Math 8246 Homework 2 Date due: Monday February 19, 2007

- 1. (D&F 17.1, 8) Prove that if $0 \to L \to M \to N \to 0$ is a split short exact sequence of *R*-modules, then for every $n \ge 0$ the sequence $0 \to \operatorname{Ext}_R^n(N, D) \to \operatorname{Ext}_R^n(M, D) \to \operatorname{Ext}_R^n(L, D) \to 0$ is also short exact and split. [Use a splitting homomorphism and Proposition 5, which says that Ext is functorial in each variable.]
- 2. (D&F 17.1, 12) Prove that $\operatorname{Tor}_0^R(D, A) \cong D \otimes_R A$.
- 3. (D&F 17.1, 19) Suppose $r \neq 0$ is not a zero divisor in the commutative ring R.
 - (a) Prove that multiplication by r gives a free resolution $0 \to R \xrightarrow{r} R \to R/rR \to 0$ of the quotient R/rR.
 - (b) Prove that $\operatorname{Ext}_{R}^{0}(R/rR, B) = {}_{r}B$ is the set of elements $b \in B$ with rb = 0, that $\operatorname{Ext}_{r}^{1}(R/rR, B) \cong B/rB$, and that $\operatorname{Ext}_{r}^{n}(R/rR, B) = 0$ for $n \geq 2$ for evry R-module b.
 - (c) Prove that $\operatorname{Tor}_0^R(A, R/rR) = A/rA$, that $\operatorname{Tor}_1^R(A, R/rR) = {}_rA$ is the set of elements $a \in A$ with ra = 0, and that $\operatorname{Tor}_n^R(A, R/rR) = 0$ for $n \ge 2$ for every R-module A.
- 4. (i) Suppose that A, B, A = R-modules and that there are homomorphisms

$$A_{\underset{\delta}{\longleftarrow}}^{\underset{\beta}{\longrightarrow}}B_{\underset{\gamma}{\longleftarrow}}^{\underset{\beta}{\longrightarrow}}C$$

such that $\beta \alpha = 0$ and such that the identity map on B can be written $1_B = \alpha \delta + \gamma \beta$. Show that $\beta = \beta \gamma \beta$. Suppose in addition to all this that $\alpha = \alpha \delta \alpha$. Show that $B \cong \alpha \delta(B) \oplus \gamma \beta(B)$.

(ii) A chain complex C of R-modules is called *contractible* if it is chain homotopy equivalent (by R-module homomorphisms) to the zero chain complex. Prove that C is contractible if and only if C can be written as a direct sum of chain complexes of the form $\cdots \to 0 \to A \xrightarrow{\alpha} B \to 0 \cdots$ where α is an isomorphism.

Given a homomorphism of chain complexes of *R*-modules $\phi : \mathcal{C} \to \mathcal{D}$ we may define $E_n = C_{n-1} \oplus D_n$, and a mapping $e_n : E_n \to E_{n-1}$ by $e_n(a, b) = (-\partial a, \phi a + \partial b)$, where we denote the boundary maps on \mathcal{C} and \mathcal{D} by ∂ . The specification $\mathcal{E}(\phi) = \{E_n, e_n\}$ is called the *mapping cone* of ϕ .

5. Show that $\mathcal{E} = \{E_n, e_n\}$ is indeed a chain complex.

6. Show that there is a short exact sequence of chain complexes $0 \to \mathcal{D} \to \mathcal{E} \to \mathcal{C}[1] \to 0$ where $\mathcal{C}[1]$ denotes the chain complex with the same *R*-modules and boundary maps as \mathcal{C} but with the labeling of degrees shifted by 1 in an appropriate direction. Deduce that there is a long exact sequence

$$\cdots \to H_n(\mathcal{C}) \to H_n(\mathcal{D}) \to H_n(\mathcal{E}(\phi)) \to H_{n-1}(\mathcal{C}) \to \cdots$$

Show that $\mathcal{E}(\phi)$ is acyclic if and only if ϕ induces an isomorphism $H_n(\mathcal{C}) \to H_n(\mathcal{D})$ for every n.

- 7. Show that if $\phi \simeq \psi : \mathcal{C} \to \mathcal{D}$ then $\mathcal{E}(\phi) \cong \mathcal{E}(\psi)$.
- 8. Show that the two extensions $\mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \xrightarrow{\epsilon} \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z} \xrightarrow{\mu'} \mathbb{Z} \xrightarrow{\epsilon'} \mathbb{Z}/3\mathbb{Z}$ are not equivalent, where $\mu = \mu'$ is multiplication by 3, $\epsilon(1) \equiv 1 \pmod{3}$ and $\epsilon'(1) \equiv 2 \pmod{3}$.
- 9. Let $0 \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/16\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to 0$ be a short exact sequence.
 - (i) Construct its inverse under the group operation in $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/4\mathbb{Z})$ with sufficient precision that you can determine by examination of the two sequences whether or not they are equivalent.
 - (ii) Determine the isomorphism type of middle term of the sum of the sequence with itself. [By 'the sum' is meant the addition in $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/4\mathbb{Z})$.]