphism $\theta(x) = x/3$ and define $A = B \rtimes \langle \theta \rangle$. Let Y be a graph with a single vertex v and a single edge e, which is a loop. Put $A(v) = A(e) = \mathbb{Z} \subseteq B$ and let $a_e = \theta$.

- (i) Consider the coset graph defined in question 3 and show that it is a tree.
- (ii) Find the cycle type of the action of a generator of A(v) on the set of vertices of Γ which are distance 2 from the vertex A(v).
- (iii) Prove that A can be expressed as an HNN extension with vertex and edge group \mathbb{Z} .

Extra Questions

- 8. Is $C_2 * C_2$ isomorphic to a subgroup of $SL(2,\mathbb{Z})$? Is $C_2 * C_2$ isomorphic to a subgroup of $PSL(2,\mathbb{Z})$?
- 9. Express the matrices $\begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & -2 \end{pmatrix}$ as products of the generators $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ of $SL(2, \mathbb{Z})$.